首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Despite numerous in vivo evidences that Tumor Necrosis Factor Receptor-Associated Factor 4 (TRAF4) plays a key biological function, how it works at the cellular and molecular level remains elusive.

Methodology/Principal Findings

In the present study, we show using immunofluorescence and immuohistochemistry that TRAF4 is a novel player at the tight junctions (TJs). TRAF4 is connected to assembled TJs in confluent epithelial cells, but accumulates in the cytoplasm and/or nucleus when TJs are open in isolated cells or EGTA-treated confluent cells. In vivo, TRAF4 is consistently found at TJs in normal human mammary epithelia as well as in well-differentiated in situ carcinomas. In contrast, TRAF4 is never localized at the plasma membrane of poorly-differentiated invasive carcinomas devoid of correct TJs, but is observed in the cytoplasm and/or nucleus of the cancer cells. Moreover, TRAF4 TJ subcellular localization is remarkably dynamic. Fluorescence recovery after photobleaching (FRAP) experiments show that TRAF4 is highly mobile and shuttles between TJs and the cytoplasm. Finally, we show that intracellular TRAF4 potentiates ERK1/2 phosphorylation in proliferating HeLa cells, an epithelial cell line known to be devoid of TJs.

Conclusions/Significance

Collectively, our data strongly support the new concept of TJs as a dynamic structure. Moreover, our results implicate TRAF4 in one of the emerging TJ-dependent signaling pathways that responds to cell polarity by regulating the cell proliferation/differentiation balance, and subsequently epithelium homeostasis. Drastic phenotypes or lethality in TRAF4-deficient mice and drosophila strongly argue in favor of such a function.  相似文献   

2.
Smad ubiquitin regulatory factors (Smurfs) are HECT-domain ubiquitin E3 ligases that regulate diverse cellular processes, including normal and tumor cell migration. However, the underlying mechanism of the Smurfs'' role in cell migration is not fully understood. Here we show that Smurf1 induces ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) at K190. Using the K190R mutant of TRAF4, we demonstrate that Smurf1-induced ubiquitination is required for proper localization of TRAF4 to tight junctions in confluent epithelial cells. We further show that TRAF4 is essential for the migration of both normal mammary epithelial and breast cancer cells. The ability of TRAF4 to promote cell migration is also dependent on Smurf1-mediated ubiquitination, which is associated with Rac1 activation by TRAF4. These results reveal a new regulatory circuit for cell migration, consisting of Smurf1-mediated ubiquitination of TRAF4 and Rac1 activation.  相似文献   

3.
Xiao N  Li H  Luo J  Wang R  Chen H  Chen J  Wang P 《The Biochemical journal》2012,441(3):979-986
TRAF [TNF (tumour necrosis factor)-receptor-associated factor] 2 and 6 are essential adaptor proteins for the NF-κB (nuclear factor κB) signalling pathway, which play important roles in inflammation and immune response. Polyubiquitination of TRAF2 and TRAF6 is critical to their activities and functions in TNFα- and IL (interleukin)-1β-induced NF-κB activation. However, the regulation of TRAF2 and TRAF6 by deubiquitination remains incompletely understood. In the present study, we identified USP (ubiquitin-specific protease) 4 as a novel deubiquitinase targeting TRAF2 and TRAF6 for deubiquitination. We found that USP4 specifically interacts with TRAF2 and TRAF6, but not TRAF3. Moreover, USP4 associates with TRAF6 both in vitro and in vivo, independent of its deubiquitinase activity. The USP domain is responsible for USP4 to interact with TRAF6. Ectopic expression of USP4 inhibits the TRAF2- and TRAF6-stimulated NF-κB reporter gene and negatively regulates the TNFα-induced IκBα (inhibitor of NF-κBα) degradation and NF-κB activation. Knockdown of USP4 significantly increased TNFα-induced cytokine expression. Furthermore, we found that USP4 deubiquitinates both TRAF2 and TRAF6 in vivo and in vitro in a deubiquitinase activity-dependent manner. Importantly, the results of the present study showed that USP4 is a negative regulator of TNFα- and IL-1β-induced cancer cell migration. Taken together, the present study provides a novel insight into the regulation of the NF-κB signalling pathway and uncovers a previously unknown function of USP4 in cancer.  相似文献   

4.
The transforming growth factor (TGF)-β superfamily regulates cell proliferation, apoptosis, differentiation, migration, and development. Canonical TGFβ signals are transduced to the nucleus via Smads in both major signaling branches, bone morphogenetic protein (BMP) or Activin/Nodal/TGFβ. Smurf ubiquitin (Ub) ligases attenuate these pathways by targeting Smads and other signaling components for degradation by the 26S proteasome. Here, we identify tumor necrosis factor (TNF)-receptor–associated factor-4 (TRAF4) as a new target of Smurf1, which polyubiquitylates TRAF4 to trigger its proteasomal destruction. Unlike other TRAF family members, which mediate signal transduction by TNF, interleukin, or Toll-like receptors, we find that TRAF4 potentiates BMP and Nodal signaling. In the frog Xenopus laevis, TRAF4 mRNA is stored maternally in the egg animal pole, and in the embryo it is expressed in the gastrula marginal zone, neural plate, and cranial and trunk neural crest. Knockdown of embryonic TRAF4 impairs signaling, neural crest development and neural folding, whereas TRAF4 overexpression boosts signaling and expands the neural crest. In human embryonic kidney 293 cells, small interfering RNA knockdown of Smurf1 elevates TRAF4 levels, indicating endogenous regulation of TRAF4 by Smurf1. Our results uncover new functions for TRAF4 as a Smurf1-regulated mediator of BMP and Nodal signaling that are essential for neural crest development and neural plate morphogenesis.  相似文献   

5.
Yoon Min  Mi-Jeong Kim  Sena Lee 《Autophagy》2018,14(8):1347-1358
TRAF6 (TNF receptor associated factor 6) plays a pivotal role in NFKB activation and macroautphagy/autophagy activation induced by TLR4 (toll like receptor 4) signaling. The objective of this study was to determine the functional role of PRDX1 (peroxiredoxin 1) in NFKB activation and autophagy activation. PRDX1 interacted with the ring finger domain of TRAF6 and inhibited its ubiquitin-ligase activity. The inhibition on TRAF6 ubiquitin-ligase activity by PRDX1 induced the suppression of ubiquitination of an evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) essential for NFKB activation and BECN1 (beclin 1) required for autophagy activation. An inhibitory effect of PRDX1 on TRAF6 was clearly evidenced in PRDX1-knockdown (PRDX1KD) THP-1, PRDX1KD MDA-MB-231, and PRDX1KD SK-HEP-1 cells. PRDX1KD THP-1 cells showed increases of NFKB activation, pro-inflammatory cytokine production, NFKB-dependent gene expression induced by TLR4 stimulation, and resistance against Salmonella typhimurium infection. Additionally, migration and invasion abilities of PRDX1KD MDA-MB-231 and PRDX1KD SK-HEP-1 cancer cells were significantly enhanced compared to those of control cancer cells. Taken together, these results suggest that PRDX1 negatively regulates TLR4 signaling for NFKB activation and autophagy functions such as bactericidal activity, cancer cell migration, and cancer cell invasion by inhibiting TRAF6 ubiquitin-ligase activity.

Abbreviations: 3-MA: 3-methyladenine; BECN1: beclin 1; CHUK/IKKA: conserved helix-loop-helix ubiquitous kinase; ECSIT: ECSIT signalling integrator; ELISA: enzyme-linked immunosorbent assay; NFKB: nuclear factor kappa-light-chain-enhancer of activated B cells; IB: immunoblotting; IKBKB/IKKB: inhibitor of nuclear factor kappa B kinase subunit beta; IL1B: interleukin 1 beta; IL6: interleukin 6; IP: immunoprecipitation; LPS: lipopolysaccharide; MAP1LC3/LC3: microtuble associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK14/p38: mitogen-activated protein kinase 14; mROS: mitochondrial reactive oxygen species; PRDX1: peroxiredoxin 1; PRDX6: peroxiredoxin 6; RELA/p65: RELA proto-oncogene, NF-kB subunit; TRAF6 TNF: receptor associated factor 6.  相似文献   


6.
The HECT-type E3 Smad ubiquitination regulation factor 1 (Smurf1) functions in regulation of cell polarity and bone homeostasis by targeting Smads, Runx2, RhoA and MEKK2 for ubiquitination and degradation. In a yeast two-hybrid screening, we identified TNF receptor-associated factor 4 (TRAF4) as a candidate substrate and was further validated. The PY motifs of TRAF4 mediated the interaction with the second WW domain of Smurf1. Overexpression of Smurf1 reduced the protein levels of TRAF4 dependent of its E3 activity and the proteasome. Further, we showed that all six members of TRAF family could be ubiquitinated by Smurf1. Consequently, Smurf1 interfered with the functions of TRAFs in NF-κB signaling under stimulation or not. These results suggested a new role of Smurf1 in inflammation and immunity through controlling the degradation of TRAFs.  相似文献   

7.
BackgroundCurcumin is a naturally occurring polyphenol found in Curcuma longa with multiple therapeutic properties, such as anti-inflammatory, wound healing and anti-cancer effects. Curcuma longa is also used as a galactagogue to improve milk production during lactation.PurposeTo assess curcumin could have therapeutic potential for breastfeeding mothers, we investigated whether and how curcumin influences milk production in lactating mammary epithelial cells (MECs) at the cellular and molecular levels.MethodsWe prepared a lactating MEC culture model that produced milk components and formed less-permeable tight junctions (TJs) to investigate the molecular mechanism of curcumin on milk production, TJs, and inflammation in vitro.ResultsCurcumin downregulated milk production in lactation MECs concurrently with inactivation of lactogenesis-relating signaling (STAT5 and glucocorticoid receptor). The maintenance of a less-permeable TJ barrier was also confirmed, although the TJ protein claudin-4 increased. Curcumin inactivated NFκB and STAT3 signaling, which are closely involved in inflammatory responses in weaning and mastitis mammary glands. The expression levels of IL-1β and TNF-α were also decreased by curcumin treatment. Furthermore, curcumin blocked activation of inflammatory signaling by lipopolysaccharide treatment in MECs, similar to those in MECs that were treated with diclofenac sodium. The drastic phosphorylation of ERK was induced by curcumin treatment in the absence of EGF. U0126, an inhibitor of ERK phosphorylation, attenuated the adverse effects of curcumin on lactating MECs.ConclusionThe results of the present study suggests that curcumin downregulates milk production via inactivation of STAT5 and GR signaling with concurrent suppression of inflammatory responses via STAT3 and NFκB signaling in MECs. These findings provide new insights into the role of curcumin as a mild suppressor of milk production without inflammatory damages in breastfeeding mothers.  相似文献   

8.
Binding of TNF to its receptor (TNFR1) elicits the spatiotemporal assembly of two signaling complexes that coordinate the balance between cell survival and cell death. We have shown previously that, following TNF treatment, the mRNA decay protein tristetraprolin (TTP) is Lys-63-polyubiquitinated by TNF receptor-associated factor 2 (TRAF2), suggesting a regulatory role in TNFR signaling. Here we demonstrate that TTP interacts with TNFR1 in a TRAF2-dependent manner, thereby initiating the MEKK1/MKK4-dependent activation of JNK activities. This regulatory function toward JNK activation but not NF-κB activation depends on lysine 105 of TTP, which we identified as the corresponding TRAF2 ubiquitination site. Disabling TTP polyubiquitination results in enhanced TNF-induced apoptosis in cervical cancer cells. Together, we uncover a novel aspect of TNFR1 signaling where TTP, in alliance with TRAF2, acts as a balancer of JNK-mediated cell survival versus death.  相似文献   

9.
10.
The tumor necrosis factor receptor-associated factor (TRAF) protein family members are critically involved in activation of NF-kappaB, JNK, and p38 activation triggered by tumor necrosis factor (TNF) receptor family members and toll/interleukin-1 receptor (TIR)-containing receptors. TRAF proteins (except for TRAF1) contain an N-terminal RING finger domain that is essential for their functions. In this report, we identified a protein designated as TRAF7, which contains a RING finger domain and a zinc finger domain that are mostly conserved with those of TRAFs. TRAF7 also contains seven WD40 repeats at its C terminus. TRAF7 specifically interacted with MEKK3 and potentiated MEKK3-mediated AP1 and CHOP activation. Depletion of TRAF7 by antisense RNA inhibited MEKK3-mediated AP1 and CHOP activation. Moreover, overexpression of TRAF7 induced caspase-dependent apoptosis. Domain mapping experiments indicated that TRAF7 potentiated MEKK3-mediated AP1 and CHOP activation and induced apoptosis through distinct domains. Our studies identified a novel TRAF family member that is involved in MEKK3 signaling and apoptosis.  相似文献   

11.
Tight junctions (TJs) are cell-cell adhesive structures that undergo continuous remodeling. We previously demonstrated that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) localized at TJs and mediated the endocytic recycling of the integral TJ protein occludin and the formation of functional TJs. Here, we investigated how JRAB/MICAL-L2 was targeted to TJs. Using a series of deletion mutants, we found the plasma membrane (PM)-targeting domain within JRAB/MICAL-L2. We then identified actinin-4, which was originally isolated as an actin-binding protein associated with cell motility and cancer invasion/metastasis, as a binding protein for the PM-targeting domain of JRAB/MICAL-L2, using a yeast two-hybrid system. Actinin-4 was colocalized with JRAB/MICAL-L2 at cell-cell junctions and linked JRAB/MICAL-L2 to F-actin. Although actinin-4 bound to JRAB/MICAL-L2 without Rab13, the actinin-4-JRAB/MICAL-L2 interaction was enhanced by Rab13 activation. Depletion of actinin-4 by using small interfering RNA inhibited the recruitment of occludin to TJs during the Ca(2+) switch. During the epithelial polarization after replating, JRAB/MICAL-L2 was recruited from the cytosol to cell-cell junctions. This JRAB/MICAL-L2 recruitment as well as the formation of functional TJs was delayed in actinin-4-depleted cells. These results indicate that actinin-4 is involved in recruiting JRAB/MICAL-L2 to cell-cell junctions and forming functional TJs.  相似文献   

12.
Tumor necrosis factor receptor-associated factor 4 (TRAF4) is upregulated in various subtypes of breast cancers and cell lines; however, the precise functions of TRAF4 are poorly understood. Our objective was to investigate its relationship with β-catenin. TRAF4 participates in several signaling pathways, such as NF-κB and JNK signaling pathways. In this study, we identified β-catenin as a TRAF4-binding protein, have shown that TRAF4 enhanced expression of β-catenin, and found that TRAF4 mediated the translocation of β-catenin from the cytoplasm to the nucleus, thereby facilitating activation of the Wnt signaling pathway in breast cancer.  相似文献   

13.
14.
15.
16.
Glioblastoma (GB) is the highest grade of primary adult brain tumors, characterized by a poorly defined and highly invasive cell population. Importantly, these invading cells are attributed with having a decreased sensitivity to radiation and chemotherapy. TNF-like weak inducer of apoptosis (TWEAK)-Fn14 ligand-receptor signaling is one mechanism in GB that promotes cell invasiveness and survival and is dependent upon the activity of multiple Rho GTPases, including Rac1. Here we report that Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF), a RhoG-specific guanine nucleotide exchange factor, is overexpressed in GB tumors and promotes TWEAK-Fn14-mediated glioma invasion. Importantly, levels of SGEF expression in GB tumors inversely correlate with patient survival. SGEF mRNA expression is increased in GB cells at the invasive rim relative to those in the tumor core, and knockdown of SGEF expression by shRNA decreases glioma cell migration in vitro and invasion ex vivo. Furthermore, we showed that, upon TWEAK stimulation, SGEF is recruited to the Fn14 cytoplasmic tail via TRAF2. Mutation of the Fn14-TRAF domain site or depletion of TNF receptor-associated factor 2 (TRAF2) expression by siRNA oligonucleotides blocked SGEF recruitment to Fn14 and inhibited SGEF activity and subsequent GB cell migration. We also showed that knockdown of either SGEF or RhoG diminished TWEAK activation of Rac1 and subsequent lamellipodia formation. Together, these results indicate that SGEF-RhoG is an important downstream regulator of TWEAK-Fn14-driven GB cell migration and invasion.  相似文献   

17.
18.
The TRAIP interacting protein is known as a negative regulator of TNF-induced-nuclear factor, kappa-light-chain-enhancer of activated B cell (NF-κB) by direct interaction with the adaptor protein TRAF2, which inhibits the function of TRAF2 via the RINGCC domain protein. The TRAIP protein is composed of 469 amino acids with an N-terminal RING motif that is followed by a coiled coil (CC) and leucine zipper domain. TRAIP proteins are critical in programmed cell death, cell proliferation and differentiation, and embryonic development. The critical functions of TRAIP together with the molecular inhibitory mechanism effect of TRAIP have been reported by two different studies and have opened up new research into the field of TRAF biology. In this study, we designed different constructs of the Leucine zipper domain to find the over –expressed construct for further studies. We successfully cloned the C-terminal TRAIP containing the leucine zipper domain. In addition, we have over-expressed and purified the TRAIP LZ for their biochemical characterization.  相似文献   

19.
Subcellular targeting of oxidants during endothelial cell migration   总被引:1,自引:0,他引:1  
Endogenous oxidants participate in endothelial cell migration, suggesting that the enzymatic source of oxidants, like other proteins controlling cell migration, requires precise subcellular localization for spatial confinement of signaling effects. We found that the nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase adaptor p47(phox) and its binding partner TRAF4 were sequestered within nascent, focal complexlike structures in the lamellae of motile endothelial cells. TRAF4 directly associated with the focal contact scaffold Hic-5, and the knockdown of either protein, disruption of the complex, or oxidant scavenging blocked cell migration. An active mutant of TRAF4 activated the NADPH oxidase downstream of the Rho GTPases and p21-activated kinase 1 (PAK1) and oxidatively modified the focal contact phosphatase PTP-PEST. The oxidase also functioned upstream of Rac1 activation, suggesting its participation in a positive feedback loop. Active TRAF4 initiated robust membrane ruffling through Rac1, PAK1, and the oxidase, whereas the knockdown of PTP-PEST increased ruffling independent of oxidase activation. Our data suggest that TRAF4 specifies a molecular address within focal complexes that is targeted for oxidative modification during cell migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号