首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyanophages are important components of aquatic ecosystems, but their genetic diversity has been little investigated in freshwaters. A yearlong survey was conducted in surface waters of the two largest natural perialpine lakes in France (Lake Annecy and Lake Bourget) to investigate part of this cyanophage diversity through the analysis of both structural (e.g., g20) and functional (e.g., psbA) genes. We found that these cyanophage signature genes were prevalent throughout the year but that the community compositions of g20 cyanomyoviruses were significantly different between the two lakes. In contrast, psbA-containing cyanophages seemed to be more similar between the two ecosystems. We also found that a large proportion of g20 sequences grouped with cyanomyophage isolates. psbA sequences, belonging to phages of Synechococcus spp., were characterized by distinct triplet motifs (with a novel viral triplet motif, EFE). Thus, our results show that cyanophages (i) are a diverse viral community in alpine lakes and (ii) are clearly distinct from some other freshwater and marine environments, suggesting the influence of unique biogeographic factors.  相似文献   

2.
Cyanophages (cyanobacterial viruses) are important agents of horizontal gene transfer among marine cyanobacteria, the numerically dominant photosynthetic organisms in the oceans. Some cyanophage genomes carry and express host-like photosynthesis genes, presumably to augment the host photosynthetic machinery during infection. To study the prevalence and evolutionary dynamics of this phenomenon, 33 cultured cyanophages of known family and host range and viral DNA from field samples were screened for the presence of two core photosystem reaction center genes, psbA and psbD. Combining this expanded dataset with published data for nine other cyanophages, we found that 88% of the phage genomes contain psbA, and 50% contain both psbA and psbD. The psbA gene was found in all myoviruses and Prochlorococcus podoviruses, but could not be amplified from Prochlorococcus siphoviruses or Synechococcus podoviruses. Nearly all of the phages that encoded both psbA and psbD had broad host ranges. We speculate that the presence or absence of psbA in a phage genome may be determined by the length of the latent period of infection. Whether it also carries psbD may reflect constraints on coupling of viral- and host-encoded PsbA–PsbD in the photosynthetic reaction center across divergent hosts. Phylogenetic clustering patterns of these genes from cultured phages suggest that whole genes have been transferred from host to phage in a discrete number of events over the course of evolution (four for psbA, and two for psbD), followed by horizontal and vertical transfer between cyanophages. Clustering patterns of psbA and psbD from Synechococcus cells were inconsistent with other molecular phylogenetic markers, suggesting genetic exchanges involving Synechococcus lineages. Signatures of intragenic recombination, detected within the cyanophage gene pool as well as between hosts and phages in both directions, support this hypothesis. The analysis of cyanophage psbA and psbD genes from field populations revealed significant sequence diversity, much of which is represented in our cultured isolates. Collectively, these findings show that photosynthesis genes are common in cyanophages and that significant genetic exchanges occur from host to phage, phage to host, and within the phage gene pool. This generates genetic diversity among the phage, which serves as a reservoir for their hosts, and in turn influences photosystem evolution.  相似文献   

3.
Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation.  相似文献   

4.
Cyanophages encode host-derived genes that may increase their fitness. We examined the relative abundance of 18 host-derived cyanophages genes in metagenomes and viromes along depth profiles from the Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) where Prochlorococcus dominates a secondary chlorophyll maximum within the ODZ. Cyanophages at the oxic primary chlorophyll maximum encoded genes related to light and phosphate stress (psbA, psbD and pstS in T4-like and psbA in T7-like), but the proportion of cyanophage with these genes decreased with depth. The proportion of cyanophage with purine biosynthesis genes increased with depth in T4-like, but not T7-like cyanophages. No additional host-derived genes were found in deep T7-like cyanophages, suggesting that T4-like and T7-like cyanophages have different host-derived gene acquisition strategies, possibly linked to their different genome packaging mechanisms. In contrast to the ETNP, in the oxic North Atlantic T4-like cyanophages encoded psbA and pstS throughout the euphotic zone. Differences in pstS between the ETNP and the North Atlantic stations were consistent with differences in phosphate concentrations in those regimes. We suggest that the low proportion of cyanophage with psbA within the ODZ reflects the stably stratified low-light conditions occupied by their hosts, a Prochlorococcus ecotype endemic to ODZs.  相似文献   

5.
赵恒  刘玉珊  陈彤  刘丽 《微生物学报》2023,63(2):760-774
【目的】噬藻体(cyanophage)广泛存在于自然水体生态系统中,通过侵染蓝藻进而调控蓝藻种群及群落结构,具有重要生态功能和生态地位,在控制蓝藻水华方面有巨大开发潜力。本研究旨在探究云南高原湖泊噬藻体psbA基因多样性,分析其系统进化地位,为深入了解高原湖泊生态功能、开发利用噬藻体资源奠定理论基础。【方法】以云南高原主要湖泊滇池、抚仙湖和星云湖等为研究对象,以psbA基因作为分子靶标,对湖泊水体中噬藻体遗传多样性进行研究。【结果】从不同湖泊中共获得100条环境噬藻体psbA基因序列,系统发育分析表明,湖泊的噬藻体psbA基因序列与中国东湖、中国东北稻田、日本稻田等淡水中的环境噬藻体psbA基因亲缘关系较近,与海洋环境噬藻体psbA基因亲缘关系较远;抚仙湖中的噬藻体psbA基因多样性高于滇池、星云湖和异龙湖中的噬藻体psbA基因多样性;云南高原湖泊中存在新的噬藻体类群;各湖泊秋冬季节噬藻体psbA基因遗传多样性差异不明显。【结论】云南主要高原湖泊噬藻体psbA基因遗传多样性高,与淡水环境噬藻体psbA基因亲缘关系较近,且存在独特的噬藻体类群。  相似文献   

6.
The abundance of cyanophages infecting marine Synechococcus spp. increased with increasing salinity in three Georgia coastal rivers. About 80% of the cyanophage isolates were cyanomyoviruses. High cross-infectivity was found among the cyanophages infecting phycoerythrin-containing Synechococcus strains. Cyanophages in the river estuaries were diverse in terms of their morphotypes and genotypes.  相似文献   

7.
A cyanophage strain and its host Synechococcus were isolated from the East China Sea. The host Synechococcus sp. SJ01 was characterized by its 16S rRNA, ITS, and psbA gene sequences as well as by its morphological appearance and pigmentation. The cyanophage, strain S-SJ2, was able to cause a lytic infection of the coastal Synechococcus. TEM of negative-stained specimens showed that the phage isolate has an isometric head with a diameter of 68 nm and a long tail with a length of 280 nm. The cyanophage-Synechococcus system from the East China Sea shares many properties with other marine cyanophage-Synechococcus systems worldwide.  相似文献   

8.
Metagenomic Characterization of Chesapeake Bay Virioplankton   总被引:7,自引:1,他引:6       下载免费PDF全文
Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by Podoviridae.  相似文献   

9.
Small heat shock proteins (sHSPs) are oligomeric stress proteins characterized by an α-crystallin domain (ACD) surrounded by a N-terminal arm and C-terminal extension. Publications on sHSPs have reported that they exist in prokaryotes and eukaryotes but, to our knowledge, not in viruses. Here we show that sHSPs are present in some cyanophages that infect the marine unicellular cyanobacteria, Synechococcus and Prochlorococcus. These phage sHSPs contain a conserved ACD flanked by a relatively conserved N-terminal arm and a short C-terminal extension with or without the conserved C-terminal anchoring module (CAM) L-X-I/V, suggested to be implicated in the oligomerization. In addition, cyanophage sHSPs have the signature pattern, P-P-[YF]-N-[ILV]-[IV]-x(9)-[EQ], in the predicted β2 and β3 strands of the ACD. Phylogenetically, cyanophage sHSPs form a monophyletic clade closer to bacterial class A sHSPs than to cyanobacterial sHSPs. Furthermore, three sHSPs from their cellular host, Synechococcus, are phylogenetically close to plants sHSPs. Implications of evolutionary relationships between the sHSPs of cyanophages, bacterial class A, cyanobacteria, and plants are discussed.  相似文献   

10.
Myoviruses and podoviruses that infect cyanobacteria are the two major groups of marine cyanophages, but little is known of how their phylogenetic lineages are distributed in different habitats. In this study, we analyzed the phylogenetic relationships of cyanopodoviruses and cyanomyoviruses based on the existing genomes. The 28 cyanomyoviruses were classified into four clusters (I to IV), and 19 of the 20 cyanopodoviruses were classified into two clusters, MPP-A and MPP-B, with four subclusters within cluster MPP-B. These genomes were used to recruit cyanophage-like fragments from microbial and viral metagenomes to estimate the relative abundances of these cyanophage lineages. Our results showed that cyanopodoviruses and cyanomyoviruses are both abundant in various marine environments and that clusters MPP-B, II and III appear to be the most dominant lineages. Cyanopodoviruses and cluster I and IV cyanomyoviruses exhibited habitat-related variability in their relative levels of abundance, while cluster II and III cyanomyoviruses appeared to be consistently dominant in various habitats. Multivariate analyses showed that reads that mapped to Synechococcus phages and Prochlorococcus phages had distinct distribution patterns that were significantly correlated to those of Synechococcus and Prochlorococcus, respectively. The Mantel test also revealed a strong correlation between the community compositions of cyanophages and picocyanobacteria. Given that cyanomyoviruses tend to have a broad host range and some can cross-infect Synechococcus and Prochlorococcus, while cyanopodoviruses are commonly host specific, the observation that their community compositions both correlated significantly with that of picocyanobacteria was unexpected. Although cyanomyoviruses and cyanopodoviruses differ in host specificity, their biogeographic distributions are likely both constrained by the picocyanobacterial community.  相似文献   

11.
Marine viruses are an important component of the microbial food web, influencing microbial diversity and contributing to bacterial mortality rates. Resistance to cooccurring cyanophages has been reported for natural communities of Synechococcus spp.; however, little is known about the nature of this resistance. This study examined the patterns of infectivity among cyanophage isolates and unicellular marine cyanobacteria (Synechococcus spp.). We selected for phage-resistant Synechococcus mutants, examined the mechanisms of phage resistance, and determined the extent of cross-resistance to other phages. Four strains of Synechococcus spp. (WH7803, WH8018, WH8012, and WH8101) and 32 previously isolated cyanomyophages were used to select for phage resistance. Phage-resistant Synechococcus mutants were recovered from 50 of the 101 susceptible phage-host pairs, and 23 of these strains were further characterized. Adsorption kinetic assays indicate that resistance is likely due to changes in host receptor sites that limit viral attachment. Our results also suggest that receptor mutations conferring this resistance are diverse. Nevertheless, selection for resistance to one phage frequently resulted in cross-resistance to other phages. On average, phage-resistant Synechococcus strains became resistant to eight other cyanophages; however, there was no significant correlation between the genetic similarity of the phages (based on g20 sequences) and cross-resistance. Likewise, host Synechococcus DNA-dependent RNA polymerase (rpoC1) genotypes could not be used to predict sensitivities to phages. The potential for the rapid evolution of multiple phage resistance may influence the population dynamics and diversity of both Synechococcus and cyanophages in marine waters.  相似文献   

12.

Background

S-PM2 is a phage capable of infecting strains of unicellular cyanobacteria belonging to the genus Synechococcus. S-PM2, like other myoviruses infecting marine cyanobacteria, encodes a number of bacterial-like genes. Amongst these genes is one encoding a MazG homologue that is hypothesized to be involved in the adaption of the infected host for production of progeny phage.

Methodology/Principal Findings

This study focuses on establishing the occurrence of mazG homologues in other cyanophages isolated from different oceanic locations. Degenerate PCR primers were designed using the mazG gene of S-PM2. The mazG gene was found to be widely distributed and highly conserved among Synechococcus myoviruses and podoviruses from diverse oceanic provinces.

Conclusions/Significance

This study provides evidence of a globally connected cyanophage gene pool, the cyanophage mazG gene having a small effective population size indicative of rapid lateral gene transfer despite being present in a substantial fraction of cyanophage. The Prochlorococcus and Synechococcus phage mazG genes do not cluster with the host mazG gene, suggesting that their primary hosts are not the source of the mazG gene.  相似文献   

13.
Viruses are ubiquitous components of the marine ecosystem. In the current study we investigated seasonal variations in the viral community in Norwegian coastal waters by pulsed-field gel electrophoresis (PFGE). The results demonstrated that the viral community was diverse, displaying dynamic seasonal variation, and that viral populations of 29 different sizes in the range from 26 to 500 kb were present. Virus populations from 260 to 500 kb and dominating autotrophic pico- and nanoeukaryotes showed similar dynamic variations. Using flow cytometry and real-time PCR, we focused in particular on one host-virus system: Synechococcus spp. and cyanophages. The two groups covaried throughout the year and were found in the highest amounts in fall with concentrations of 7.3 × 104 Synechococcus cells ml−1 and 7.2 × 103 cyanophage ml−1. By using primers targeting the g20 gene in PCRs on DNA extracted from PFGE bands, we demonstrated that cyanophages were found in a genomic size range of 26 to 380 kb. The genetic richness of the cyanophage community, determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified g20 gene fragments, revealed seasonal shifts in the populations, with one community dominating in spring and summer and a different one dominating in fall. Phylogenetic analysis of the sequences originating from PFGE and DGGE bands grouped the sequences into three groups, all with homology to cyanomyoviruses present in cultures. Our results show that the cyanophage community in Norwegian coastal waters is dynamic and genetically diverse and has a surprisingly wide genomic size range.  相似文献   

14.
15.
To acquire phosphorus, cyanobacteria use the typical bacterial ABC-type phosphate transporter, which is composed of a periplasmic high-affinity phosphate-binding protein PstS and a channel formed by two transmembrane proteins PstC and PstA. A putative pstS gene was identified in the genomes of cyanophages that infect the unicellular marine cyanobacteria Prochlorococcus and Synechococcus. However, it has not been determined whether the cyanophage PstS protein is functional during infection to enhance the phosphate uptake rate of host cells. Here we showed that the cyanophage P-SSM2 PstS protein was abundant in the infected Prochlorococcus NATL2A cells and the host phosphate uptake rate was enhanced after infection. This is consistent with our biochemical and structural analyses showing that the phage PstS protein is indeed a high-affinity phosphate-binding protein. We further modelled the complex structure of phage PstS with host PstCA and revealed three putative interfaces that may facilitate the formation of a chimeric ABC transporter. Our results provide insights into the molecular mechanism by which cyanophages enhance the phosphate uptake rate of cyanobacteria. Phosphate acquisition by infected bacteria can increase the phosphorus contents of released cellular debris and virus particles, which together constitute a significant proportion of the marine dissolved organic phosphorus pool.  相似文献   

16.
T4‐like myoviruses are ubiquitous, and their genes are among the most abundant documented in ocean systems. Here we compare 26 T4‐like genomes, including 10 from non‐cyanobacterial myoviruses, and 16 from marine cyanobacterial myoviruses (cyanophages) isolated on diverse Prochlorococcus or Synechococcus hosts. A core genome of 38 virion construction and DNA replication genes was observed in all 26 genomes, with 32 and 25 additional genes shared among the non‐cyanophage and cyanophage subsets, respectively. These hierarchical cores are highly syntenic across the genomes, and sampled to saturation. The 25 cyanophage core genes include six previously described genes with putative functions (psbA, mazG, phoH, hsp20, hli03, cobS), a hypothetical protein with a potential phytanoyl‐CoA dioxygenase domain, two virion structural genes, and 16 hypothetical genes. Beyond previously described cyanophage‐encoded photosynthesis and phosphate stress genes, we observed core genes that may play a role in nitrogen metabolism during infection through modulation of 2‐oxoglutarate. Patterns among non‐core genes that may drive niche diversification revealed that phosphorus‐related gene content reflects source waters rather than host strain used for isolation, and that carbon metabolism genes appear associated with putative mobile elements. As well, phages isolated on Synechococcus had higher genome‐wide %G+C and often contained different gene subsets (e.g. petE, zwf, gnd, prnA, cpeT) than those isolated on Prochlorococcus. However, no clear diagnostic genes emerged to distinguish these phage groups, suggesting blurred boundaries possibly due to cross‐infection. Finally, genome‐wide comparisons of both diverse and closely related, co‐isolated genomes provide a locus‐to‐locus variability metric that will prove valuable for interpreting metagenomic data sets.  相似文献   

17.
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.  相似文献   

18.
While it is well established that viruses play an important role in the structure of marine microbial food webs, few studies have directly addressed their role in large lake systems. As part of an ongoing study of the microbial ecology of Lake Erie, we have examined the distribution and diversity of viruses in this system. One surprising result has been the pervasive distribution of cyanophages that infect the marine cyanobacterial isolate Synechococcus sp. strain WH7803. Viruses that lytically infect this cyanobacterium were identified throughout the western basin of Lake Erie, as well as in locations within the central and eastern basins. Analyses of the gene encoding the g20 viral capsid assembly protein (a conservative phylogenetic marker for the cyanophage) indicate that these viruses, as well as amplicons from natural populations and the ballast of commercial ships, are related to marine cyanophages but in some cases form a unique clade, leaving questions concerning the native hosts of these viruses. The results suggest that cyanophages may be as important in freshwater systems as they are known to be in marine systems.  相似文献   

19.
The cyanophage community in Rhode Island's coastal waters is genetically diverse and dynamic. Cyanophage abundance ranged from over 104 phage ml−1 in the summer months to less then 102 phage ml−1 during the winter months. Thirty-six distinct cyanomyovirus g20 genotypes were identified over a 3-year sampling period; however, only one to nine g20 genotypes were detected at any one sampling date. Phylogenetic analyses of g20 sequences revealed that the Rhode Island cyanomyoviral isolates fall into three main clades and are closely related to other known viral isolates of Synechococcus spp. Extinction dilution enrichment followed by host range tests and PCR restriction fragment length polymorphism analysis was used to detect changes in the relative abundance of cyanophage types in June, July, and August 2002. Temporal changes in both the overall composition of the cyanophage community and the relative abundance of specific cyanophage g20 genotypes were observed. In some seawater samples, the g20 gene from over 50% of isolated cyanophages could not be amplified by using the PCR primer pairs specific for cyanomyoviruses, which suggested that cyanophages in other viral families (e.g., Podoviridae or Siphoviridae) may be important components of the Rhode Island cyanophage community.  相似文献   

20.
Marine Synechococcus spp and marine Prochlorococcus spp are numerically dominant photoautotrophs in the open oceans and contributors to the global carbon cycle. Syn5 is a short-tailed cyanophage isolated from the Sargasso Sea on Synechococcus strain WH8109. Syn5 has been grown in WH8109 to high titer in the laboratory and purified and concentrated retaining infectivity. Genome sequencing and annotation of Syn5 revealed that the linear genome is 46,214 bp with a 237 bp terminal direct repeat. Sixty-one open reading frames (ORFs) were identified. Based on genomic organization and sequence similarity to known protein sequences within GenBank, Syn5 shares features with T7-like phages. The presence of a putative integrase suggests access to a temperate life cycle. Assignment of 11 ORFs to structural proteins found within the phage virion was confirmed by mass-spectrometry and N-terminal sequencing. Eight of these identified structural proteins exhibited amino acid sequence similarity to enteric phage proteins. The remaining three virion proteins did not resemble any known phage sequences in GenBank as of August 2006. Cryo-electron micrographs of purified Syn5 virions revealed that the capsid has a single “horn”, a novel fibrous structure protruding from the opposing end of the capsid from the tail of the virion. The tail appendage displayed an apparent 3-fold rather than 6-fold symmetry. An 18 Å resolution icosahedral reconstruction of the capsid revealed a T = 7 lattice, but with an unusual pattern of surface knobs. This phage/host system should allow detailed investigation of the physiology and biochemistry of phage propagation in marine photosynthetic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号