首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfation is a widely observed biological reaction conserved from bacterium to human that plays a key role in various biological processes such as growth, development, and defense against adversities. Deficiencies due to the lack of the ubiquitous sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) are lethal in humans. A large group of enzymes called sulfotransferases catalyze the transfer reaction of sulfuryl group of PAPS to the acceptor group of numerous biochemical and xenochemical substrates. Four X-ray crystal structures of sulfotransferases have now been determined: cytosolic estrogen, hydroxysteroid, aryl sulfotransferases, and a sulfotransferase domain of the Golgi-membrane heparan sulfate N-deacetylase/N-sulfotransferase 1. These have revealed the conserved core structure of the PAPS binding site, a common reaction mechanism, and some information concerning the substrate specificity. These crystal structures introduce a new era of the study of the sulfotransferases.  相似文献   

2.

Background  

Type IV secretion (T4S) systems are involved in secretion of virulence factors such as toxins or transforming molecules, or bacterial conjugation. T4S systems are composed of 12 proteins named VirB1-B11 and VirD4. Among them, three ATPases are involved in the assembly of the T4S system and/or provide energy for substrate transfer, VirB4, VirB11 and VirD4. The X-ray crystal structures of VirB11 and VirD4 have already been solved but VirB4 has proven to be reluctant to any structural investigation so far.  相似文献   

3.
The hydration of protein secondary structures   总被引:2,自引:0,他引:2  
D J Barlow  P L Poole 《FEBS letters》1987,213(2):423-427
The hydration of the main-chain carbonyl (CO) groups in proteins have been studied using infra-red spectroscopy, and computer-graphics analysis of high resolution protein crystal structures. The IR measurements indicate that the strength of water binding to the CO groups is lower in beta-sheet proteins compared with alpha-helical ones. Analysis of the protein crystal structures shows that this is due primarily to differences in the geometry of water-CO group interactions in the two types of secondary structure.  相似文献   

4.
Sulfotransferases catalyze the sulfate conjugation of a wide variety of endogenous and exogenous molecules. Human pathogenic mycobacteria produce numerous sulfated molecules including sulfolipids which are well related to the virulence of several strains. The genome of Mycobacterium avium encodes eight putative sulfotransferases (stf1, stf4-stf10). Among them, STF9 shows higher similarity to human heparan sulfate 3-O-sulfotransferase isoforms than to the bacterial STs. Here, we determined the crystal structure of sulfotransferase STF9 in complex with a sulfate ion and palmitic acid at a resolution of 2.6 ?. STF9 has a spherical structure utilizing the classical sulfotransferase fold. STF9 exclusively possesses three N-terminal α-helices (α1, α2, α3) parallel to the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) binding motif. The sulfate ion binds to the PAPS binding structural motif and the palmitic acid molecule binds in the deep cleft of the predicted substrate binding site suggesting the nature of endogenous acceptor substrate of STF9 resembles palmitic acid. The substrate binding site is covered by a flexible loop which may have involvement in endogenous substrate recognition. Based on the mutational study (Hossain et al., Mol Cell Biochem 350:155-162; 2011) and structural resemblance of STF9-sulfate ion-palmitic acid complex to the hHS3OST3 complex with PAP (3'-phosphoadenosine-5'-phosphate) and an acceptor sugar chain, Glu170 and Arg96 are appeared to be catalytic residues in STF9 sulfuryl transfer mechanism.  相似文献   

5.
Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5' leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36-127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 A resolution by X-ray crystallography. The structure is composed of four helices (alpha1-alpha4) and a six-stranded antiparallel beta-sheet (beta1-beta6) with a protruding beta-strand (beta7) at the C-terminal region. The strand beta7 forms an antiparallel beta-sheet by interacting with strand beta4 in a symmetry-related molecule, suggesting that strands beta4 and beta7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the beta-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal alpha-helices (alpha1-alpha4) and beta-strand beta6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands beta2 and beta3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P.  相似文献   

6.
HB-GAM (heparin-binding growth-associated molecule, also designated as pleiotrophin) and midkine form a two-member family of extracellular matrix proteins that bind tightly to sulfated carbohydrate structures such as heparan sulfate. These proteins are used by developing neurons as extracellular cues in axonal growth and guidance. HB-GAM was recently reported to enhance differentiation of neural stem cells. Based on the solution structure of HB-GAM, we have recently shown that HB-GAM consists of two beta-sheet domains flanked by flexible lysine-rich N- and C-terminal tails with no apparent structure. These domains are homologous to thrombospondin type I repeats present in numerous extracellular proteins that interact with the cell surface. Our findings showed that the two beta-sheet domains fold independently. We showed that the domains (but not the lysine-rich tails) in HB-GAM are required and sufficient for interaction with hippocampal neurons. The individual domains bind heparan sulfate weakly and fail to produce significant biological effects in neurite outgrowth and long term potentiation assays. The amino acids in the linker region joining the two domains may be replaced with glycines with no effect on protein function. These results suggest a co-operative action of the two beta-sheet domains in the biologically relevant interaction with neuron surface heparan sulfate.  相似文献   

7.
Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.  相似文献   

8.
9.
The Jun a 3 protein from mountain cedar (Juniperus ashei) pollen, a member of group 5 of the family of plant pathogenesis-related proteins (PR-proteins), reacts with serum IgE from patients with cedar hypersensitivity. We used the crystal structures of two other proteins of this group, thaumatin and an antifungal protein from tobacco, both approximately 50% identical in sequence to Jun a 3, as templates to build homology models for the allergen. The in-house programs EXDIS and FANTOM were used to extract distance and dihedral angle constraints from the Protein Data Bank files and determine energy-minimized structures. The mean backbone deviations for the energy-refined model structures from either of the templates is <1 A, their conformational energies are low, and their stereochemical properties (determined with PROCHECK) are acceptable. The circular dichroism spectrum of Jun a 3 is consistent with the postulated beta-sheet core. Tryptic fragments of Jun a 3 that reacted with IgE from allergic patients all mapped to one helical/loop surface of the models. The Jun a 3 models have features common to aerosol allergens from completely different protein families, suggesting that tertiary structural elements may mediate the triggering of an allergic response.  相似文献   

10.
Mammalian sulfotransferases (STs) utilize exclusively the sulfuryl group donor 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to catalyze the sulfurylation reactions based on a sequential transfer mechanism. In contrast, the commensal intestinal bacterial arylsulfate sulfotransferases (ASSTs) do not use PAPS as the sulfuryl group donor, but instead catalyze sulfuryl transfer from phenolic sulfate to a phenol via a Ping-Pong mechanism. Interestingly, structural comparison revealed a similar spatial arrangement of the active site residues as well as the cognate substrates in mouse ST (mSULT1D1) and Escherichia coli CFT073 ASST, despite that their overall structures bear no discernible relationship. These observations suggest that the active sites of PAPS-dependent SULT1D1 and phenolic sulfate-utilizing ASST represent an example of convergent evolution.  相似文献   

11.
Metalloenzymes such as the superoxide dismutases (SODs) form part of a defense mechanism that helps protect obligate and facultative aerobic organisms from oxygen toxicity and damage. Here, we report the presence in the trypanosomatid genomes of four SOD genes: soda, sodb1, sodb2, and a newly identified sodc. All four genes of Trypanosoma brucei have been cloned (Tbsods), sequenced, and overexpressed in Escherichia coli and shown to encode active dimeric FeSOD isozymes. Homology modeling of the structures of all four enzymes using available X-ray crystal structures of homologs showed that the four TbSOD structures were nearly identical. Subcellular localization using GFP-fusion proteins in procyclic insect trypomastigotes shows that TbSODB1 is mainly cytosolic, with a minor glycosomal component, TbSODB2 is mainly glycosomal with some activity in the cytosol, and TbSODA and TbSODC are both mitochondrial isozymes. Phylogenetic studies of all available trypanosomatid SODs and 106 dimeric FeSODs and closely related cambialistic dimeric SOD sequences suggest that the trypanosomatid SODs have all been acquired by more than one event of horizontal gene transfer, followed by events of gene duplication.  相似文献   

12.
The use of proton-proton nuclear Overhauser enhancement (NOE) distance information for identification of polypeptide secondary structures in non-crystalline proteins was investigated by stereochemical studies of standard secondary structures and by statistical analyses of the secondary structures in the crystal conformations of a group of globular proteins. Both regular helix and beta-sheet secondary structures were found to contain a dense network of short 1H-1H distances. The results obtained imply that the combined information on all these distances obtained from visual inspection of the two-dimensional NOE (NOESY) spectra is sufficient for determination of the helical and beta-sheet secondary structures in small globular proteins. Furthermore, cis peptide bonds can be identified from unique, short sequential proton-proton distances. Limitations of this empirical approach are that the exact start or end of a helix may be difficult to define when the adjoining residues form a tight turn, and that unambiguous identification of tight turns can usually be obtained only in the hairpins of antiparallel beta-structures. The short distances between protons in pentapeptide segments of the different secondary structures have been tabulated to provide a generally applicable guide for the analysis of NOESY spectra of proteins.  相似文献   

13.
Parisien M  Major F 《Proteins》2005,61(3):545-558
Systematic protein folding studies depend on protein three-dimensional structure annotation, the assignment of amino acid structural types from atomic coordinates. Significant stabilizing factors between adjacent beta-sheet peptide chains have recently been characterized and were not considered during the development of previously published annotation methods. To produce an accurate beta-sheet domain catalog and to encompass the full beta-sheet spectacle, we developed a method, beta-Spider, which evaluates a packing energy between adjacent peptide chains in accordance with the newly discovered stabilizing factors. While considering important energetic factors, our approach also minimizes the use of subjective criteria, such as (phi,psi) boundaries and sets of H-bonding motifs that are used in other existing methods. As a result of the application of beta-Spider to a set of available high-resolution X-ray crystal structures, we present here a new beta-sheet catalog that differs considerably from the one produced by the most acclaimed DSSP method. The catalog includes new H-bonding motifs that were never reported.  相似文献   

14.
Histidyl-tRNA synthetase (HisRS) is responsible for the synthesis of histidyl-transfer RNA, which is essential for the incorporation of histidine into proteins. This amino acid has uniquely moderate basic properties and is an important group in many catalytic functions of enzymes. A compilation of currently known primary structures of HisRS shows that the subunits of these homo-dimeric enzymes consist of 420-550 amino acid residues. This represents a relatively short chain length among aminoacyl-tRNA synthetases (aaRS), whose peptide chain sizes range from about 300 to 1100 amino acid residues. The crystal structures of HisRS from two organisms and their complexes with histidine, histidyl-adenylate and histidinol with ATP have been solved. HisRS from Escherichia coli and Thermus thermophilus are very similar dimeric enzymes consisting of three domains: the N-terminal catalytic domain containing the six-stranded antiparallel beta-sheet and the three motifs characteristic of class II aaRS, a HisRS-specific helical domain inserted between motifs 2 and 3 that may contact the acceptor stem of the tRNA, and a C-terminal alpha/beta domain that may be involved in the recognition of the anticodon stem and loop of tRNA(His). The aminoacylation reaction follows the standard two-step mechanism. HisRS also belongs to the group of aaRS that can rapidly synthesize diadenosine tetraphosphate, a compound that is suspected to be involved in several regulatory mechanisms of cell metabolism. Many analogs of histidine have been tested for their properties as substrates or inhibitors of HisRS, leading to the elucidation of structure-activity relationships concerning configuration, importance of the carboxy and amino group, and the nature of the side chain. HisRS has been found to act as a particularly important antigen in autoimmune diseases such as rheumatic arthritis or myositis. Successful attempts have been made to identify epitopes responsible for the complexation with such auto-antibodies.  相似文献   

15.
The reddish purple open chain tetrapyrrole pigment phycoerythrobilin (PEB; A(lambdamax) approximately 550 nm) is an essential chromophore of the light-harvesting phycobiliproteins of most cyanobacteria, red algae, and cryptomonads. The enzyme phycoerythrobilin synthase (PebS), recently discovered in a marine virus infecting oceanic cyanobacteria of the genus Prochlorococcus (cyanophage PSSM-2), is a new member of the ferredoxin-dependent bilin reductase (FDBR) family. In a formal four-electron reduction, the substrate biliverdin IXalpha is reduced to yield 3Z-PEB, a reaction that commonly requires the action of two individual FDBRs. The first reaction catalyzed by PebS is the reduction of the 15,16-methine bridge of the biliverdin IXalpha tetrapyrrole system. This reaction is exclusive to PEB biosynthetic enzymes. The second reduction site is the A-ring 2,3,3(1),3(2)-diene system, the most common target of FDBRs. Here, we present the first crystal structures of a PEB biosynthetic enzyme. Structures of the substrate complex were solved at 1.8- and 2.1-A resolution and of the substrate-free form at 1.55-A resolution. The overall folding revealed an alpha/beta/alpha-sandwich with similarity to the structure of phycocyanobilin:ferredoxin oxidoreductase (PcyA). The substrate-binding site is located between the central beta-sheet and C-terminal alpha-helices. Eight refined molecules with bound substrate, from two different crystal forms, revealed a high flexibility of the substrate-binding pocket. The substrate was found to be either in a planar porphyrin-like conformation or in a helical conformation and is coordinated by a conserved aspartate/asparagine pair from the beta-sheet side. From the alpha-helix side, a conserved highly flexible aspartate/proline pair is involved in substrate binding and presumably catalysis.  相似文献   

16.
THEORIES of the molecular structure of nucleic acids have so far been based on evidence from the crystal structures of monomeric units such as nucleosides and mononucleotides, the interpretation of diffraction patterns of oriented nucleic acid fibres and molecular model building1–6. Such approaches can help to suggest structures of periodic molecules such as helices, but they are insufficient for predicting and understanding nonrepetitive structures such as the loops in transfer RNA (tRNA), presumably associated with many of the functions of tRNA. To understand the geometry of nucleic acids and possible constraints on their conformation, it is therefore essential to know the detailed conformation of the sugar residues and the conformational relationship between the sugar residue, the base and the phosphate group7–9. The simplest molecule which contains this information is a 3´5´-dinucleoside phosphate. We now report the structure of uridine-3´,5´-adenosine phosphate (UpA). This is the first naturally occurring dinucleoside phosphate whose crystal structure has been determined by X-ray diffraction. The only other dinucleoside phosphate with known crystal structure is adenosine-2´,5´-uridine phosphate10, but it does not have the naturally occurring 3´5´ sugar phosphate linkage.  相似文献   

17.
Creatine kinase (CK; E.C. 2.7.3.2) is an important enzyme that catalyzes the reversible transfer of a phosphoryl group from ATP to creatine in energy homeostasis. The brain-type cytosolic isoform of creatine kinase (BB-CK), which is found mainly in the brain and retina, is a key enzyme in brain energy metabolism, because high-energy phosphates are transferred through the creatine kinase/phosphocreatine shuttle system. The recombinant human BB-CK protein was overexpressed as a soluble form in Escherichia coli and crystallized at 22 degrees C using PEG 4000 as a precipitant. Native X-ray diffraction data were collected to 2.2 A resolution using synchrotron radiation. The crystals belonged to the tetragonal space group P43212, with cell parameters of a=b=97.963, c= 164.312 A, and alpha=beta=gamma=90 degrees. The asymmetric unit contained two molecules of CK, giving a crystal volume per protein mass (Vm) of 1.80 A3 Da-1 and a solvent content of 31.6%.  相似文献   

18.
The heat-stable enterotoxin (ST) produced by enterotoxigenic Escherichia coli is an extracellular peptide toxin that evokes watery diarrhea in the host. Two types of STs, STI and STII, have been found. Both STs are synthesized as precursor proteins and are then converted to the active forms with intramolecular disulfide bonds after being released into the periplasm. The active STs are finally translocated across the outer membrane through a tunnel made by TolC. However, it is unclear how the active STs formed in the periplasm are led to the TolC channel. Several transporters in the inner membrane and their periplasmic accessory proteins are known to combine with TolC and form a tripartite transport system. We therefore expect such transporters to also act as a partner with TolC to export STs from the periplasm to the exterior. In this study, we carried out pulse-chase experiments using E. coli BL21(DE3) mutants in which various transporter genes (acrAB, acrEF, emrAB, emrKY, mdtEF, macAB, and yojHI) had been knocked out and analyzed the secretion of STs in those strains. The results revealed that the extracellular secretion of STII was largely decreased in the macAB mutant and the toxin molecules were accumulated in the periplasm, although the secretion of STI was not affected in any mutant used in this study. The periplasmic stagnation of STII in the macAB mutant was restored by the introduction of pACYC184, containing the macAB gene, into the cell. These results indicate that MacAB, an ATP-binding cassette transporter of MacB and its accessory protein, MacA, participates in the translocation of STII from the periplasm to the exterior. Since it has been reported that MacAB cooperates with TolC, we propose that the MacAB-TolC system captures the periplasmic STII molecules and exports the toxin molecules to the exterior.  相似文献   

19.
The bacterial enzyme UDP-N-acetylglucosamine enolpyruvyl transferase catalyzes the first committed step of peptidoglycan biosynthesis, i.e., transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetyl-glucosamine. We have overexpressed the enzyme from Haemophilus influenzae in Escherichia coli and crystallized it in the apo-form, as well as in a complex with UDP-N-acetylglucosamine and fosfomycin using ammonium sulfate as the precipitant. X-ray diffraction data from a crystal of the apo-form were collected to 2.8 A resolution at 293 K. The crystal quality was improved by co-crystallization with UDP-N-acetylglucosamine and fosfomycin. X-ray data to 2.2 A have been collected at 100 K from a flash-frozen crystal of the complex. The complex crystals belong to the orthorhombic space group I222 (or I212121) with unit-cell parameters of a = 63.7, b = 124.5, and c = 126.3 A. Assuming a monomer of the recombinant enzyme in the crystallographic asymmetric unit, the calculated Matthews parameter (VM) is 2.71 A3 Da-1 and solvent content is 54.6%.  相似文献   

20.
The crystal structure of gluconate kinase from Escherichia coli has been determined to 2.0 A resolution by X-ray crystallography. The three-dimensional structure was solved by multi-wavelength anomalous dispersion, using a crystal of selenomethionine-substituted enzyme. Gluconate kinase is an alpha/beta structure consisting of a twisted parallel beta-sheet surrounded by alpha-helices with overall topology similar to nucleoside monophosphate (NMP) kinases, such as adenylate kinase. In order to identify residues involved in substrate binding and catalysis, structures of binary complexes with ATP, the ATP analogue adenosine 5'-(beta,gamma-methylene) triphosphate and the product, gluconate-6-phosphate have been determined. Significant conformational changes are induced upon binding of ATP to the enzyme. The largest changes involve a hinge-bending motion of the NMP(bind) part and a motion of the LID with adjacent helices, which opens the cavity to the second substrate, gluconate. Opening of the active site cleft upon ATP binding is the opposite of what has been observed in the NMP kinase family so far, which usually close their active site to prevent fortuitous hydrolysis of ATP. The conformational change positions the side-chain of Arg120 to stack with the purine ring of ATP and the side-chain of Arg124 is shifted to interact with the alpha-phosphate in ATP, at the same time protecting ATP from solvent water. The beta and gamma-phosphate groups of ATP bind in the predicted P-loop. A conserved lysine side-chain interacts with the gamma-phosphate group, and might promote phosphoryl transfer. Gluconate-6-phosphate binds with its phosphate group in a similar position as the gamma-phosphate of ATP, consistent with inline phosphoryl transfer. The gluconate binding-pocket in GntK is located in a different position than the nucleoside binding-site usually found in NMP kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号