首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the performance of aerobic Cr(VI)-reducing bacteria isolated from Cr(VI)-contaminated soil in pure and mixed cultures of five isolated strains. The mixed culture had increased reduction rates compared to individual cultures. Cr(VI) reduction was observed in sterile soil inoculated with Pseudomonas fluorescens and in non-sterile soil with and without inoculation with P. fluorescens at initial pore water concentrations up to 1,600 mg Cr(VI)/L, whereas in culture the maximum inhibitory concentration was 500 mg Cr(VI)/L. Linear rates of Cr(VI) reduction in non-sterile soil amended with peptone were ~5 to 8 times higher than those observed in the mixed culture. Inoculation of non-sterile soil with P. fluorescens did not further enhance Cr(VI) reduction rates. Our results indicate that evaluation of Cr(VI) reduction capacity in Cr(VI)-contaminated soil for in-situ bioremediation purposes should not be done solely in pure culture. Although the latter may be used initially to assess the effects of process parameters (e.g., pH, temperature), the rate and extent of Cr(VI) reduction should be determined in soil for bioremediation design purposes.  相似文献   

2.
In this report, possible utilization of a chromium-reducing bacterial strain Cellulosimicrobium cellulans KUCr3 for effective bioremediation of hexavalent chromium (Cr(VI))-containing wastewater fed with tannery effluents has been discussed. Cr(VI) reduction and bioremediation were found to be related to the growth supportive conditions in wastewater, which is indicative of cell mass dependency for Cr(VI) reduction. Cr(VI) reduction was determined by measuring the residual Cr(VI) in the cell-free supernatant using colorimetric reagent S-diphenylcarbazide. Nutrient availability and initial cell density showed a positive relation with Cr(VI) reduction, but it was inhibited with increasing concentration of Cr(VI) under laboratory condition. The optimum temperature and pH for effective Cr(VI) reduction in wastewater were found to be 35°C and 7.5, respectively. The viable cells of KUCr3 were successfully entrapped in an agarose bead that was used in continuous column and batch culture for assaying Cr(VI) reduction. In packed bed column (continuous flow) experiment, approximately 25% Cr(VI) reduction occurred after 144 h. Cr(VI) was almost 75% and 52% reduced at concentrations of 0.5 mM and 2 mM Cr(VI), respectively, after 96 h in batch culture experiment in peptone-yeast extract-glucose medium, whereas it could decrease the Cr(VI) content up to 40% from the water containing tannery waste. This study suggests that KUCr3 could be used as a candidate for possible environmental clean up operation with respect to Cr(VI) bioremediation.  相似文献   

3.
Aims: To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Methods and Results: Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T‐RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Conclusions: Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Significance and Impact of Study: Bacterial communities from chromium‐contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied.  相似文献   

4.
The reduction of Cr(VI) to Cr(III) is a potential detoxification process. In this study, seven Pseudomonas spp. were isolated and screened for chromium reduction. Isolate P4 was able to grow in the presence of 8000 μM chromium, in spite of the fact that the isolate was not previously exposed to any metal stress. Isolate P4 was identified as Pseudomonas aeruginosa strain SRD chr3 by 16S rDNA sequence analysis. Shake flask study showed 78% reduction of 1000 μM Cr(VI) after 6 h of incubation. The optimum pH for chromium reduction by the isolate was between 6 and 8. Isolate Pseudomonas aeruginosa gave 50–80% Cr(VI) reduction even in the presence of 100 mM of Cu, Mn, Ni, and Zn and 300–800 mM NaCl in 24 h, compared with the absence of any of these metals. In a 5-L reactor, the isolate showed 84.85% reduction of Cr(VI) even at the 70th cycle, with a hydraulic retention time of 24 h from the effluent of a hard chrome plating (electroplating) industry, which contained 2100 mg L?1 hexavalent chromium. The chromate-amended soil inoculated with the isolate showed 2800 μM chromium removal from 4000 μM Cr(VI) kg?1 of soil, which corresponds to 70% removal. The isolate had the ability to degrade stimulated waste containing 10,000 μM chromium.  相似文献   

5.
Two bacterial consortia were developed by continuous enrichment of microbial population of tannery and pulp and paper mill effluent contained Serratia mercascens, Pseudomonas fluorescence, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter sp. identified by 16S rDNA method. The consortia evaluated for removal of chromate [(Cr(VI)] in shake flask culture indicated pulp and paper mill consortium had more potential for removal of chromate. Acinetobacter sp. isolated from pulp and paper mill consortium removed higher amount of chromate [Cr(VI)] under aerobic conditions. Parameters optimized in different carbon, nitrogen sources, and pH, indicated maximum removal of chromate in sodium acetate (0.2%), sodium nitrate (0.1%) and pH 7 by Acinetobacter sp. Bacteria was applied in 2-l bioreactor significantly removed chromate after 3 days. The results of the study indicated removal of more than 75% chromium by Acinetobacter sp. determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometer after 7 days. Study of microbial [Cr(VI)] removal and identification of reduction intermediates has been hindered by the lack of analytical techniques. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) which indicated bioaccumulation of chromium in the bacterial cells.  相似文献   

6.
Pseudomonas fluorescens LB300 is a chromateresistant strain isolated from chromium-contaminated river sediment. Chromate resistance is conferred by the plasmid pLHB1. Strain LB300 grew in minimal salts medium with as much as 1000 g of K2CrO4 ml–1, and actively reduced chromate to Cr(III) while growing aerobically on a variety of substrates. Chromate was also reduced during anaerobic growth on acetate, the chromate serving as terminal electron acceptor. P. fluorescens LB303, a plasmidless, chromatesensitive variant of P. fluorescens LB300, did not grow in minimal salts medium with more than 10 g of K2CrO4 ml–1. However, resting cells of strain LB303 grown without chromate reduced chromate as well as strain LB300 cells grown under the same conditions. Furthermore, resting cells of chromate-sensitive Pseudomonas putida strain AC10, also catalyzed chromate reduction. Evidently chromate resistance and chromate reduction in these organisms are unrelated. Comparison of the rates of chromate reduction by chromate grown cells and cells grown without chromate indicated that the chromate reductase activity is constitutive. Studies with cell-free extracts show that the reductase is membrane-associated and can mediate the transfer of electrons from NADH to chromate.  相似文献   

7.
Abstract

Experiments were conducted to examine the uptake and translocation of root-absorbed trivalent and hexavalent state of chromium in the onion plant (Allium cepa) grown in soil and sand culture. Chromium content in plant tissues increased with increasing amount of added chromium. Distribution of chromium in the plant in general, found to be in the order: root>>bulb>shoot. Higher uptake in the plants grown in sand from both the sources of chromium was observed as compared with the corresponding values for soil culture. Morphological and growth effects of the treatments of different oxidation state of chromium indicated that higher doses of Cr(VI) [150 and 300 μg mL?1] were more toxic to the onion plants compared to equivalent doses of Cr(III).  相似文献   

8.
The capacity of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans to reduce different concentrations of hexavalent chromium in shake flask cultures has been investigated. A. ferrooxidans reduces 100% of chromium (VI) at concentrations of 1, 2.5 and 5 ppm, but in the presence of 10 ppm only 42.9% of chromium (VI) was reduced after 11 days of incubation. A. thiooxidans showed a lower capacity to reduce this ion and total reduction of chromium (VI) was only obtained for concentrations of 1 and 2.5 ppm, whereas 64.7% and 30.5% was reached for 5 and 10 ppm, respectively, after 11 days. A continuous flow mode system was subsequently investigated, in which A. thiooxidans was immobilized on elemental sulphur and the acidic medium obtained was employed to solubilize chromium (III) and to reduce chromium (VI) present in a real electroplating waste [30% of chromium (III) and 0.1% of chromium (VI)]. The system enabled the reduction of 92.7% of hexavalent chromium and represents a promising way to treat this type of waste in the industry.  相似文献   

9.
A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240T (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L−1, which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 °C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L−1 h−1, respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal.  相似文献   

10.
Heavy-metal chromium [Cr(VI)] is a ubiquitous environmental pollutant. Comparing with chemical reduction, microbiological reduction is considered to be a friendly and cheaper way to decrease the damage caused by chromate. A bacterial strain, CR-07, which is resistant to and capable of reducing chromate was isolated from a mud sample of iron ore and identified as a Microbacterium sp. The bacterium had a high degree of tolerance to chromate, and could grow in LB medium containing 4.08 mM of K2Cr2O7. It also had a degree of resistance to other heavy metals, e.g. Cd2+, Pb2+, Zn2+, Cu2+, Co2+, Hg2+ and Ag+. The bacterium could remove 1.02 mM of Cr(VI) from LB medium within 36 h of incubation. Chromate removal was achieved in the supernatant from the bacterial cultures, and corresponded to chromate reduction. The activity of chromate reduction by the bacterium was not related to enzymes or reducing sugars, while fluorometric assay suggested that glutathione, a chromate-reducing substance which was produced by the bacterium, was one of the factors that contributed to the reduction of Cr(VI).  相似文献   

11.
Enrichment mixed cultures tolerating relatively high concentrations of chromium and salt ions were isolated and their bioaccumulation properties improved by adaptation. Mixed cultures were enriched in Nutrient Broth media containing 25-300 mg l(-1) Cr(VI) and 0%, 2%, 4%, 6% (w/v) NaCl. Bioaccumulation of Cr(VI) was studied in a batch system as a function of initial pH (7, 8 and 9), Cr(VI) and NaCl concentrations. Increasing NaCl and Cr(VI) concentrations led to significant decreases in percentage uptake and dried weight of mixed cultures but increased maximum specific chromium uptake. The maximum specific chromium uptake value at pH 8 was 58.9 mg g(-1) for 316.1 mg l(-1) Cr(VI) in the absence of NaCl, while at pH 9 it was 130.1 mg g(-1) in media including 194.5 mg l(-1) Cr(VI) and 2% NaCl concentrations. At 4% NaCl, the maximum Cr(VI) uptake of 127.0 mg g(-1) for 221.1 mg l(-1) Cr(VI) occurred at pH 9, while at 6% NaCl the maximum Cr(VI) uptake of 114.9 mg g(-1) for 278.1 mg l(-1) Cr(VI) was found at pH 7.  相似文献   

12.
The removal of hexavalent chromium from aqueous solution was studied in batch experiments using dead biomass of three different species of marine Aspergillus after alkali treatment. All the cultures exhibited potential to remove Cr(VI), out of which, Aspergillus niger was found to be the most promising one. This culture was further studied employing variation in pH, temperature, metal ion concentration and biomass concentration with a view to understand the effect of these parameters on biosorption of Cr(VI). Higher biosorption percentage was evidenced at lower initial concentration of Cr(VI) ion, while the sorption capacity of the biomass increased with rising concentration of ions. Biomass as low as 0.8 g l−1 could biosorb 95% Cr(VI) ions within 2,880 min from an aqueous solution of 400 mg l−1 Cr(VI) concentration. Optimum pH and temperature for Cr(VI) biosorption were 2.0 and 50°C, respectively. Kinetic studies based on pseudo second order models like Sobkowsk and Czerwinski, Ritchie, Blanchard and Ho and Mckay rate expressions have also been carried out. The nature of the possible cell–metal ion interactions was evaluated by FTIR, SEM and EDAX analysis.  相似文献   

13.
Reduction of hexavalent chromium was studied in three bench-scale continuous stirred tank reactors. The inoculum was a culture of Pseudomonas sp., capable of giving 83% to 87% chromate reduction in 72-h batch assays with 60 mg Cr(VI) L(-1) in synthetic medium. The continuous culture studies were conducted for about 100 days using synthetic feed containing different levels of chromate (5 to 124 mg L(-1)) at 28 degrees to 30 degrees C and pH 6.8. The feed rate was varied over the range 0.5 to 1 L d(-1) to obtain hydraulic retention time of 36 to 72 h. Chromate reduction efficiency was 81% to 91% and 100% for influent Cr(VI) concentrations of 15 to 124 and 5 mg L(-1), respectively, with a hydraulic retention time of 72 h. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
The bioremediation of chromate and tannic acid in synthetic tannery wastewater was studied in a batch culture system using free and immobilized spores and mycelia of A. niger and A. parasiticus. Significant (p< .001) decreases in total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), Cr(VI), and tannic acid concentrations were observed in cultures of both fungi after 96 h of growth. The A. niger culture medium had significantly lower TDS (p< .001), BOD, and tannic acid concentration (p< .05) compared to that of A. parasiticus. Immobilization of both spores and mycelia of the two fungi on Ca-alginate resulted in significantly (p< .05–.001) lower residual Cr(VI) concentrations within 24 h hydraulic retention time (HRT). Chromate removal increased significantly (p< .05) as the number of beads of immobilized spore/mycelia increased from 10 to 100; the increase in Cr(VI) removal ranging from 40.3% to 47.9% with 10 beads and 97.4% to 98.6% with 100 beads. Similarly, tannic acid removal by spores and mycelia of the fungi was significantly (p< .05) enhanced by immobilization. Repeated use of the alginate entrapped spores/mycelia of both fungi up to 3 cycles of 72-h HRT showed no significant change in their ability to carryout Cr(VI) removal.  相似文献   

15.
Yeast Pichia guilliermondii strains L3 and L2, exposed to UV mutagenesis, produced over 80 mutants capable of growing on media containing 1.5 mM bichromate (Cr(VI)). The mutations making the strains resistant to Cr(VI) were dominant or semidominant. The mutants varied in Cr(VI) resistance, the degree of chromium accumulation in the cells (from 0.1 to 11.6 mg/g dry cells), and the degree of Cr(VI) reduction (from 50% to complete disappearance of bichromate from the culture liquid). Chromium accumulation in mutant cells depended on medium composition, Cr(VI) concentration, and the time of exposure to Cr(VI). The resistance to bichromate can be caused by various reasons: decrease in chromium absorption, altered ability to reduce Cr(VI), or damage of sulfate transport mechanisms.Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 2, 2005, pp. 204–209.Original Russian Text Copyright © 2005 by Babyak, Ksheminskaya, Gonchar, Yanovich, Fedorovich.  相似文献   

16.
Chromium(VI) resistant Chinese hamster ovary (CHO) cell lines were established in this study by exposing parental CHO-K1 cells to sequential increases in CrO3 concentration. The final concentration of CrO3 used for selection was 7 μM for Cr7 and 16 μM for Cr16 cells. Cr16-1 was a subclone derived from Cr16 cells. Next, these resistant cells were cultured in media without CrO3 for more than 6 months. The resistance of these cells to CrO3 was determined by colony-forming ability following a 24-h treatment. The LD50 of CrO3 for chromium(VI) resistant cells was at least 25-fold higher than that of the parental cells. The cellular growth rate, chromosome number, and the hprt mutation frequency of these chromium(VI) resistant cells were quite similar to their parental cells. The glutathione level, glutathione S-transferase, catalase activity, and metallothionine mRNA level in Cr7 and Cr16-1 cells were not significantly different from their parental cells. Furthermore, Cr16-1 cells were as sensitive as CHO-K1 cells to free-radical generating agents, including hydrogen peroxide, nickel chloride, and methanesulfonate methyl ester, and emetine, i.e., a protein synthesis inhibitor. The uptake of chromium(VI) and the remaining amount of this metal in these resistant and the parental cell lines were assayed by atomic absorption spectrophotometry. Experimental results indicated that a vastly smaller amount of CrO3 entered the resistant cell lines than their parental cells did. A comparison was made of the sulfate uptake abilities of CHO-K1 and chromium(VI) resistant cell lines. These results revealed that the uptake of sulfate anion was substantially reduced in Cr7 and Cr16-1 cells. Extracellular chloride reduced sulfate uptake in CHO-K1 but not in Cr16-1 cells. Therefore, the major causative for chromium(VI) resistance in these resistant cells could possibly be due to the defects in SO42-/C1? transport system for uptake chromium(VI).  相似文献   

17.
The kinetics of chromium(VI) reduction by Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) was studied under both pure and mixed cultures. Initially, the study of kinetics was performed in pure culture. It was observed that the growth of the two bacteria was both inhibited in the presence of chromium(VI). The maximum specific growth rate (μ m ) of P. aeruginosa decreased from 2.3942 h?1 (without Cr(VI)) to 1.8551 h?1 (with Cr(VI)). Under the mixed culture, the growth of E. coli was inhibited by P. aeruginosa. The maximum specific growth rate (μ m ) of E. coli decreased form 0.871 h?1 (in pure culture) to 0.153 h?1 (in mixed culture). When the concentration of each bacterium was 4.5 × 108 cells ml?1, the half-velocity reduction rate constant (K C) and the maximum specific reduction rate constant (v max) of chromium(VI) were 80.05 mg chromium(VI) l?1 and 3.674 mg chromium(VI) cells?1 h?1, respectively. The results showed that the simulation appeared in good agreement with the experimental data, supporting the series of mathematical models represented the bacteria growth and chromium(VI) reduction in both pure and mixed cultures usefully.  相似文献   

18.
19.
The chromate-reducing ability of Pseudomonas aeruginosa A2Chr was compared in batch culture, with cells entrapped in a dialysis sac, and with cells immobilized in an agarose-alginate film in conjunction with a rotating biological contactor. In all three systems, the maximum Cr(VI) reduction occurred at 10 mg Cr(VI)/l. Whereas at 50 mg Cr(VI)/l concentration, only 16% of the total Cr(VI) was reduced, five spikings with 10 mg chromate/l at 2-h intervals led to 96% reduction of the total input of 50 mg Cr(VI)/l. Thus maximum Cr(VI) reduction was achieved by avoiding Cr(VI) toxicity to the cells by respiking with lower Cr(VI) concentrations. At 10 mg Cr(VI)/l, the pattern of chromate reduction in dialysis-entrapped cells was almost similar to that of batch culture and 86% of the bacterially reduced chromium was retained inside the dialysis sac. In electroplating effluent containing 100 mg Cr(VI)/l, however, the amount of Cr(VI) reduced by the cells immobilized in agarose-alginate biofilm was twice and thrice the amount reduced by batch culture and cells entrapped in a dialysis sac, respectively.  相似文献   

20.
The kidney has been regarded as a critical organ of toxicity induced by acute exposure to hexavalent chromium [Cr(VI)] compounds. Reactive intermediates and free radicals generated during reduction process might be responsible for Cr(VI) toxicity. In this study, the effects of pretreatment or posttreatment of taurine on Cr(VI)-induced oxidative stress and chromium accumulation in kidney tissue of Swiss albino mice were investigated. Single intraperitoneal (ip) potassium dichromate treatment (20 mgCr/kg), as Cr(VI) compound, significantly elevated the level of lipid peroxidation as compared with the control group (p<0.05). This was accompanied by significant decreases in nonprotein sulfhydryls (NPSH) level, superoxide dismutase (SOD), and catalase (CAT) enzyme activities as well as a significant chromium accumulation (p<0.05). Taurine administration (1 g/kg, ip) before or after Cr(VI) exposure resulted in reduction of lipid peroxidation levels and improvement in SOD enzyme activity (p<0.05). On the other hand, administration of the antioxidant before Cr(VI) exposure restored the NPSH level and CAT enzyme activity and also reduced tissue chromium levels (p<0.05), whereas postreatment had only slight effects on these parameters. In view of the results, taurine seems to exert some beneficial effects against Cr(VI)-induced oxidative stress and chromium accumulation in mice kidney tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号