首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In forests, bacteria and fungi are key players in wood degradation. Still, studies focusing on bacterial and fungal successions during the decomposition process depending on the wood types (i.e. sapwood and heartwood) remain scarce. This study aimed to understand the effect of wood type on the dynamics of microbial ecological guilds in wood decomposition. Using Illumina metabarcoding, bacterial and fungal communities were monitored every 3 months for 3 years from Quercus petraea wood discs placed on forest soil. Wood density and microbial enzymes involved in biopolymer degradation were measured. We observed rapid changes in the bacterial and fungal communities and microbial ecological guilds associated with wood decomposition throughout the experiment. Bacterial and fungal succession dynamics were very contrasted between sapwood and heartwood. The initial microbial communities were quickly replaced by new bacterial and fungal assemblages in the sapwood. Conversely, some initial functional guilds (i.e. endophytes and yeasts) persisted all along the experiment in heartwood and finally became dominant, possibly limiting the development of saprotrophic fungi. Our data also suggested a significant role of bacteria in nitrogen cycle during wood decomposition.  相似文献   

2.
Genomic traits reflect the evolutionary processes that have led to ecological variation among extant organisms, including variation in how they acquire and use resources. Soil fungi have diverse nutritional strategies and exhibit extensive variation in fitness along resource gradients. We tested for trade-offs in genomic traits with mycelial nutritional traits and hypothesize that such trade-offs differ among fungal guilds as they reflect contrasting resource exploitation and habitat preferences. We found species with large genomes exhibited nutrient-poor mycelium and low GC content. These patterns were observed across fungal guilds but with varying explanatory power. We then matched trait data to fungal species observed in 463 Australian grassland, woodland and forest soil samples. Fungi with large genomes and lower GC content dominated in nutrient-poor soils, associated with shifts in guild composition and with species turnover within guilds. These findings highlight fundamental mechanisms that underpin successful ecological strategies for soil fungi.  相似文献   

3.
Monitoring of ecological restorations has rarely focused on fungi. In this study, we conduct a first‐ever monitoring of macrofungi in ecological restorations of coastal Indiana (U.S.A.) and present an approach and considerations that can be followed elsewhere. Forty‐two sites were surveyed over a 2‐year period for the presence of saprotrophic, mycorrhizal, and parasitic macrofungi. Sites included those considered to be restoration, prerestoration, or reference and were in wooded, semiwooded, or grassland habitats. With 1,103 observations, 277 species of fungi were identified. Most fungi were found in wooded habitats though some were in grassland restorations. Invasive plant cover negatively impacted fungal species richness. Monitored sites were compared to a set of reference sites using two different similarity indices (overlap and Jaccard), as well as the ratios of different fungal functional guilds, revealing that choice of index can impact how restorations are perceived to match targets. Last, we present a novel, tractable, and conservative way to assess and rank sites by the functional trait guilds of fungi. We show that such an approach can provide important additional information about the success of restorations such that functional guild ratios could be used as an indicator of restoration progress early‐on while functional values are better used in later phases.  相似文献   

4.
Root‐associated mycobiomes (RAMs) link plant and soil ecological processes, thereby supporting ecosystem functions. Understanding the forces that govern the assembly of RAMs is key to sustainable ecosystem management. Here, we dissected RAMs according to functional guilds and combined phylogenetic and multivariate analyses to distinguish and quantify the forces driving RAM assembly processes. Across large biogeographic scales (>1,000 km) in temperate forests (>100 plots), RAMs were taxonomically highly distinct but composed of a stable trophic structure encompassing symbiotrophic, ectomycorrhizal (55%), saprotrophic (7%), endotrophic (3%) and pathotrophic fungi (<1%). Taxonomic community composition of RAMs is explained by abiotic factors, forest management intensity, dominant tree family (Fagaceae, Pinaceae) and root resource traits. Local RAM assemblies are phylogenetically clustered, indicating stronger habitat filtering on roots in dry, acid soils and in conifer stands than in other forest types. The local assembly of ectomycorrhizal communities is driven by forest management intensity. At larger scales, root resource traits and soil pH shift the assembly process of ectomycorrhizal fungi from deterministic to neutral. Neutral or weak deterministic assembly processes are prevalent in saprotrophic and endophytic guilds. The remarkable consistency of the trophic composition of the RAMs suggests that temperate forests attract fungal assemblages that afford functional resilience under the current range of climatic and edaphic conditions. At local scales, the filtering processes that structure symbiotrophic assemblies can be influenced by forest management and tree selection, but at larger scales, environmental cues and host resource traits are the most prevalent forces.  相似文献   

5.
Fungal communities and diversity in the rhizosphere soil of Argentina (syn. Potentilla) anserina were investigated by high-throughput sequencing. Soil fungal communities changed seasonally; nitrogen, phosphorus, and potassium contents in the soil were highly correlated with specific fungal groups and distributions. At the class level, the fungal community of A. anserina rhizosphere was mainly composed of Sordariomycetes, Pezizomycetes, Dothideomycetes, and Leotiomycetes. Moreover, rhizosphere soil was dominated by Ascomycota and characterized by a relatively high percentage of saprotrophic, parasitic, endophytic, and arbuscular mycorrhizal fungi: Mortierella (3.95 %), Fusarium (3.11 %), Cadophora (2.19 %), Phoma (2.01 %), Preussia (1.18 %) and Glomerales (0.37 %). FUNGuild analysis revealed different fungal ecotypes in rhizosphere soil, including symbiotic, saprotrophic, and pathogenic fungi. The structure and quantity of different ecotypes of fungi showed dynamic changes and may have different functions in the agro-ecosystem. These results provide a theoretical framework for further development and utilization of microbial resources to improve sustainable management strategies.  相似文献   

6.
7.
Spore characteristics of wood-inhabiting fungi suggest that wind is their predominant dispersal vector. However, since they are restricted to ephemeral habitats, colonizing new patches should benefit from dispersal by animals with similar habitat preferences because the directed, resource-searching movement of animals increases the likelihood of reaching suitable habitats. Here we determine which fungal guilds are carried by wood-inhabiting beetles and what influences beetle-associated fungal communities. High-throughput sequencing identified >1800 fungal taxa from beetle communities that emerged from 64 experimental logs. Beetle-associated fungi included mutualistic, decomposing, pathogenic and mycorrhizal fungi; decomposers were the most diverse. Partial-procrustes analysis revealed that the total beetle-associated community and mutualists were correlated (p ≤ 0.05) with beetle community composition and decomposers were marginally correlated (p ≤ 0.10) with beetle community composition. All three groups were marginally correlated with the total fungal communities that inhabit the dead wood. Our results show that beetles carry a broad range of wood-inhabiting fungi and beetle-associated fungal communities are determined by environmental factors and the vectoring beetle community and to some degree by the fungal source community. This suggests that wood-inhabiting beetles contribute to fungal dispersal, including directed dispersal, which could affect fungal community assembly and ecosystem processes like wood decomposition.  相似文献   

8.
We incubated 196 large-diameter aspen (Populus tremuloides), birch (Betula papyrifera), and pine (Pinus taeda) logs on the FACE Wood Decomposition Experiment encompassing eight climatically-distinct forest sites in the United States. We sampled dead wood from these large-diameter logs after 2 to 6 y of decomposition and determined wood rot type as a continuous variable using the lignin loss/density loss ratio (L/D) and assessed wood-rotting fungal guilds using high-throughput amplicon sequencing (HTAS) of the ITS-2 marker. We found L/D values in line with a white rot dominance in all three tree species, with pine having lower L/D values than aspen and birch. Based on HTAS data, white rot fungi were the most abundant and diverse wood-rotting fungal guild, and soft rot fungi were more abundant and diverse than brown rot fungi in logs with low L/D values. For aspen and birch logs, decay type was related to the wood density at sampling. For the pine logs, decay type was associated with the balance between white and brown/soft rot fungi abundance and OTU richness. Our results demonstrate that decay type is governed by biotic and abiotic factors, which vary by tree species.  相似文献   

9.
为了明确高寒草甸退化演替过程中土壤真菌物种组成、群落多样性及功能结构等的响应规律,本研究采用高通量基因测序技术和FUNGuild功能预测,分析了三江源区未退化、轻度退化、中度退化、重度退化和极度退化高寒草甸土壤真菌群落特征及其调控因子。结果表明: 高寒草甸土壤优势真菌为子囊菌门、担子菌门和被孢霉菌门。与未退化草地土壤相比,退化草地土壤真菌物种组成发生明显改变,草地退化后扇形枝孢菌、粉褶菌、锥形湿伞、丝盖伞菌和短梗蠕孢真菌丰度减少,三线镰孢菌和Dactylonectria macrodidyma真菌丰度增加。重度退化增加了土壤真菌Chao1指数,轻度退化则显著降低了真菌Shannon指数和Simpson指数。不同草地的病理型、共生型和腐生型真菌丰度均表现出显著差异;草地退化后土壤中的共生型真菌丰度减少,病理型真菌丰度增加。高寒草甸退化导致土壤真菌格局和功能发生明显改变,地上生物量、土壤含水量、pH、总有机碳、全氮、铵态氮、有效磷和全钾含量及有效氮磷比是改变真菌群落结构的主要驱动因子。  相似文献   

10.
为探讨黑老虎(Kadsura coccinea)根际土壤和组织内生真菌菌群的组成及其生态功能,该研究采用ITS高通量测序技术对成熟黑老虎(根、茎、叶)内生真菌及根际土壤真菌群落结构、多样性和生态功能进行了分析。结果表明:(1)从12个样品中共获得2 241个可操作分类单元(OTU),涉及10门、41纲、95目、212科、367属,内生真菌(根、茎、叶)和根际土壤真菌OTU数分别为386、536、258、1 435个,其中共有的OTU为18个。在门水平上,黑老虎内生真菌及根际土壤真菌优势群落均为子囊菌门和担子菌门,其中子囊菌门在叶和茎中占比分别高达96.99%和95.37%;在属水平上,黑老虎根际土壤真菌中腐生真菌被孢霉属占比较高(为13.5%),叶和茎等生长旺盛的组织中子囊菌门未分类属和痂囊腔菌属占比较高。(2)α多样性分析结果显示,黑老虎根际土壤真菌群落的丰度和多样性明显高于内生真菌,茎中内生真菌丰度显著高于根和叶,而根、茎和叶组织间内生真菌多样性差异不显著;PCoA分析结果显示,叶和茎的真菌群落结构相似性更高。(3)利用FUNGuild数据库进行的功能预测分析结果显示,黑老虎根际土...  相似文献   

11.
Saprotrophic and ectomycorrhizal (EcM) forest fungi decompose organic matter and mobilize nutrients for host plants, respectively. Competition between the two guilds may cause the so-called Gadgil effect, i.e., decreased litter decomposition rates resulting in increased carbon storage in soil. The Gadgil effect was supposed to even affect global climate, highlighting the necessity to understand fungal distribution and interactions in soil. Searching for evidence of competition between saprotrophic and mycorrhizal fungi, we analyzed the distribution of fungi along a well-stratified vertical spruce forest soil profile in two seasons, i.e., autumn and the following spring. The different soil strata (i.e., two mineral horizons and two organic layers) underneath the litter layer were colonized by distinct fungal communities, which included roughly consistent proportions of all fungal guilds and phyla at each time. However, the community composition changed quantitatively between the sampling dates. Along the vertical soil profile, it differed mostly between the organic layers and the mineral soil, which is supposed to be due to differences in the predominant energy sources (i.e., aboveground litter and rhizodeposition, respectively). Network analyses revealed co-occurrences (i.e., positive correlations of individual abundances) to outweigh mutual exclusions (i.e., negative correlations) between individual fungi in each soil stratum and season. This also applied for interactions between saprotrophic and EcM fungi. Network analyses therefore provided no indications for a possible Gadgil effect. However, considering individual nutrient use efficiencies might refine insights from network analyses in future studies and facilitate linking community dynamics to ecosystem processes.  相似文献   

12.
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0–20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.  相似文献   

13.
探索黔中马尾松(Pinus massoniana)林下杜鹃(Rhododendron simsii)根内生真菌物种多样性和生态功能。采集黔中乌当(WD)、孟关(MG)、龙里(LL) 3个地区马尾松林下杜鹃的发根,提取真菌DNA进行高通量测序。分析真菌Alpha多样性,借助FUNGuild注释平台解析真菌的生态功能类别,探索真菌群落中的核心微生物组,并结合网络图展示菌群之间的关联性。结果,3个地区的杜鹃根部内生真菌多样性非常丰富,WD地区杜鹃内生真菌多样性和丰富度最高。试验共获得有效序列425799条,817个可操作分类单元(OTU),分属于6门19纲52目103科154属,主要隶属于子囊菌门(81.2%)、接合菌门(5.8%)和担子菌门(4.7%);优势纲、目、科分别为:散囊菌纲(43.0%)、散囊菌目(39.2%)、发菌科(39.2%);在属的水平上,青霉属(38.60%)占比最高,其次是木霉属(7.20%)、拟盘多毛孢属(6.10%)。根部的真菌拥有多种生态功能群,如未定义腐生菌(194 OTU)、植物病原菌(20 OTU)、土壤腐生菌(18 OTU)、外生菌(14 OTU)、地衣共生真菌(10 OTU)、杜鹃类菌根真菌(5 OTU)、木腐生菌(5 OTU)、丛枝菌根(4 OTU)、内生菌(2 OTU)、动物病原菌(8 OTU),以及多种混合营养型类群21类,102个Undefined种类在FUNGuild数据库中没有参考信息。根部真菌可以形成生态位共享模式,而且不同功能群之间存在耦合性,核心基因组与关键物种以真菌组形成的生态功能团表现。  相似文献   

14.
Currently we have only a limited understanding of the evolutionary and ecological significance of reproductive traits of fungi. We compared data on fruit body size, spore size and shape between saprotrophic and mutualistic (ectomycorrhizal) fungi in Northern and Central Europe. Lifestyle and reproductive traits showed strong phylogenetic signals. A phylogenetically informed analysis demonstrated that saprotrophs produce on average smaller fruit bodies than mutualistic species. The two guilds, however, do not differ in spore size. Overall this suggests that fruit bodies of ectomycorrhizal fungi produce on average more spores than saprotrophic fungi. We argue that this difference is related to resource availability: ectomycorrhizal fungi receive carbon from their hosts and, therefore, evolution favours large fruit bodies, whereas the fruit body size of saprotrophic fungi might have responded to resource availability and the distribution and size of resource patches.  相似文献   

15.
医院绿地土壤是医院人体病原真菌或潜在人体病原真菌重要的物种储存库。这些携带真菌孢子的土粒和灰尘在空气中的传播增加了医院院内真菌感染的风险,已成为一个日趋严重的公共卫生问题。现研究表明,不少高等植物,尤其是药用植物具很强的抗真菌特性。基于高通量测序及模拟盆栽试验,本研究观察了种植药用植物紫苏Perilla frutescens对医院绿地土壤真菌群落组成及生态功能群结构的影响。研究结果表明,医院绿地土壤真菌群落优势类群随紫苏生育期变化而发生明显变化。优势属由原初医院土(PTS)的绿僵菌属Metarhizium(60.94%),依次变为紫苏生长期样本(GZS)的被孢霉属Mortierella(21.34%)、开花期样本(FZS)的亚隔孢壳科Didymellaceae中一未定属(47.22%)和枯萎期样本(WZS)的粪壳菌目Sordariales中一未定属(12.67%)。经FUNGuild平台对序列数据集作进一步解析发现,种植紫苏后能够驱动医院绿地土壤真菌生态功能群发生明显变化,一些分类单元由动物病原向腐生型和/或共生型生态功能群转变。动物病原菌群(包括人体潜在病原)相对丰度,由原初医院土(PTS)的61.36%,下调至紫苏生长期样本(GZS)的2.48%、开花期样本(FZS)的1.40%和枯萎期样本(WZS)的6.09%。研究揭示紫苏对医院绿地土壤真菌群落组成及相对丰度具有一定调控作用,尤其是可降低其中人体潜在病原相对丰度以减轻对人类健康的威胁,为引种药用植物增强医院绿地土壤健康水平及维护医院院内公共卫生安全提供了参考。  相似文献   

16.
刺槐内生真菌群落组成及其生态功能结构分析   总被引:1,自引:0,他引:1  
基于高通量测序方法对贵州贵阳花溪刺槐内生真菌物种多样性进行分析,共获得有效序列43 942条,聚类后共获得81个可操作单元(OTUs),分属4门13纲27目45科58属。其中,优势属为一分类地位未定属,其相对丰度为83.23%,次优势属为镰刀菌属 Fusarium(11.81%) 拟船壳属 Gloniopsis(1.38%)和螺旋聚孢霉属 Clonostachys(0.72%),相对丰度小于0.5%的属高达50个以上。Shannon-Wiener指数为0.6835,Simpson指数为0.7071。经FUNGuild软件平台解析显示,刺槐内生菌包含有如下生态功能群:植物病原菌、动物病原菌、内生真菌、真菌寄生菌、地衣真菌、粪生真菌、未定腐生菌和木腐菌等。  相似文献   

17.
【背景】根部真菌是影响植物幼苗存活、定植和生长的重要因子之一,但是苗圃培育的幼苗根部真菌物种组成与生态学特性尚不清楚。【目的】研究苗圃培育的白木香(Aquilaria sinensis)与降香黄檀(Dalbergia odorifera)幼苗根部真菌群落谱系与生态型多样性,以及宿主植物对根部真菌群落结构的影响。【方法】采集幼苗根尖样品提取基因组DNA,用真菌通用引物与丛枝菌根真菌(AMF)特异性引物扩增真菌r DNA-ITS区,经克隆、测序、序列分析鉴定真菌。通过基于核酸与Metadata数据关联分析的FUNGuild软件,划分根部真菌的营养型和共位群。采用非公制多维尺度分析法(NMDS)研究幼苗根部真菌群落物种组成差异与宿主植物物种及形态指标的关系。【结果】白木香与降香黄檀幼苗根部真菌物种丰富,达51个OTU;谱系多样性较高,涉及毛霉菌门(Mucoromycota,51%)、子囊菌门(Ascomycota,43%)以及担子菌门(Basidiomycota,6%)。这些根部真菌涉及不同的营养型与共位群,包括共生型真菌29种,频度较高的如Glomeromycetes sp.2、Rhizophagus irregularis等,二者均属于AMF共位群;腐生营养型真菌5种,如Talaromyces pinophilus、Rhizopycnis vagum等;病原型真菌2种,是Mycoleptodiscus sp.和Fusarium phaseoli;还有15种其生态类型不确定。NMDS分析结果表明,宿主植物物种、株高、地径、叶面积对根部真菌群落物种组成的影响不显著。然而,株高对AMF群落的物种组成有较弱的影响。【结论】本苗圃条件下,土壤中本土性根部真菌繁殖体较为充足,白木香与降香黄檀幼苗根部真菌群落谱系多样性较高,多种营养型与共位群的根部真菌共存;此外,采用真菌通用引物对ITS1F/ITS4研究根部真菌群落物种多样性时,AMF多样性可能会被极度低估。  相似文献   

18.
Endophytic fungi inhabit the living tissues of every terrestrial plant species thus far examined. In at least some cases they significantly improve stress tolerance of their hosts. We asked whether endophytic fungi play other ecological roles, specifically whether the leaf endophytes of Quercus gambelii persist during the course of leaf decomposition, requiring a transition from a biotrophic to a saprotrophic mode of nutrition. Using automated ribosomal intergenic spacer analysis (ARISA), we found that endophyte fungal OTU diversity declined as decomposition commenced, but some endophytes persisted for months during which leaves were decomposing. In contrast, saprotroph fungi OTU diversity increased as decomposition progressed. These results are consistent with the hypothesis that some biotrophic endophytes persist in leaves during decomposition by becoming saprotrophic, and that the niche occupied by them is broader than expected.  相似文献   

19.
Endolichenic fungi live in close association with algal photobionts inside asymptomatic lichen thalli and resemble fungal endophytes of plants in terms of taxonomy, diversity, transmission mode, and evolutionary history. This similarity has led to uncertainty regarding the distinctiveness of endolichenic fungi compared with endophytes. Here, we evaluate whether these fungi represent distinct ecological guilds or a single guild of flexible symbiotrophs capable of colonizing plants or lichens indiscriminately. Culturable fungi were sampled exhaustively from replicate sets of phylogenetically diverse plants and lichens in three microsites in a montane forest in southeastern Arizona (USA). Intensive sampling combined with a small spatial scale permitted us to decouple spatial heterogeneity from host association and to sample communities from living leaves, dead leaves, and lichen thalli to statistical completion. Characterization using data from the nuclear ribosomal internal transcribed spacer and partial large subunit (ITS-LSU rDNA) provided a first estimation of host and substrate use for 960 isolates representing five classes and approximately 16 orders, 32 families, and 65 genera of Pezizomycotina. We found that fungal communities differ at a broad taxonomic level as a function of the phylogenetic placement of their plant or lichen hosts. Endolichenic fungal assemblages differed as a function of lichen taxonomy, rather than substrate, growth form, or photobiont. In plants, fungal communities were structured more by plant lineage than by the living vs. senescent status of the leaf. We found no evidence that endolichenic fungi are saprotrophic fungi that have been “entrapped” by lichen thalli. Instead, our study reveals the distinctiveness of endolichenic communities relative to those in living and dead plant tissues, with one notable exception: we identify, for the first time, an ecologically flexible group of symbionts that occurs both as endolichenic fungi and as endophytes of mosses.  相似文献   

20.
为寻找促进药用植物活性代谢产物合成的微生物,该文以黄精为研究对象,利用高通量测序技术和生态功能预测平台,测定根际土真菌、根茎和根内生真菌的ITS序列,分析其真菌多样性和群落组成,并预测根茎内生真菌的生态功能。结果表明:(1)测序得到1 023个可操作分类单元(OTUs),根际、根茎和根真菌OTU数分别为703、128和141,三种部位真菌群落组成差异显著,根际土存在特有的真菌类群,即壶菌门。(2)根际土、根茎及根共有OTU 41个,子囊菌门占共有真菌的58.15%,丰度最大。(3)根茎内生真菌被划分6个生态功能群,包括未定义腐生菌、菌寄生真菌、动物病原菌、植物病原菌、丛枝菌根真菌和地衣共生真菌,37个undefined种类(34.91%)在FUNGuild数据库中没有参考信息。研究认为根茎中优势菌属Setophoma、新赤壳属等内生真菌可能与活性代谢产物密切相关,可为黄精药用功能菌群的发掘提供数据参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号