首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
The genes for the three subunits of the cytochrome bc1 complex from the bacterium Paracoccus denitrificans were identified by screening a gene library constructed in pBR 322 for expression using a cytochrome c1-specific antibody. These three genes coding for the FeS subunit, cytochrome b, and cytochrome c1 were located on contiguous sites on the genome in a presumed operon arrangement. The DNA-deduced amino acid sequence shows that all three subunits are homologous to corresponding polypeptides of the mitochondrial cytochrome bc1 complex. Cytochrome c1 of Paracoccus is much larger than its mitochondrial counterpart due to an extra 150 amino acids of unique, highly acidic composition; in addition, it is most likely synthesized as a precursor polypeptide.  相似文献   

2.
The gene (coxII) encoding subunit II of Rhodobacter sphaeroides cytochrome c oxidase (cytochrome aa3) has been isolated by screening a genomic DNA library in phage lambda with a probe derived from coxII of Paracoccus denitrificans. A 2-kb fragment containing coxII DNA was subcloned into the phage M13mp18 and the sequence determined. The 2-kb insert contains the entire coding region for coxII gene, including the ATG start codon and a TGA stop codon. The deduced amino acid (aa) sequence of subunit II of R. sphaeroides shows regions of substantial homology to the corresponding subunit of the bovine mitochondrial oxidase (63% overall) and P. denitrificans oxidase (68% overall). The postulated redox-active copper ion (CuA) binding site involving two Cys and two His residues (as well as an alternative Met residue) is conserved among these species, along with four invariant acidic aa residues (two Asp and two Glu) that may be involved in interactions with cytochrome c, and a region of aromatic residues (Tyr-Gln-Trp-Tyr-Trp-Gly-Tyr-Glu-Tyr) which is postulated to play a role in electron transfer. Hydropathy profile analysis suggests that while the bovine COXII secondary structure contains two transmembrane helices, the R. sphaeroides subunit II has a third such helix that may function as part of a signal sequence, as suggested for P. denitrificans.  相似文献   

3.
Highly active succinate-ubiquinone reductase has been purified from cytoplasmic membranes of aerobically grown Paracoccus denitrificans. The purified enzyme has a specific activity of 100 units per mg protein, and a turnover number of 305 s-1. Succinate-ubiquinone reductase activity of the purified enzyme is inhibited by 3'-methylcarboxin and thenoyltrifluoroacetone. Four subunits, with apparent molecular masses of 64.9, 28.9, 13.4 and 12.5 kDa, were observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains 5.62 nmol covalently bound flavin and 3.79 nmol cytochrome b per mg protein. The 64.9 kDa subunit was shown to be a flavoprotein by its fluorescence. Polyclonal antibodies raised against this protein cross-reacted with the flavoprotein subunit of bovine heart mitochondrial succinate-ubiquinone reductase. The 28.9 kDa subunit is likely analogous to the bovine heart iron protein, and the cytochrome b heme is probably associated with one or both of the low-molecular-weight polypeptides. The cytochrome b is not reducible with succinate but is reoxidized with fumarate after prereduction with dithionite. Iron-sulfur clusters S-1 and S-3 of the Paracoccus oxidoreductase exhibit EPR spectra very similar to their mitochondrial counterparts. Paracoccus succinate-ubiquinone reductase complex is thus similar to the bovine heart mitochondrial enzyme with respect to prosthetic groups, enzymatic activity, inhibitor sensitivities, and polypeptide subunit composition.  相似文献   

4.
X M Xu  A Matsuno-Yagi  T Yagi 《Biochemistry》1991,30(35):8678-8684
The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311]. Structural genes encoding the subunits of this enzyme complex constitute at least one gene cluster [Xu, X., Matsuno-Yagi, A., & Yagi, T. (1991) Biochemistry 30, 6422-6428]. The 25-kDa subunit (NQO2), which has been isolated from sodium dodecyl sulfate-polyacrylamide gels, is a polypeptide of this enzyme complex. The partial N-terminal amino acid sequence and amino acid composition of the NQO2 subunit have been determined. On the basis of the amino acid sequence, the NQO2 gene was found to be located 1.7 kilobase pairs upstream of the gene for NADH-binding subunit (NQO1). The complete nucleotide sequence of the NQO2 gene was determined. It is composed of 717 base pairs and codes for 239 amino acid residues with a calculated molecular weight of 26,122. The NQO2 subunit is homologous to the Mr 24,000 subunit of the mammalian mitochondrial NADH-ubiquinone oxidoreductase which bears an electron paramagnetic resonance-visible binuclear iron-sulfur cluster (probably cluster N1b). Comparison of the predicted amino acid sequence of the Paracoccus NQO2 subunit with those of its mammalian counterparts suggests putative binding sites for the iron-sulfur cluster. In addition, nucleotide sequencing shows the presence of two unidentified reading frames between the NQO1 and NQO2 genes. These are designated URF1 and URF2 and are composed of 261 and 642 base pairs, respectively. The possible function of the protein coded for the URF2 is discussed.  相似文献   

5.
A segment of mitochondrial DNA encoding the bovine cytochrome c oxidase subunit III gene was isolated and inserted into an Escherichia coli plasmid vector. A 556 base pair fragment of the insert DNA representing about 70% of the 3'-end of the subunit III gene was used to search for homology with bacterial DNA from strains that contain heme aa3-type cytochrome c oxidases. Bacillus subtilis, Thermus thermophilus, and PS3 DNAs all showed strong hybridization to the probe, whereas Paracoccus denitrificans and Rhodopseudomonas sphaeroides DNAs showed only weak hybridization to the probe, even under low stringency conditions.  相似文献   

6.
The structural genes of cytochrome-c oxidase in Bacillus subtilis have been isolated and sequenced. Five genes, ctaB-F, are closely spaced. ctaC, ctaD, ctaE and ctaF are the genes for subunits II, I, III and IVB, respectively, ctaB, which may encode an assembly factor, is separated and upstream from the others. In comparison to its mitochondrial counterparts, subunit I has an extended C-terminus with two additional transmembrane segments, whereas subunit III has lost two such segments from its N-terminus. The C-terminal extension in subunit II is a covalent cytochrome-c domain, previously characterized only in the thermophilic oxidases. Subunit IVB, a small hydrophobic protein, is a novel subunit. These predictions suggest that the B. subtilis cytochrome-c oxidase is structurally more related to the four-subunit Escherichia coli cytochrome-bo complex than, for instance, to the Paracoccus denitrificans enzyme. Cytochrome aa3, which was previously isolated from B. subtilis [de Vrij, W., Azzi, A. & Konings, W. N. (1983) Eur. J. Biochem. 131, 97-103] is not encoded by the ctaC-F genes; thus, there seems to be two different cytochrome-aa3-type oxidases in this Gram-positive bacterium.  相似文献   

7.
The structural gene of the Paracoccus denitrificans NADH-ubiquinone oxidoreductase encoding a homologue of the 75-kDa subunit of bovine complex I (NQO3) has been located and sequenced. It is located approximately 1 kbp downstream of the gene coding for the NADH-binding subunit (NQO1) [Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991) Biochemistry 30, 6422-6428] and is composed of 2019 base pairs and codes for 673 amino acid residues with a calculated molecular weight of 73,159. The M(r) 66,000 polypeptide of the isolated Paracoccus NADH dehydrogenase complex is assigned the NQO3 designation on the basis of N-terminal protein sequence analysis, amino acid analysis, and immuno-cross-reactivity. The encoded protein contains a putative tetranuclear iron-sulfur cluster (probably cluster N4) and possibly a binuclear iron-sulfur cluster. An unidentified reading frame (URF3) which is composed of 396 base pairs and possibly codes for 132 amino acid residues was found between the NQO1 and NQO3 genes. When partial DNA sequencing of the regions downstream of the NQO3 gene was performed, sequences homologous to the mitochondrial ND-1, ND-5, and ND-2 gene products of bovine complex I were found, suggesting that the gene cluster carrying the Paracoccus NADH dehydrogenase complex contains not only structural genes encoding water-soluble subunits but also structural genes encoding hydrophobic subunits.  相似文献   

8.
Transport of tRNAs across the inner mitochondrial membrane of the kinetoplastid protozoon Leishmania requires interactions with specific binding proteins (receptors) in a multi-subunit complex. The allosteric model of import regulation proposes cooperative and antagonistic interactions between two or more receptors with binding specificities for distinct tRNA families (types I and II, respectively). To identify the type II receptor, the gene encoding RIC8A, a subunit of the complex, was cloned. The C-terminal region of RIC8A is homologous to subunit 6b of ubiquinol cytochrome c reductase (respiratory complex III), while the N-terminal region has intrinsic affinity for type II, but not for type I, tRNAs. RIC8A is shared by the import complex and complex III, indicating its bi-functionality, but is assembled differently in the two complexes. Knockdown of RIC8A in Leishmania lowered the mitochondrial content of type II tRNAs but raised that of type I tRNAs, with downstream effects on mitochondrial translation and respiration, and cell death. In RIC8A knockdown cells, a subcomplex was formed that interacted with type I tRNA, but the negative regulation by type II tRNA was lost. Mitochondrial extracts from these cells were defective for type II, but not type I, import; import and regulation were restored by purified RIC8A. These results provide evidence for the relevance of allosteric regulation in vivo and indicate that acquisition of new tRNA-binding domains by ancient respiratory components have played a key role in the evolution of mitochondrial tRNA import.  相似文献   

9.
As a prerequisite to site-directed mutagenesis on cytochrome c oxidase, two different mutants are constructed by inactivating the cta gene locus encoding subunits II and III (ctaC and ctaE) of the Paracoccus denitrificans oxidase. Either a short fragment encoding part of the putative copper binding site near the C terminus of subunit II, or a substantial fragment, comprising parts of the coding region for both subunits and all of the intervening three open reading frames, are removed and replaced by the kanamycin resistance gene. Each construct, ligated into a suicide vector, is mated into Paracoccus, and mutants originating from double homologous recombination events are selected. We observe complete loss of alpha-type heme and of oxidase subunits, as well as a substantial decrease in the cytochrome c oxidase activity. Upon complementation with the ctaC gene (plus various lengths of downstream sequence extending into the operon), subunit II gets expressed in all cases. Wild-type phenotype, however, is only restored with the whole operon. Using smaller fragments for complementation gives interesting clues on roles of the open reading frames for the assembly process of the oxidase complex; two of the open reading frame genes most likely code for two independent assembly factors. Since homologous genes have been described not only for other bacterial oxidases, but their gene products shown to participate also in the assembly of the yeast enzyme, they seem to constitute a group of evolutionary conserved proteins.  相似文献   

10.
Synthetic oligonucleotide probes were used to clone two loci from the chromosomal DNA of Paracoccus denitrificans that contain the genes for cytochrome c oxidase (cytochrome aa3). One locus seems to contain four or five genes probably forming an operon. Two of these code for the oxidase subunits II and III. Three open reading frames are found between the COII and COIII genes. The other locus codes for the subunit I. A short open reading frame is found upstream of this gene. All three subunits of the Paracoccus enzyme show remarkable homology to the corresponding subunits of the mitochondrial cytochrome oxidase. Possible protein products of the open reading frames have not yet been identified.  相似文献   

11.
Cytochrome c oxidase from Paracoccus denitrificans is composed of two subunits, yet is active in both electron transport and proton translocation. A cloning approach and immunologic screening protocol is described for the isolation of the subunit II gene expressed in E. coli. DNA sequencing should establish the extent of homology to eukaryotic oxidase.  相似文献   

12.
13.
To begin to assess the independent structural and functional characteristics of the mitochondrially encoded subunits of mammalian cytochrome c oxidase, we have converted the cloned mitochondrial gene for rat subunit II (coxII) into its universal codon equivalent (ucoxII) by oligonucleotide-directed, site-specific mutagenesis. This involved synthesizing 12 oligodeoxynucleotides to achieve the 13 ATA to ATG and the 5 TGA to TGG changes needed. To express ucoxII in Escherichia coli, we used a number of different expression vectors in which the promoters and ribosome-binding sequences of the messenger RNA were varied. While ucoxII alone was expressed at a low level, a striking increase in the level of expression resulted when the ucoxII gene was fused to other E. coli genes. The COXII peptide was identified by proteolytic digestion, partial sequencing, and reaction with specific antisera. A cro-beta-galactosidase-COXII fusion protein has been purified, characterized, and used to produce polyclonal antibodies to the COXII peptide. The ucoxII gene was also expressed in a cell-free translation system and in Xenopus oocytes, yielding a nondenatured, membrane-associated peptide with the same apparent molecular weight as authentic subunit II. In oocytes and in a reticulocyte lysate in vitro system supplemented with microsomal membranes, the protein is glycosylated and coisolates with the washed membrane fraction. In both cases, the COXII peptide is soluble under mild conditions in a nonionic detergent and is precipitable by antibodies to subunit II. The production of subunit II in the in vitro translation system is stimulated as strongly by addition of soybean phospholipid vesicles as by microsomal membranes, providing further evidence of membrane insertion and stabilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Additional characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, in the mitochondria of Trypanosoma brucei brucei has been obtained. Both proline:cytochrome c reductase and NADH:ubiquinone oxidoreductase of procyclic T. brucei were inhibited by the specific inhibitors of complex I rotenone, piericidin A, and capsaicin. These inhibitors had no effect on succinate: cytochrome c reductase activity. Antimycin A, a specific inhibitor of the cytochrome bc1 complex (ubiquinol:cytochrome c oxidoreductase), blocked almost completely cytochrome c reductase activity with either proline or succinate as electron donor, but had no inhibitory effect on NADH:ubiquinone oxidoreductase activity. The rotenone-sensitive NADH:ubiquinone oxidoreductase of procyclic T. brucei was partially purified by sucrose density centrifugation of mitochondria solubilized with dodecyl-beta-D-maltoside, with an approximately eightfold increase in specific activity compared to that of the mitochondrial membranes. Four polypeptides of the partially purified enzyme were identified as the homologous subunits of complex I (51 kDa, PSST, TYKY, and ND4) by immunoblotting with antibodies raised against subunits of Paracoccus denitrificans and against synthetic peptides predicted from putative complex I subunit genes encoded by mitochondrial and nuclear T. brucei DNA. Blue Native polyacrylamide gel electrophoresis of T. brucei mitochondrial membrane proteins followed by immunoblotting revealed the presence of a putative complex I with a molecular mass of 600 kDa, which contains a minimum of 11 polypeptides determined by second-dimensional Tricine-SDS/PAGE including the 51 kDa, PSST and TYKY subunits.  相似文献   

15.
We have devised a relatively simple method for the purification of cytochrome aa3 of Paracoccus denitrificans with three major subunits similar to those of the larger subunits of the mitochondrial cytochrome oxidase. This preparation has no c-type cytochrome. Studies were made of the oxidation of soluble cytochromes c from bovine heart and Paracoccus. The cytochrome-c oxidase activity was stimulated by low concentrations of either cytochrome c, providing an explanation for the multiphasic nature of plots of v/S versus v. Kinetics of the oxidation of bovine cytochrome c by the Paracoccus oxidase resembled those of bovine oxidase with bovine cytochrome c in every way; the Paracoccus oxidase with bovine cytochrome c can serve as an appropriate model for the mitochondrial system. The kinetics of the oxidation of the soluble Paracoccus cytochrome c by the Paracoccus oxidase were different from those seen with bovine cytochrome c, but resembled the latter if poly(L-lysine) was added to the assays. The important difference between the two species of cytochrome c is the more highly negative hemisphere on the side of the molecule way from the heme crevice in the Paracoccus cytochrome. Thus, the data emphasize the importance of all of the charged groups on cytochrome c in influencing the binding or electron transfer reactions of this oxidation-reduction system. The data also permit some interesting connotations about the possible evolution from the bacterial to the mitochondrial electron transport system.  相似文献   

16.
1. Mitochondrial translation products of yeast Saccharomyces cerevisiae were separated according to charge as well as molecular weight by a highly resolving two dimensional electorphoretic technique (isoelectric focusing in the first dimension ana SDS-electrophoresis in the second dimension). 2. The major protein components (the oligomeric form of subunit 9 of mitochondrial ATPase, var 1, cytochrome oxidase subunits I, II and III, subunit 6 of mitochondrial ATPase and cytochrome b apoprotein) were identified either from their mobility in SDS-electrophoresis or by using mit- mutants defective in certain mitochondrially made polypeptides. 3. This method allowed the separation of subunit III of cytochrome oxidase and subunit 6 of mitochondrial ATPase which cannot be resolved by conventional SDS-polyacrylamide gel electrophoresis. 4. Subunit II of cytochrome oxiodase resolves in two spots of similar pI values and subunit 6 of mitochondrial ATPase resolves in two spots of similar molecular weight. In both cases the double spots disappear simultaneously following a single mutation in the coresponding structural gene. 5. Total mitochondrial proteins were also resolved two-dimensionally revealing over 100 components. The mitochondrial translation products, with the exception of subunit 9 of mitochondrial ATPase, could be easily recognized among the other mitochondrial proteins.  相似文献   

17.
A ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex has been purified from the plasma membrane of aerobically grown Paracoccus denitrificans by extraction with dodecyl maltoside and ion exchange chromatography of the extract. The purified complex contains two spectrally and thermodynamically distinct b cytochromes, cytochrome c1, and a Rieske-type iron-sulfur protein. Optical spectra indicate absorption peaks at 553 nm for cytochrome c1 and at 560 and 566 nm for the high and low potential hemes of cytochrome b. The spectrum of cytochrome b560 is shifted to longer wavelength by antimycin. The Paracoccus bc1 complex consists of only three polypeptide subunits. On the basis of their relative electrophoretic mobilities, these have apparent molecular masses of 62, 39, and 20 kDa. The 62- and 39-kDa subunits have been identified as cytochromes c1 and b, respectively. The 20-kDa subunit is assumed to be the Rieske-type iron-sulfur protein on the basis of its molecular weight and the presence of an EPR-detectable signal typical of this iron-sulfur protein in the three-subunit complex. The Paracoccus bc1 complex catalyzes reduction of cytochrome c by ubiquinol with a turnover of 470 s-1. This activity is inhibited by antimycin, myxothiazol, stigmatellin, and hydroxyquinone analogues of ubiquinone, all of which inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain. The electron transfer functions of the Paracoccus complex thus appear to be similar, and possibly identical, to those of the bc1 complex of eukaryotic mitochondria. The Paracoccus bc1 complex has the simplest subunit composition and one of the highest turnover numbers of any bc1 complex isolated from any species to date. These properties suggest that the structural requirements for electron transfer from ubiquinol to cytochrome c are met by a small number of peptides and that the "extra" peptides occurring in the mitochondrial bc1 complexes serve some other function(s), possibly in biogenesis or insertion of the complex into that organelle.  相似文献   

18.
Cytochrome c is the specific and efficient electron transfer mediator between the two last redox complexes of the mitochondrial respiratory chain. Its interaction with both partner proteins, namely cytochrome c(1) (of complex III) and the hydrophilic Cu(A) domain (of subunit II of oxidase), is transient, and known to be guided mainly by electrostatic interactions, with a set of acidic residues on the presumed docking site on the Cu(A) domain surface and a complementary region of opposite charges exposed on cytochrome c. Information from recent structure determinations of oxidases from both mitochondria and bacteria, site-directed mutagenesis approaches, kinetic data obtained from the analysis of isolated soluble modules of interacting redox partners, and computational approaches have yielded new insights into the docking and electron transfer mechanisms. Here, we summarize and discuss recent results obtained from bacterial cytochrome c oxidases from both Paracoccus denitrificans, in which the primary electrostatic encounter most closely matches the mitochondrial situation, and the Thermus thermophilus ba(3) oxidase in which docking and electron transfer is predominantly based on hydrophobic interactions.  相似文献   

19.
Baylisascaris schroederi is one of the most common intestinal nematodes in giant pandas. It can cause severe baylisascariasis which is highly infectious in its natural hosts. A rapid and reliable diagnosis of parasite infections is crucial to protect giant pandas, as well as for environmental monitoring and disease surveillance. Here, we established a specific PCR assay for B. schroederi detection which was targeting a 331-bp long fragment of the mitochondrial cytochrome c oxidase subunit II (COII) gene. Fifty fresh fecal samples collected from captive giant pandas were tested by the established PCR assay and the traditional flotation technique. DNA extracted from a single B. schroederi egg could be successfully amplified, while no cross-reactivity was found with DNA from Ancylostoma caninum eggs. The detection rate of the PCR assay was 68%, which was higher than that of the traditional egg flotation (46%). Our findings demonstrated that the PCR assay is sensitive and specific for the detection and identification of B. schroederi eggs. Therefore, it could become a useful tool for the investigation of B. schroederi infections in giant pandas.  相似文献   

20.
A gene in Paracoccus for subunit III of cytochrome oxidase   总被引:5,自引:0,他引:5  
M Saraste  M Raitio  T Jalli  A Per?maa 《FEBS letters》1986,206(1):154-156
The region of Paracoccus denitrificans chromosome where the genes coding for cytochrome oxidase (cytochrome aa3) subunits are located has been cloned. DNA sequencing revealed an open reading frame that codes for a protein homologous to the subunit III of the eukaryotic, mitochondrial enzyme. This subunit is absent from the isolated Paracoccus oxidase. It now seems that it is part of the native enzyme in the bacterial cytoplasmic membrane. This may explain the observed discrepancies in the function of the isolated enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号