首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Hilar cholangiocarcinoma (HCCA) is an invasive hepatic malignancy that is difficult to biopsy; therefore, novel markers of HCCA prognosis are needed. Here, the level of canonical Wnt activation in patients with HCCA, intrahepatic cholangiocarcinoma (IHCC), and congenital choledochal cysts (CCC) was compared to understand the role of Wnt signaling in HCCA. Pathology specimens from HCCA (n=129), IHCC (n=31), and CCC (n=45) patients were used to construct tissue microarrays. Wnt2, Wnt3, β-catenin, TCF4, c-Myc, and cyclin D1 were detected by immunohistochemistry. Parallel correlation analysis was used to analyze differences in protein levels between the HCCA, IHCC, and CCC groups. Univariate and multivariate analyses were used to determine independent predictors of successful resection and prognosis in the HCCA group. The protein levels of Wnt2, β-catenin, TCF4, c-Myc, and cyclin D1 were significantly higher in HCCA compared to IHHC or CCC. Wnt signaling activation (Wnt2+, Wnt3+, nuclear β-catenin+, nuclear TCF4+) was significantly greater in HCCA tissues than CCC tissues. Univariable analyses indicated that expression of cyclin D1 as well as Wnt signaling activation, and partial Wnt activation (Wnt2+ or Wnt3+ and nuclear β-catenin+ or nuclear TCF4+) predicted successful resection, but only cyclin D1 expression remained significant in multivariable analyses. Only partial Wnt activation was an independent predictor of survival time. Proteins in the canonical Wnt signaling pathway were present at higher levels in HCCA and correlated with tumor resecility and patient prognosis. These results suggest that Wnt pathway analysis may be a useful marker for clinical outcome in HCCA.Key words: Hilar cholangiocarcinoma, Wnt signaling pathway, tissue microarray, β-catenin, c-Myc, cyclin D1  相似文献   

16.
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.  相似文献   

17.
18.
Upregulation of transmembrane protein 97 (TMEM97) has been associated with progression and poor outcome in multiple human cancers, including breast cancer. Recent studies suggest that TMEM97 may be involved in the activation of the Wnt/β-catenin pathway. However, the molecular mechanism of TMEM97 action on Wnt/β-catenin signaling is completely unclear. In the current study, TMEM97 was identified as an LRP6-interacting protein. TMEM97 could interact with LRP6 intracellular domain and enhance LRP6-mediated Wnt signaling in a CK1δ/ε-dependent manner. The binding of TMEM97 to LRP6 facilitated the recruitment of CK1δ/ε to LRP6 complex, resulting in LRP6 phosphorylation at Ser 1490 and the stabilization of β-catenin. In breast cancer cells, knockout of TMEM97 attenuated the Wnt/β-catenin signaling cascade via regulating LRP6 phosphorylation, leading to a decrease in the expression of Wnt target genes AXIN2, LEF1, and survivin. TMEM97 deficiency also suppressed cell viability, proliferation, colony formation, migration, invasion, and stemness properties in breast cancer cells. Importantly, TMEM97 knockout suppressed tumor growth through downregulating the Wnt/β-catenin signaling pathway in a breast cancer xenograft model. Taken together, our results revealed that TMEM97 is a positive modulator of canonical Wnt signaling. TMEM97-mediated Wnt signaling is implicated in the tumorigenesis of breast cancer, and its targeted inhibition may be a promising therapeutic strategy for breast cancer.Subject terms: Protein-protein interaction networks, Breast cancer  相似文献   

19.
20.

Background

Wnt/β-catenin signaling is an important regulator of differentiation and morphogenesis that can also control stem cell fates. Our group has developed an efficient protocol to generate cardiomyocytes from human embryonic stem (ES) cells via induction with activin A and BMP4.

Methodology/Principal Findings

We tested the hypothesis that Wnt/β-catenin signals control both early mesoderm induction and later cardiac differentiation in this system. Addition of exogenous Wnt3a at the time of induction enhanced cardiac differentiation, while early inhibition of endogenous Wnt/β-catenin signaling with Dkk1 inhibited cardiac differentiation, as indicated by quantitative RT-PCR analysis for β-myosin heavy chain-MHC), cardiac troponin T (cTnT), Nkx2.5, and flow cytometry analysis for sarcomeric myosin heavy chain (sMHC). Conversely, late antagonism of endogenously produced Wnts enhanced cardiogenesis, indicating a biphasic role for the pathway in human cardiac differentiation. Using quantitative RT-PCR, we show that canonical Wnt ligand expression is induced by activin A/BMP4 treatment, and the extent of early Wnt ligand expression can predict the subsequent efficiency of cardiogenesis. Measurement of Brachyury expression showed that addition of Wnt3a enhances mesoderm induction, whereas blockade of endogenously produced Wnts markedly inhibits mesoderm formation. Finally, we show that Wnt/β-catenin signaling is required for Smad1 activation by BMP4.

Conclusions/Significance

Our data indicate that induction of mesoderm and subsequent cardiac differentiation from human ES cells requires fine-tuned cross talk between activin A/BMP4 and Wnt/β-catenin pathways. Controlling these pathways permits efficient generation of cardiomyocytes for basic studies or cardiac repair applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号