首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mycoplasmas contain glycoglycerolipids in their plasma membrane as key structural components involved in bilayer properties and stability. A membrane-associated glycosyltransferase (GT), GT MG517, has been identified in Mycoplasma genitalium, which sequentially produces monoglycosyl- and diglycosyldiacylglycerols. When recombinantly expressed in Escherichia coli, the enzyme was functional in vivo and yielded membrane glycolipids from which Glcβ1,6GlcβDAG was identified as the main product. A chaperone co-expression system and extraction with CHAPS detergent afforded soluble protein that was purified by affinity chromatography. GT MG517 transfers glucosyl and galactosyl residues from UDP-Glc and UDP-Gal to dioleoylglycerol (DOG) acceptor to form the corresponding β-glycosyl-DOG, which then acts as acceptor to give β-diglycosyl-DOG products. The enzyme (GT2 family) follows Michaelis-Menten kinetics. k(cat) is about 5-fold higher for UDP-Gal with either DOG or monoglucosyldioleoylglycerol acceptors, but it shows better binding for UDP-Glc than UDP-Gal, as reflected by the lower K(m), which results in similar k(cat)/K(m) values for both donors. Although sequentially adding glycosyl residues with β-1,6 connectivity, the first glycosyltransferase activity (to DOG) is about 1 order of magnitude higher than the second (to monoglucosyldioleoylglycerol). Because the ratio between the non-bilayer-forming monoglycosyldiacylglycerols and the bilayer-prone diglycosyldiacylglycerols contributes to regulate the properties of the plasma membrane, both synthase activities are probably regulated. Dioleoylphosphatidylglycerol (anionic phospholipid) activates the enzyme, k(cat) linearly increasing with dioleoylphosphatidylglycerol concentration. GT MG517 is shown to be encoded by an essential gene, and the addition of GT inhibitors results in cell growth inhibition. It is proposed that glycolipid synthases are potential targets for drug discovery against infections by mycoplasmas.  相似文献   

2.
Glycoglycerolipids are abundant membrane components in the photosynthetic tissues of plants and in cyanobacteria, with highly conserved structures (galactolipids). In non-photosynthetic bacteria, glycoglycerolipids are also widespread but with higher structural diversity. They are synthesized by the action of glycosyltransferases (GT), which transfers a glycosyl unit from a sugar nucleotide donor to diacylglycerol to form monoglycosyldiacylglycerol followed by a second transfer to give diglycosyldiacylglycerol. Both transferase activities are catalysed by different GT enzymes in plants, and many bacteria; however, processive enzymes, in which a single GT transfers the first and second (and eventually more) glycosyl units are also found in some bacteria. In this review, we summarize the diversity of glycosyltransferases involved in glycolipid biosynthesis in bacteria, focussing on mycoplasma enzymes and comparing processive and non-processive glycolipid synthases. Since glycoglycerolipids are key structural components of the plasma membrane in mycoplasmas, the glycolipid synthases involved in their biosynthesis are proposed as targets for the design of new antibiotics against mycoplasma infections.  相似文献   

3.
The glycolipid synthase MG517 from Mycoplasma genitalium catalyzes the glucosyl transfer from UDPGlc to diacylglycerol producing glycoglycerolipids (GGL) (Andrés et al., 2011). The enzyme was functional in E. coli accumulating GGL in the plasma membrane. A metabolic engineering strategy for GGL production was evaluated using this microorganism. To increase the levels of GGL precursors, UDPGlc and diacylglycerol, GalU and PlsC enzymes involved in their biosynthesis were overexpressed. Seven engineered strains were obtained containing different combinations of the mg517 with galU and plsC genes. Diacylglycerol synthesis showed to be limiting and the strain overexpressing MG517 and PlsC achieved the highest GGL yield. The new lipids were mono, di- and triglucosyldiacylglycerol with different acyl combinations in each compound. It indicates that the successive glucosyl transferase activities of MG517 have different acyl chain specificity for the acceptor substrate. GGL represented up to 6mg per g of dry weight.  相似文献   

4.
alpha-1,3-Galactosyltransferase (alpha3GT) catalyzes the transfer of galactose from UDP-galactose to form an alpha 1-3 link with beta-linked galactosides; it is part of a family of homologous retaining glycosyltransferases that includes the histo-blood group A and B glycosyltransferases, Forssman glycolipid synthase, iGb3 synthase, and some uncharacterized prokaryotic glycosyltransferases. In mammals, the presence or absence of active forms of these enzymes results in antigenic differences between individuals and species that modulate the interplay between the immune system and pathogens. The catalytic mechanism of alpha3GT is controversial, but the structure of an enzyme complex with the donor substrate could illuminate both this and the basis of donor substrate specificity. We report here the structure of the complex of a low-activity mutant alpha3GT with UDP-galactose (UDP-gal) exhibiting a bent configuration stabilized by interactions of the galactose with multiple residues in the enzyme including those in a highly conserved region (His315 to Ser318). Analysis of the properties of mutants containing substitutions for these residues shows that catalytic activity is strongly affected by His315 and Asp316. The negative charge of Asp316 is crucial for catalytic activity, and structural studies of two mutants show that its interaction with Arg202 is needed for an active site structure that facilitates the binding of UDP-gal in a catalytically competent conformation.  相似文献   

5.
Franco OL  Rigden DJ 《Glycobiology》2003,13(10):707-712
Glycosyltransferases (GTs) are diverse enzymes organized into 65 families. X-ray crystallography and in silico studies have shown many of these to belong to two structural superfamilies: GT-A and GT-B. Through application of fold recognition and iterated sequence searches, we demonstrate that families 60, 62, and 64 may also be grouped into the GT-A fold superfamily. Analysis of conserved acidic residues suggests that catalytic sites are better conserved in superfamily GT-B than in GT-A. Although 26% and 29% of GT families may now be confidently placed in superfamilies GT-A and GT-B, respectively, the remaining 45% of families bear no discernible resemblance to either superfamily, which, given the sensitivity of modern fold recognition methods, suggests the existence of novel structural scaffolds associated with GT activity. Furthermore, bioinformatics studies indicate the apparent ease with which mechanism-inverting or retaining-may change during evolution.  相似文献   

6.
Maleylacetate reductase plays a crucial role in catabolism of resorcinol by catalyzing the NAD(P)H‐dependent reduction of maleylacetate, at a carbon–carbon double bond, to 3‐oxoadipate. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP‐10005, GraC, has been elucidated by the X‐ray diffraction method at 1.5 Å resolution. GraC is a homodimer, and each subunit consists of two domains: an N‐terminal NADH‐binding domain adopting an α/β structure and a C‐terminal functional domain adopting an α‐helical structure. Such structural features show similarity to those of the two existing families of enzymes in dehydroquinate synthase‐like superfamily. However, GraC is distinct in dimer formation and activity expression mechanism from the families of enzymes. Two subunits in GraC have different structures from each other in the present crystal. One subunit has several ligands mimicking NADH and the substrate in the cleft and adopts a closed domain arrangement. In contrast, the other subunit does not contain any ligand causing structural changes and adopts an open domain arrangement. The structure of GraC reveals those of maleylacetate reductase both in the coenzyme, substrate‐binding state and in the ligand‐free state. The comparison of both subunit structures reveals a conformational change of the Tyr326 loop for interaction with His243 on ligand binding. Structures of related enzymes suggest that His243 is likely a catalytic residue of GraC. Mutational analyses of His243 and Tyr326 support the catalytic roles proposed from structural information. The crystal structure of GraC characterizes the maleylacetate reductase family as a third family in the dehydroquinate synthase‐like superfamily. Proteins 2016; 84:1029–1042. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Glycosyltransferases (GTs) are enzymes that are involved, as Nature''s “glycosylation reagents,” in many fundamental biological processes including cell adhesion and blood group biosynthesis. Although of similar importance to that of other large enzyme families such as protein kinases and proteases, the undisputed potential of GTs for chemical biology and drug discovery has remained largely unrealized to date. This is due, at least in part, to a relative lack of GT inhibitors and tool compounds for structural, mechanistic, and cellular studies. In this study, we have used a novel class of GT donor analogues to obtain new structural and enzymological information for a representative blood group GT. These analogues interfere with the folding of an internal loop and the C terminus, which are essential for catalysis. Our experiments have led to the discovery of an entirely new active site folding mode for this enzyme family, which can be targeted in inhibitor development, similar to the DFG motif in protein kinases. Taken together, our results provide new insights into substrate binding, dynamics, and utilization in this important enzyme family, which can very likely be harnessed for the rational development of new GT inhibitors and probes.  相似文献   

8.
We have previously shown that several mycoplasma species associated with infertility bind specifically to sulfated glycolipids isolated from the mammalian reproductive tract. We now show that a germ cell-specific sulfoglycolipid binding protein (SLIP 1), which is a potent inhibitor of sperm/egg binding in vitro, is immunologically related to the heat shock protein (Hsp) 70 family of stress proteins and that Hsps are surface antigens in male germ cells. Our present data demonstrate that several mycoplasma and mammalian Hsps share this glycolipid binding specificity in vitro, and suggest that surface Hsps can function as adhesins which mediate sulfoglycolipid recognition in infectious disease and normal reproductive physiology. © 1995 Wiley-Liss Inc.  相似文献   

9.
The important xenoepitope Galalpha(1,3)Gal was thought to be exclusively synthesized by a single alpha(1,3)galactosyltransferase. However, the cloning of the distant family member rat iGb3 synthase, which is also capable of synthesizing Galalpha(1,3)Gal as the glycolipid structure iGb3, challenges the notion that alpha(1,3)galactosyltransferase is the sole Galalpha(1,3)Gal-synthesizing enzyme. We describe the cloning of the rat homolog of alpha(1,3)galactosyltransferase, showing that indeed the rat expresses two distinct alpha(1,3)galactosyltransferases, alpha(1,3)GT and iGb3 synthase. Rat alpha(1,3)galactosyltransferase shows a high amino acid sequence identity with the alpha(1,3)galactosyltransferase of mouse (90%), pig (76%), and ox (75%), in contrast to the low amino acid sequence identity (42%) with iGb3 synthase. The rat alpha(1,3)galactosyltransferase is expressed in heart, brain, spleen, kidney, and liver and has a similar intron/exon structure to the mouse alpha(1,3)galactosyltransferase. Transfection studies show that in contrast to the iGb3 synthase, rat alpha(1,3)galactosyltransferase can synthesize Galalpha(1,3)Gal on glycoproteins but cannot synthesize the glycolipid iGb3, defining two separate glycosylation pathways for the synthesis of Galalpha(1,3)Gal. Furthermore iGb3 synthase was found to be distinct from alpha(1,3)GT with its ability to synthesize poly-alpha-Gal glycolipid structures.  相似文献   

10.
Glycosyltransferases (GTs) are a large and ubiquitous family of enzymes that specifically transfer sugar moieties to a range of substrates. Mycobacterium tuberculosis contains a large number of GTs, many of which are implicated in cell wall synthesis, yet the majority of these GTs remain poorly characterized. Here, we report the high resolution crystal structures of an essential GT (MAP2569c) from Mycobacterium avium subsp. paratuberculosis (a close homologue of Rv1208 from M. tuberculosis) in its apo- and ligand-bound forms. The structure adopted the GT-A fold and possessed the characteristic DXD motif that coordinated an Mn(2+) ion. Atypical of most GTs characterized to date, MAP2569c exhibited specificity toward the donor substrate, UDP-glucose. The structure of this ligated complex revealed an induced fit binding mechanism and provided a basis for this unique specificity. Collectively, the structural features suggested that MAP2569c may adopt a "retaining" enzymatic mechanism, which has implications for the classification of other GTs in this large superfamily.  相似文献   

11.
Two closely related glycosyltransferases are responsible for the final step of the biosynthesis of ABO(H) human blood group A and B antigens. The two enzymes differ by only four amino acid residues, which determine whether the enzymes transfer GalNAc from UDP-GalNAc or Gal from UDP-Gal to the H-antigen acceptor. The enzymes belong to the class of GT-A folded enzymes, grouped as GT6 in the CAZy database, and are characterized by a single domain with a metal dependent retaining reaction mechanism. However, the exact role of the four amino acid residues in the specificity of the enzymes is still unresolved. In this study, we report the first structural information of a dual specificity cis-AB blood group glycosyltransferase in complex with a synthetic UDP-GalNAc derivative. Interestingly, the GalNAc moiety adopts an unusual yet catalytically productive conformation in the binding pocket, which is different from the “tucked under” conformation previously observed for the UDP-Gal donor. In addition, we show that this UDP-GalNAc derivative in complex with the H-antigen acceptor provokes the same unusual binding pocket closure as seen for the corresponding UDP-Gal derivative. Despite this, the two derivatives show vastly different kinetic properties. Our results provide a important structural insight into the donor substrate specificity and utilization in blood group biosynthesis, which can very likely be exploited for the development of new glycosyltransferase inhibitors and probes.  相似文献   

12.
Glucansucrase (GSase) from Streptococcus mutans is an essential agent in dental caries pathogenesis. Here, we report the crystal structure of S. mutans glycosyltransferase (GTF-SI), which synthesizes soluble and insoluble glucans and is a glycoside hydrolase (GH) family 70 GSase in the free enzyme form and in complex with acarbose and maltose. Resolution of the GTF-SI structure confirmed that the domain order of GTF-SI is circularly permuted as compared to that of GH family 13 α-amylases. As a result, domains A, B and IV of GTF-SI are each composed of two separate polypeptide chains. Structural comparison of GTF-SI and amylosucrase, which is closely related to GH family 13 amylases, indicated that the two enzymes share a similar transglycosylation mechanism via a glycosyl-enzyme intermediate in subsite − 1. On the other hand, novel structural features were revealed in subsites + 1 and + 2 of GTF-SI. Trp517 provided the platform for glycosyl acceptor binding, while Tyr430, Asn481 and Ser589, which are conserved in family 70 enzymes but not in family 13 enzymes, comprised subsite + 1. Based on the structure of GTF-SI and amino acid comparison of GTF-SI, GTF-I and GTF-S, Asp593 in GTF-SI appeared to be the most critical point for acceptor sugar orientation, influencing the transglycosylation specificity of GSases, that is, whether they produced insoluble glucan with α(1-3) glycosidic linkages or soluble glucan with α(1-6) linkages. The structural information derived from the current study should be extremely useful in the design of novel inhibitors that prevent the biofilm formation by GTF-SI.  相似文献   

13.
The committed step in the biosynthesis of cysteinyl-leukotrienes is catalyzed by leukotriene C(4) synthase as well as microsomal glutathione S-transferase (MGST) type 2 and type 3, which belong to a family of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG). We cloned and characterized these three enzymes from the rat to allow a side-by-side comparison of structural and catalytic properties. The proteins are 79.6-86.7% identical to the human orthologs. Rat MGST3 fails to convert leukotriene A(4) into leukotriene C(4), which in turn challenges the proposed catalytic role of a conserved Arg and Tyr residue for the leukotriene C(4) synthase reaction. Comparative inhibitor studies of all three enzymes, using MK-886 and cysteinyl-leukotrienes, indicate that their catalytic centers originate from structurally related and overlapping active sites. Hence, it seems feasible to design enzyme inhibitors, which simultaneously target several members of this protein family to yield compounds with increased anti-inflammatory action.  相似文献   

14.
15.
Glycosyltransferases (GTs) catalyze the transfer of a sugar moiety from an activated donor sugar onto saccharide and nonsaccharide acceptors. A sequence-based classification spreads GTs in many families thus reflecting the variety of molecules that can be used as acceptors. In contrast, this enzyme family is characterized by a more conserved three-dimensional architecture. Until recently, only two different folds (GT-A and GT-B) have been identified for solved crystal structures. The recent report of a structure for a bacterial sialyltransferase allows the definition of a new fold family. Progress in the elucidation of the structures and mechanisms of GTs are discussed in this review. To accommodate the growing number of crystal structures, we created the 3D-Glycosyltransferase database to gather structural information concerning this class of enzymes.  相似文献   

16.
Organophosphorus (OP) esters are known to bind covalently to the active site serine of enzymes in the serine hydrolase family. It was a surprise to find that proteins with no active site serine are also covalently modified by OP. The binding site in albumin, transferrin, and tubulin was identified as tyrosine. The goal of the present work was to determine whether binding to tyrosine is a general phenomenon. Fourteen proteins were treated with a biotin-tagged organophosphorus agent called FP-biotin. The proteins were digested with trypsin and the labeled peptides enriched by binding to monomeric avidin. Peptides were purified by HPLC and fragmented by collision induced dissociation in a tandem ion trap mass spectrometer. Eight proteins were labeled and six were not. Tyrosine was labeled in human alpha-2-glycoprotein 1 zinc-binding protein (Tyr 138, Tyr 174 and Tyr 181), human kinesin 3C motor domain (Tyr 145), human keratin 1 (Tyr 230), bovine actin (Tyr 55 and Tyr 200), murine ATP synthase beta (Tyr 431), murine adenine nucleotide translocase 1 (Tyr 81), bovine chymotrypsinogen (Tyr 201) and porcine pepsin (Tyr 310). Only 1–3 tyrosines per protein were modified, suggesting that the reactive tyrosine was activated by nearby residues that facilitated ionization of the hydroxyl group of tyrosine. These results suggest that OP binding to tyrosine is a general phenomenon. It is concluded that organophosphorus-reactive proteins include not only enzymes in the serine hydrolase family, but also proteins that have no active site serine. The recognition of a new OP-binding motif to tyrosine suggests new directions to search for mechanisms of long-term effects of OP exposure. Another application is in the search for biomarkers of organophosphorus agent exposure. Previous searches have been limited to serine hydrolases. Now proteins such as albumin and keratin can be considered.  相似文献   

17.
Leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent family 14 glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Galbeta1-3[GlcNAcbeta1-6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Galbeta1-3GalNAc-O-Ser/Thr), respectively. Reported here are the x-ray crystal structures of murine C2GnT-L in the absence and presence of the acceptor substrate Galbeta1-3GalNAc at 2.0 and 2.7A resolution, respectively. C2GnT-L was found to possess the GT-A fold; however, it lacks the characteristic metal ion binding DXD motif. The Galbeta1-3GalNAc complex defines the determinants of acceptor substrate binding and shows that Glu-320 corresponds to the structurally conserved catalytic base found in other inverting GT-A fold glycosyltransferases. Comparison of the C2GnT-L structure with that of other GT-A fold glycosyltransferases further suggests that Arg-378 and Lys-401 serve to electrostatically stabilize the nucleoside diphosphate leaving group, a role normally played by metal ion in GT-A structures. The use of basic amino acid side chains in this way is strikingly similar to that seen in a number of metal ion-independent GT-B fold glycosyltransferases and suggests a convergence of catalytic mechanism shared by both GT-A and GT-B fold glycosyltransferases.  相似文献   

18.
An expression vector, pIN-GT, encoding the soluble form of beta 1,4-galactosyltransferase (GT) has been constructed from human GT cDNAs and the pIN-III-ompA2 expression vector. Escherichia coli strain SB221 harboring the pIN-GT plasmid produces and secretes a fusion protein consisting of the ompA signal and GT. The expression of GT was detected by assaying enzymatic activity as well as by Western blotting using anti-GT antibodies. The recombinant GT was purified to homogeneity by N-acetylglucosamine-Sepharose affinity chromatography. The NH2-terminal peptide sequence of purified GT confirmed the cleavage site of the fusion protein by bacterial signal peptidase. This expression system was utilized to produce mutant forms of GT in order to identify specific amino acids involved in substrate binding sites. Photoaffinity labeling of GT with UDP-galactose analog, 4-azido-2-nitrophenyluridylylpyrophosphate (ANUP), followed by cyanogen bromide (CNBr) cleavage revealed that ANUP bound to a fragment of GT composed of amino acid residues from Asp276 to Met328. Within this peptide segment, Tyr284, Tyr287, Tyr309, Trp310 and Trp312 were separately substituted into Gly and Tyr287 into Phe by site-directed mutagenesis. Enzymatic activity assay showed drastic reduction of the activity in all of the mutants except that Tyr287----Phe remained as active as wild-type GT. Kinetic studies of the mutated GT showed that Tyr284, Tyr309 and Trp310 are critically involved in the N-acetyglucosamine binding and Tyr309 is involved in UDP-galactose binding as well.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Kre2p/Mnt1p is a Golgi alpha1,2-mannosyltransferase involved in the biosynthesis of Saccharomyces cerevisiae cell wall glycoproteins. The protein belongs to glycosyltransferase family 15, a member of which has been implicated in virulence of Candida albicans. We present the 2.0 A crystal structures of the catalytic domain of Kre2p/Mnt1p and its binary and ternary complexes with GDP/Mn(2+) and GDP/Mn(2+)/acceptor methyl-alpha-mannoside. The protein has a mixed alpha/beta fold similar to the glycosyltransferase-A (GT-A) fold. Although the GDP-mannose donor was used in the crystallization experiments and the GDP moiety is bound tightly to the active site, the mannose is not visible in the electron density. The manganese is coordinated by a modified DXD motif (EPD), with only the first glutamate involved in a direct interaction. The position of the donor mannose was modeled using the binary and ternary complexes of other GT-A enzymes. The C1" of the modeled donor mannose is within hydrogen-bonding distance of both the hydroxyl of Tyr(220) and the O2 of the acceptor mannose. The O2 of the acceptor mannose is also within hydrogen bond distance of the hydroxyl of Tyr(220). The structures, modeling, site-directed mutagenesis, and kinetic analysis suggest two possible catalytic mechanisms. Either a double-displacement mechanism with the hydroxyl of Tyr(220) as the potential nucleophile or alternatively, an S(N)i-like mechanism with Tyr(220) positioning the substrates for catalysis. The importance of Tyr(220) in both mechanisms is highlighted by a 3000-fold reduction in k(cat) in the Y220F mutant.  相似文献   

20.
The human pathogen Mycoplasma pneumoniae has a very small genome but with many yet not identified gene functions, e.g. for membrane lipid biosynthesis. Extensive radioactive labelling in vivo and enzyme assays in vitro revealed a substantial capacity for membrane glycolipid biosynthesis, yielding three glycolipids, five phosphoglycolipids, in addition to six phospholipids. Most glycolipids were synthesized in a cell protein/lipid-detergent extract in vitro; galactose was incorporated into all species, whereas glucose only into a few. One (MPN483) of the three predicted glycosyltransferases (GTs; all essential) was both processive and promiscuous, synthesizing most of the identified glycolipids. These enzymes are of a GT-A fold, similar to an established structure, and belong to CAZy GT-family 2. The cloned MPN483 could use both diacylglycerol (DAG) and human ceramide acceptor substrates, and in particular UDP-galactose but also UDP-glucose as donors, making mono-, di- and trihexose variants. MPN483 output and processitivity was strongly influenced by the local lipid environment of anionic lipids. The structure of a major beta1,6GlcbetaGalDAG species was determined by NMR spectroscopy. This, as well as other purified M. pneumoniae glycolipid species, is important antigens in early infections, as revealed from ELISA screens with patient IgM sera, highlighting new aspects of glycolipid function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号