首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal characteristics of X-ray emission from X-pinches have been studied experimentally on the XP facility (with a 100-ns current pulse duration and 470-kA current amplitude) at Cornell University. The experiments were performed with X-pinches made of Al, Ti, Mo, and W wires. Radiation in the photon energy range 1–10 keV was recorded using diamond and silicon photodiodes with a subnanosecond time resolution and X-ray streak cameras with a picosecond time resolution. It is shown that, for high-Z elements, the duration of the X-ray pulse in the short-wavelength part of the spectral range under study does not exceed 5–10 ps.  相似文献   

2.
Results are presented from experimental studies of hard X-ray (HXR) emission in the photon energy range above 20 keV from dense radiating Z-pinch plasmas. The work is aimed at revealing the nature of fast-electron (electron beam) generation during the implosion of cylindrical and conical wire arrays in the Angara-5-1 facility at currents of up to 3 MA. It is found that the plasma implosion zippering caused by the inclination of wires affects the parameters of the HXR pulse emitted during the implosion of a conical array. It is shown that HXR emission correlates well with the decay of the plasma column near the cathode in the stagnation phase. HXR images of the pinch are produced by the bremsstrahlung of fast electrons generated during plasma column decay and interacting with plasma ions and the anode target. It is found that the use of conical arrays makes it possible to control the direction of plasma implosion zippering and the spatiotemporal and energy parameters of the pinch X-ray emission, in particular the X-ray yield. For wire array with diameters of 12 mm and linear masses of 200–400 μg/cm, the current of the fast electron beam is 20 kA and its energy is 60 J, which is about 1/500 of the energy of the main soft X-ray pulse.  相似文献   

3.
Evolution of the extreme ultraviolet (XUV) and soft X-ray (SXR) emission in the 50-to 2000-eV photon energy range from a plasma corona formed by loading a relatively thick Cu wire (with an initial diameter of 120 µm) was observed in a Z-pinch discharge with a maximum current of 2 MA and current rise time of 100 ns. A diagnostic complex consisting of a five-channel SXR polychromator, a four-frame X-ray pinhole camera, and a mica crystal spectrograph shows that double-humped emission pulses in the XUV and SXR spectral ranges are generated 70–130 ns after the onset of the discharge current. The total energy of the pulses is 5 kJ, and the maximum power is 60 GW. A part of the observed kiloelectronvolt X-ray emission from three to five spots with diameters of 1–2 mm consists of the Cu K-and L-shell lines.  相似文献   

4.
Hybrid X-pinches     
Results from experimental studies of a hybrid X-pinch with an initial configuration in the form of a high-current diode with conical tungsten electrodes spaced by 1?C2 mm and connected to one another with 20- to 100-??m-diameter wires are presented. The experiments were carried out at four facilities with a current amplitude from 200 to 1000 kA and front duration from 45 to 200 ns. It is shown that, in spite of their simpler configuration, hybrid X-pinches with a short rise time of the current pulse (50?C100 ns) are highly competitive with standard X-pinches in the generated soft X-ray power and the formation of a single hot spot in them is much more stable, while hard X-ray emission is almost absent. The possibility of using hybrid X-pinches as soft X-ray sources for point projection X-ray imaging of plasma objects is considered.  相似文献   

5.
The generation of accelerated electrons in the X-pinch minidiode is studied experimentally. It is well known that the explosion of an X-pinch consisting of two or more wires is accompanied by the formation of a minidiode, in which electrons are accelerated. The subsequent slowing down of electrons in the products of wire explosion causes the generation of hard X-ray (HXR) emission with photon energies higher than 10 keV. In this work, the spatial and temporal characteristics of X-pinch HXR emission are studied, the specific features of HXR generation are discussed, and the capability of applying this radiation to point-projection X-ray imaging of various plasma and biological objects is considered. The parameters of the electron beam produced in the X-pinch are measured using a Faraday cup and X-ray diagnostics. The experiments were performed with the XP generator (550 kA, 100 ns) at Cornell University (United States) and the BIN generator (270 kA, 150 ns) at the Lebedev Physical Institute (Russia).  相似文献   

6.
Raising the power of X-ray emission from an X-pinch by increasing the pinch current to the megampere level requires the corresponding increase in the initial linear mass of the load. This can be achieved by increasing either the number of wires or their diameter. In both cases, special measures should be undertaken to prevent the formation of a complicated configuration with an uncontrolled spatial structure in the region of wire crossing, because such a structure breaks the symmetry of the neck formed in the crossing region, destabilizes plasma formation, and degrades X-ray generation. To improve the symmetry of the wire crossing region, X-pinch configurations with a regular multilayer arrangement of wires in this region were proposed and implemented. The results of experiments with various symmetric X-pinch configurations on the COBRA facility at currents of ∼1MA are presented. It is shown that an X-pinch with a symmetric crossing region consisting of several layers of wires made of different materials can be successfully used in megampere facilities. The most efficient combinations of wires in symmetric multilayer X-pinches are found in which only one hot spot forms and that are characterized by a high and stable soft X-ray yield.  相似文献   

7.
Results are presented from Z-pinch experiments performed in the S-300 facility (Kurchatov Institute) at a maximum current of 2 MA and current rise time of 100 ns. The Z-pinch load was a 1-cm-long 1-cmdiameter cylindrical array made of 40 tungsten wires with a total mass of 160 μg, at the axis of which a 100-μm-diameter (CD2) n deuterated fiber was installed. Hard X-ray and neutron signals were recorded using five scintillation detectors oriented in one radial and two axial directions. The maximum neutron yield from the DD reaction reached 3 × 109 neutrons per shot. The average neutron energy was determined from time-of-flight measurements and Monte Carlo simulations under the assumption that the neutron emission time was independent of the neutron energy. The average neutron energy in different experiments was found to vary within the range 2.5–2.7 MeV. The fact that the average neutron energy was higher than 2.45 MeV (the energy corresponding to the DD reaction) is attributed to the beam-target collisional mechanism for the acceleration of deuterons to 100–500 keV.  相似文献   

8.
In the previous experiments on ECR heating of a low-density plasma with n e =(0.3?0.5)×1019 m?3 in the L-2M stellarator, the electron temperature profile measured from the intensity of electron cyclotron emission was found to be asymmetric about the magnetic axis and the electron temperature measured by this diagnostics turned out to be higher than that expected from diamagnetic measurements. To find out the character of distortion of the electron energy distribution function, the soft X-ray spectrum was measured in regimes with large values of the specific heating power η (1.5 MW per 1019 particles). Under these conditions, the X-ray spectrum plotted on a semilogarithmic scale has no linear segments in the photon energy range from 1.5 to 12 keV. This indicates that the electron distribution function is non-Maxwellian over the entire energy range under study.  相似文献   

9.
Results are presented from measurements of the azimuthal magnetic field generated during the implosion of double (nested) tungsten wire arrays in the Angara-5-1 facility at currents of ~3 MA. It is found that the inner array affects the current distribution in the interarray space and that there is an optimal mass (an optimal number of wires) of the inner array at which the full width at half-maximum of the soft X-ray pulse (in the photon energy range of >100 eV) is minimal. On the average, double wire arrays provide a better reproductibility, higher power, and shorter duration of the soft X-ray pulse in comparison to single arrays.  相似文献   

10.
Results are presented from measurements of the parameters of high-temperature plasma in the Z-pinch neck formed when a current of up to 3.5 MA flows through a low-density polymer load. To enhance the effect of energy concentration, a deuterated microporous polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1–1.3 mm was placed in the central part of the load. During the discharge current pulse, short-lived local hot plasma spots with typical dimensions of about 200–300 μm formed in the neck region. Their formation was accompanied by the generation of soft X-ray pulses with photon energies of E > 0.8 keV and durations of 3–4 ns. The plasma electron temperature in the vicinity of the hot spot was measured from the vacuum UV emission spectra of the iron diagnostic admixture and was found to be about 200–400 eV. The appearance of hot plasma spots was also accompanied by neutron emission with the maximum yield of 3 × 1010 neutrons/shot. The neutron energy spectra were studied by means of the time-of-flight method and were found to be anisotropic with respect to the direction of the discharge current.  相似文献   

11.
Results are presented from the studies of the magnetic implosion of a tungsten wire liner onto an aluminum wire at currents of 2.0–2.6 MA. The experiments were carried out in the S-300 high-power pulsed facility at the Russian Research Centre Kurchatov Institute. The liner is composed of 50 wires 6 μm in diameter and 1 cm in length, which are equally spaced on a circle 1 cm in diameter. An aluminum wire 120 μm in diameter is positioned at the array axis. The liner implosion was accompanied by the generation of VUV and soft X-ray emission. The parameters of the pinch plasma produced during the liner implosion onto the aluminum wire were determined from the time-resolved spectral measurements by a five-channel polychromator. The ion and electron densities turned out to be equal to n i≈4×1019 cm−3 and n e≈4×1020 cm−3, respectively, and the electron temperature was T e≈40 eV. The radiation energy measured in the range 50–600 eV was 2–10 kJ. The sources of soft X-ray emission in hydrogen-and helium-like aluminum lines were the bright spots and local objects (clouds) formed in the plasma corona at an electron temperature of 200–500 eV and electron density of 1021–1022 cm−3. The possibility of both the generation of an axial magnetic field during the liner implosion and the conversion of the energy of this field into soft X-ray emission is discussed. __________ Translated from Fizika Plazmy, Vol. 28, No. 6, 2002, pp. 514–521. Original Russian Text Copyright ? 2002 by Bakshaev, Blinov, Dan'ko, Ivanov, Klír, Korolev, Kravárik, Krása, Kubeš, Tumanov, Chernenko, Chesnokov, Shashkov, Juha.  相似文献   

12.
The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January–February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.  相似文献   

13.
Results are presented from experimental studies of discharge instabilities and the energy and temporal characteristics of a vacuum-diode X-ray source with a laser plasma cathode over a wide range of energies, intensities, and durations of the plasma-forming laser pulse. It is experimentally shown that the vacuum-discharge dynamics and radiation processes in different discharge stages substantially depend on the parameters of the laser radiation. The shortest recorded pulse duration (10 ns) of Ti K-line radiation (4.5 keV) with a total photon number of 1011 is achieved when the laser plasma cathode is produced by a laser pulse with a duration of 27 ps and an intensity of 1013 W/cm2. It is found that the contrast of characteristic emission against the bremsstrahlung background is maximum when discharge instabilities are suppressed and the accelerating voltage is three to four times higher than the threshold voltage for line excitation.  相似文献   

14.
Photon emissions were measured at ambient temperature (21°C) in complete darkness once per min from cultures of 10(6) cells during the 12 h following removal from 37°C. The energy of emission was about 10(-20) J/s/cell. Of 8 different cell lines, B16-BL6 (mouse melanoma cells) demonstrated the most conspicuous emission profile. Acridine orange and ethidium bromide indicated the membranes were intact with no indication of (trypan blue) cell necrosis. Treatments with EGF and ionomycin produced rapid early (first 3 h) increases in energy emission while glutamine-free, sodium azide and wortmanin-treated cells showed a general diminishment 3 to 9 h later. The results suggested the most probable origin of the photon emission was the plasma cell membrane. Measures from cells synchronized at the M- and S-phase supported this inference.  相似文献   

15.
Results are presented from time-resolved measurements of the soft X-ray emission in the 10-to 40-eV spectral range from the plasma of a pulsed capillary discharge in argon at current pulse amplitudes of up to 26 kA and a current rise time of ~1012 A/s. The experiments were carried out with 0.3-cm-diameter 15.7-cm-long ceramic capillaries filled with argon at a pressure of 0.25–0.5 Torr in the SIGNAL electrophysical facility. The experimental data are interpreted via computer simulations of the magnetohydrodynamics and level-by-level ion kinetics of an argon plasma. The results obtained indicate that soft X-ray laser pulses with a photon energy of 26.4 eV and duration of 1–2 ns are generated ≈33 ns after the beginning of the discharge current pulse.  相似文献   

16.
Results are presented from experimental studies of the plasma formation dynamics in a Z-pinch produced from a cylindrical microporous agar-agar load. The experiments were performed on the S-300 facility at a current of 2 MA and current rise time of 100 ns. To enhance the energy concentration, a deuterated polyethylene neck with a mass density of 50–75 μg/cm3 and diameter of 1–2 mm was made in the central part of the load. The spatiotemporal characteristics of the Z-pinch were studied using an optical streak camera and fast frame photography in the optical and soft X-ray spectral ranges. X-ray emission was detected using semiconductor and vacuum diodes, and neutron emission was studied by means of the time-of-flight method. It is found that, in the course of continuous plasma production, hot spots with a diameter of 100 μm form in the pinch plasma. The hot spots emit short soft X-ray pulses with a duration of 2–4 ns, as well as neutron pulses with an average neutron energy of about 2.45 MeV. The maximum neutron yield was found to be 4.5 × 109 neutrons per shot. The scenario of hot spot formation is adequately described by two-dimensional MHD simulations.  相似文献   

17.
The transfer of excitation energy between phycobiliproteins in isolated phycobilisomes has been observed on a picosecond time scale. The photon density of the excitation pulse has been carefully varied so as to control the level of exciton interactions induced in the pigment bed. The 530 nm light pulse is absorbed predominantly by B-phycoerythrin, and the fluorescence of this component rises within the pulse duration and shows a mean 1/e decay time of 70 ps. The main emission band, centred at 672 nm, is due to allophycocyanin and is prominent because of the absence of energy transfer to chlorophyll. Energy transfer to this pigment from B-phycoerythrin via R-phycocyanin produces a risetime of 120 ps to the fluorescence maximum. The lifetime of the allophycocyanin fluorescence is found to be about 4 ns using excitation pulses of low photon densities (10(13) photons.cm-2), but decreases to about 2 ns at higher photon densities. The relative quantum yield of the allophycocyanin fluorescence decreases almost 10 fold over the range of laser pulse intensities, 10(13)--10(16) photons-cm-2. Fluorescence quenching by exciton-exciton annihilation is only observed in allophycocyanin and could be a consequence of the long lifetime of the single exciton in this pigment.  相似文献   

18.
Results are presented from experimental studies of a pulsed source of soft X-ray (SXR) emission with photon energies in the range of 0.4–1 keV and an output energy of 2–10 kJ. SXR pulses with a duration of 10–15 μs were generated in collisions of two plasma flows propagating toward one another in a longitudinal magnetic field. The plasma flows with velocities of (2–4) × 107 cm/s and energy contents of 70–100 kJ were produced by two electrodynamic coaxial accelerators with pulsed gas injection. Nitrogen and neon, as well as their mixtures with deuterium, were used as working gases. The diagnostic equipment is described, and the experimental results obtained under different operating conditions are discussed. In particular, X-ray spectroscopy was used to study the high-temperature plasma produced in a collision of two plasma flows. The observed intensities of spectral lines are compared with the results of detailed kinetic calculations performed in a steady-state approximation. The calculations of the nitrogen and neon kinetics have shown that the electron temperature of a nitrogen plasma can be most conveniently determined from the intensity ratio of the resonance lines of He- and H-like nitrogen ions, while that of a neon plasma, from the intensity ratio between the resonance line of He-like Ne IX ions and the 3p?2s line of Li-like Ne VIII ions. In the experiments with plasma flows containing nitrogen ions, the electron temperature was found to be ≈120 eV, whereas in the experiments with plasma flows containing neon ions, it was 160–170 eV.  相似文献   

19.
The small-scale structure of the thermal X-ray background of the solar corona and microflares in the photon energy range from 3 to 16 keV according to the RHESSI data obtained on March–April 2003 is analyzed. The study of the reduction in the X-ray intensity in this spectral range is continued. A reduction and, in some cases, an increase in the X-ray intensity of the thermal background of the solar corona and microflares in narrow subranges of the X-ray spectrum of the quiet Sun are revealed in the photon energy range of 3–11 keV.  相似文献   

20.
It is shown that the development of instabilities in a Z-pinch plasma formed by loading a relatively thick Al wire (an initial diameter of 120 μm and a maximum discharge current of 2–3 MA) is slowed down due to the high plasma density in the wire corona. A cylindrically symmetric, regular, and stable corona surrounding the wire contains a helical formation with a dense, cold, and magnetized plasma. X-ray pulses with a photon energy of several keV and an FWHM duration of 10–20 ns are generated by a few imploded neck structures in the pinch phase of the corona evolution (70–100 ns after the current onset). The main part of X radiation emitted by individual bright spots in the photon energy range 1.5–2.4 keV (up to 40 J at a peak power of 4 GW) consists of the continuum and the bound-bound transition radiation from H-and He-like Al ions. A possible scenario for the axial magnetic field evolution during an X-ray pulse is outlined. __________ Translated from Fizika Plazmy, Vol. 28, No. 4, 2002, pp. 329–336. Original Russian Text Copyright ? 2002 by Kubeš, Renner, Krousky, Kravárik, Bakshaev, Blinov, Chernenko, Gordeev, Dan’ko, Korolev, Shashkov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号