首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (<1-fold), moderate differences in pyrethroid bioassays (1.5 to 3-fold), and dramatic differences in neonicotinoid bioassays (3.4 to 33.3-fold). Synergism bioassays with piperonyl butoxide, amitraz, and coumaphos showed increased phenothrin sensitivity in all stocks and also demonstrated further physiological differences between stocks. In addition, as bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature.  相似文献   

2.
Numerous studies have investigated using oxalic acid (OA) to control Varroa mites in honey bee colonies. In contrast, techniques for treating package bees with OA have not been investigated. The goal of this study was to develop a protocol for using OA to reduce mite infestation in package bees. We made 97 mini packages of Varroa-infested adult bees. Each package contained 1,613 ± 18 bees and 92 ± 3 mites, and represented an experimental unit. We prepared a 2.8% solution of OA by mixing 35 g OA with 1 l of sugar water (sugar:water = 1:1; w:w). Eight treatments were assigned to the packages based on previous laboratory bioassays that characterized the acute contact toxicity of OA to mites and bees. We administered the treatments by spraying the OA solution directly on the bees through the mesh screen cage using a pressurized air brush and quantified mite and bee mortality over a 10-day period. Our results support applying an optimum volume of 3.0 ml of a 2.8% OA solution per 1,000 bees to packages for effective mite control with minimal adult bee mortality. The outcome of our research provides beekeepers and package bee shippers guidance for using OA to reduce mite populations in package bees.  相似文献   

3.
The potential for Metarhizium anisopliae (Metschinkoff) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in honey bee colonies was evaluated in field trials against the miticide, tau-fluvalinate (Apistan). Peak mortality of V. destructor occurred 3-4 d after the conidia were applied; however, the mites were still infected 42 d posttreatments. Two application methods were tested: dusts and strips coated with the fungal conidia, and both methods resulted in successful control of mite populations. The fungal treatments were as effective as the Apistan, at the end of the 42-d period of the experiment. The data suggested that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. M. anisopliae was harmless to the honey bees (adult bees, or brood) and colony development was not affected. Mite mortality was highly correlated with mycosis in dead mites collected from sticky traps, indicating that the fungus was infecting and killing the mites. Because workers and drones drift between hives, the adult bees were able to spread the fungus between honey bee colonies in the apiary, a situation that could be beneficial to beekeepers.  相似文献   

4.
Honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies infested by parasitic mites are more prone to suffer from a variety of stresses, including cold temperature. We evaluated the overwintering ability of candidate breeder lines of Russian honey bees, most of which are resistant to both Varroa destructor Anderson & Trueman and Acarapis woodi (Rennie), during 1999-2001. Our results indicate that Russian honey bee colonies (headed by original and supersedure queens) can successfully overwinter in the north, even during adverse weather conditions, owing to their frugal use of food stores and their resistance to tracheal mite infestations. In contrast, colonies of Italian honey bees consumed more food, had more mites, and lost more adult bees than Russian honey bees, even during unusually mild winter conditions.  相似文献   

5.
Two types of honey bees, Apis mellifera L. (Hymenoptera: Apidae), bred for resistance to Varroa destructor Anderson & Trueman were evaluated for performance when used in migratory crop pollination. Colonies of Russian honey bees (RHB) and outcrossed bees with Varroa-sensitive hygiene (VSH) were managed without miticide treatments and compared with colonies of Italian honey bees that served as controls. Control colonies were managed as groups which either were treated twice each year against V. destructor (CT) or kept untreated (CU). Totals of 240 and 247 colonies were established initially for trials in 2008 and 2009, respectively. RHB and VSH colonies generally had adult and brood populations similar to those of the standard CT group regarding pollination requirements. For pollination of almonds [Prunus dulcis (Mill.) D.A.Webb] in February, percentages of colonies meeting the required six or more frames of adult bees were 57% (VSH), 56% (CT), 39% (RHB), and 34% (CU). RHB are known to have small colonies in early spring, but this can be overcome with appropriate feeding. For later pollination requirements in May to July, 94-100% of colonies in the four groups met pollination size requirements for apples (Malus domestica Borkh.), cranberries (Vaccinium macrocarpon Aiton), and lowbush blueberries (Vaccinium angustifolium Aiton). Infestations with V. destructor usually were lowest in CT colonies and tended to be lower in VSH colonies than in RHB and CU colonies. This study demonstrates that bees with the VSH trait and pure RHB offer alternatives for beekeepers to use for commercial crop pollination while reducing reliance on miticides. The high frequency of queen loss (only approximately one fourth of original queens survived each year) suggests that frequent requeening is necessary to maintain desired genetics.  相似文献   

6.
Abstract. One way in which Apis mellifera honey bees resist Varroa destructor is by detection and elimination of nestmates. This study uses behavioural tests and electroanntennography to assess the role of chemostimuli in recognition by honey bees of this acarian ectoparasite. Behavioural tests using living or dead parasites involved observation of honey bee grooming activity (antennation) under controlled conditions in Petri dishes, and removal behaviour (uncapping and elimination of parasitized and unparasitized control brood cells) under natural conditions. Some bees from colonies with both small and large parasite populations showed aggressive behaviour (biting). No difference was observed according to whether the mite was dead or alive. Under natural conditions, bees uncapped more parasitized cells than control cells. Electroantennographic tests were performed to measure sensitivity to various Varroa extracts at three concentrations (10, 20 and 30 Varroa Equivalents). Only 30 Varroa Equivalent methanol extracts made from Varroa collected from brood cells elicited significantly greater antennal response than controls (pure solvent). All three methanol extracts elicited significantly greater antennal response than controls. No response was observed using Varroa extracts made with acetone or hexane. These findings suggest that polar products may act as chemostimuli for recognition of V. destructor by honey bees. Further study will be necessary to determine which polar products are involved in this recognition and assess grooming and removal behaviour using these products.  相似文献   

7.
Honey bees (Apis mellifera) productively infected with Deformed wing virus (DWV) through Varroa destructor (V. destructor) during pupal stages develop into adults showing wing and other morphological deformities. Here, we report for the first time the occurrence of bumble bees (Bombus terrestris, Bombus pascuorum) exhibiting wing deformities resembling those seen in clinically DWV-infected honey bees. Using specific RT-PCR protocols for the detection of DWV followed by sequencing of the PCR products we could demonstrate that the bumble bees were indeed infected with DWV. Since such deformed bumble bees are not viable DWV infection may pose a serious threat to bumble bee populations.  相似文献   

8.
An apiary trial on the use of two acaricide formulations (gel-Apiguard and vermiculite and Api Life VAR) in the control of Varroa destructor (Anderson & Trueman) was conducted in summer 2001 in Sardinia (Italy). The main goals were 1) to determine their effectiveness against V. destructor, taking into account natural mite mortality in control hives; and simultaneously 2) to determine the persistence of both formulations and residues in honey and wax, by using a new extraction method. Both thymol formulations, after the treatments, reduced significantly the levels of mite infestations of adult bees and sealed brood, but their efficacy, expressed as percentage of mortality, was lower for both products (Api Life VAR 74.8 +/- 13.1 and 81.3 +/- 15.5, Apiguard 90.4 +/- 8.3 and 95.5 +/- 8.7 for sealed brood and adult bees, respectively) than the efficacy previously obtained with the same products in other experimental conditions. Moreover, a considerable colony-to-colony variability was recorded, and a significant negative effect of the thymol treatments on colony development was observed. During 2 wk of treatment, the bees removed nearly 95% of all the applied product (gel or vermiculite). Residues found in honey collected from the nest varied from 0.12 to 4.03 mg/kg for Api Life VAR and from 0.40 to 8.80 mg/kg for Apiguard. The residues were relatively higher in wax (Api Life VAR = 21.6 +/- 13.0; Apiguard = 147.7 +/- 188.9) than in honey, because thymol is a fat-soluble ingredient.  相似文献   

9.
Honey bees are exposed to a number of damaging pathogens and parasites. The most destructive among them, affecting mainly the brood, is Varroa destructor. A promising approach to prevent its spread is to breed for Varroa-tolerant honey bees. A trait that has been shown to provide significant resistance against the Varroa mite is hygienic behaviour, a behavioural response of honey bee workers to brood diseases in general. This study reports the development of a 44K SNP assay, specifically designed for the analysis of hygienic behaviour of individual worker bees (Apis mellifera carnica) directed against V. destructor. Initially, 70,000 SNPs chosen from a large set of SNPs published by the Honey Bee Genome Project were validated for their suitability in the analysis of the Varroa resistance trait 'uncapping of Varroa-infested brood'. This was achieved by genotyping of pooled DNA samples of trait bearers and two trait-negative controls using next-generation sequencing. Approximately 36,000 of these validated SNPs and another 8000 SNPs not validated in this study were selected for the construction of a SNP assay. This assay will be employed in following experiments to analyse individualized DNA samples in order to identify quantitative trait loci (QTL) involved in the control of the investigated trait and to evaluate and possibly confirm QTL found in other studies. However, this assay is not just suitable to study Varroa tolerance, it is as well applicable to analyse any other trait in honey bees. In addition, because of its high density, this assay provides access into genomic selection with respect to several traits considered in honey bee breeding. It will become publicly available via AROS Applied Biotechnology AS, Aarhus, Denmark, before the end of the year 2011.  相似文献   

10.
蜜蜂具有很高的生态价值和经济价值,对农业生产帮助巨大。然而,狄斯瓦螨Varroa destructor寄生给西方蜜蜂Apis mellifera蜂群造成重大损失,对蜜蜂健康构成严重威胁,因此,狄斯瓦螨的防治变得尤为紧要。虽然化学防治是防治狄斯瓦螨常用且有效措施,但仍存在许多缺点,如造成蜂产品污染、导致蜂螨产生抗药性等。另一方面,培育抗螨蜂种被证明是可持续的狄斯瓦螨防治方法。瓦螨敏感卫生行为(Varroa sensitive hygiene, VSH)是蜜蜂重要的抗螨性状之一。本文从狄斯瓦螨的生活周期、对蜜蜂的危害、蜜蜂抗螨行为、瓦螨敏感卫生行为调控和遗传育种等方面进行综述,为狄斯瓦螨防治和抗螨蜂种选育提供参考。  相似文献   

11.
Mites in the genus Varroa are obligate ectoparasites of honey bee populations worldwide. Recent evidence from morphological, geographical, and especially genetic variation has spurred an important revision of Varroa taxonomy. Specifically, mitochondrial DNA (mtDNA) evidence suggests that the main mite pest on western honey bees (Apis mellifera) is not Varroa jacobsoni, as first described, but a distinct species now named Varroa destructor. Genetic markers also have been used to support a taxonomic basis for regional differences in how Varroa mites impact honey bees. Recent morphometric and molecular studies confirmed the presence of the species V. destructor also in the apiaries of the Campania region of southern Italy. In the three-year period 2001-2003 a survey was conducted in 118 municipalities of the five provinces of the Campania region in order to add data to the limited epidemiological information available regarding Varroa destructor in this zone. The level of infestation by the mite was assessed on a total of 521 apiaries (241 apiaries were inspected on 2001, 154 on 2002, and 126 on 2003). In each apiary, 100 comb cells were examined and in each province the level of infestation was calculated using the following formula: (number of Varroa specimens/number of open comb cells) x 100. In order to display the level of infestation, Geographical Information Systems were used in order to draw parasitological maps.  相似文献   

12.
Honey bee (Apis mellifera L.) colonies bred for hygienic behavior were tested in a large field trial to determine if they were able to resist the parasitic mite Varroa destructor better than unselected colonies of"Starline" stock. Colonies bred for hygienic behavior are able to detect, uncap, and remove experimentally infested brood from the nest, although the extent to which the behavior actually reduces the overall mite-load in untreated, naturally infested colonies needed further verification. The results indicate that hygienic colonies with queens mated naturally to unselected drones had significantly fewer mites on adult bees and within worker brood cells than Starline colonies for up to 1 yr without treatment in a commercial, migratory beekeeping operation. Hygienic colonies actively defended themselves against the mites when mite levels were relatively low. At high mite infestations (>15% of worker brood and of adult bees), the majority of hygienic colonies required treatment to prevent collapse. Overall, the hygienic colonies had similar adult populations and brood areas, produced as much honey, and had less brood disease than the Starline colonies. Thus, honey bees bred for hygienic behavior performed as well if not better than other commercial lines of bees and maintained lower mite loads for up to one year without treatment.  相似文献   

13.
This study demonstrated (1) that honey bees, Apis mellifera L, can express a high level of resistance to Varroa destructor Anderson & Trueman when bees were selected for only one resistant trait (suppression of mite reproduction); and (2) that a significant level of mite-resistance was retained when these queens were free-mated with unselected drones. The test compared the growth of mite populations in colonies of bees that each received one of the following queens: (1) resistant--queens selected for suppression of mite reproduction and artificially inseminated in Baton Rouge with drones from similarly selected stocks; (2) resistant x control--resistant queens, as above, produced and free-mated to unselected drones by one of four commercial queen producers; and (3) control--commercial queens chosen by the same four queen producers and free-mated as above. All colonies started the test with approximately 0.9 kg of bees that were naturally infested with approximately 650 mites. Colonies with resistant x control queens ended the 115-d test period with significantly fewer mites than did colonies with control queens. This suggests that beekeepers can derive immediate benefit from mite-resistant queens that have been free-mated to unselected drones. Moreover, the production and distribution of these free-mated queens from many commercial sources may be an effective way to insert beneficial genes into our commercial population of honey bees without losing the genetic diversity and the useful beekeeping characteristics of this population.  相似文献   

14.
This study examined the use of honey bees, Apis mellifera L., to supplement bumble bee, Bombus spp., pollination in commercial tomato, Lycopersicon esculentum Miller, greenhouses in Western Canada. Honey bee colonies were brought into greenhouses already containing bumble bees and left for 1 wk to acclimatize. The following week, counts of honey and bumble bees foraging and flying throughout the greenhouse were conducted three times per day, and tomato flowers open during honey bee pollination were marked for later fruit harvest. The same counts and flower-marking also were done before and after the presence of honey bees to determine the background level of bumble bee pollination. Overall, tomato size was not affected by the addition of honey bees, but in one greenhouse significantly larger tomatoes were produced with honey bees present compared with bumble bees alone. In that greenhouse, honey bee foraging was greater than in the other greenhouses. Honey bees generally foraged within 100 m of their colony in all greenhouses. Our study invites further research to examine the use of honey bees with reduced levels of bumble bees, or as sole pollinators of greenhouse tomatoes. We also make specific recommendations for how honey bees can best be managed in greenhouses.  相似文献   

15.
Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.  相似文献   

16.
周婷  姚军  王强  王风忠 《昆虫学报》2004,47(4):530-533
微孢子虫Nosema apis和狄斯瓦螨微孢子虫Nosema apis和狄斯瓦螨 Varroa destructor (Acari: Varroidae)均为危害意蜂Apis mellifera的重要寄生虫,该文对其危害后意蜂血淋巴蛋白质含量的变化进行了研究。用考马斯亮蓝法测定了意蜂受侵染后血淋巴的蛋白质总量,并用高压超薄层等电点聚焦法进行血淋巴蛋白质分类。结果显示,病蜂血淋巴蛋白质总量,在人工感染微孢子虫后1~10天呈微孢子虫Nosema apis和狄斯瓦螨 Varroa destructor (Acari: Varroidae)均为危害意蜂Apis mellifera的重要寄生虫,该文对其危害后意蜂血淋巴蛋白质含量的变化进行了研究。用考马斯亮蓝法测定了意蜂受侵染后血淋巴的蛋白质总量,并用高压超薄层等电点聚焦法进行血淋巴蛋白质分类。结果显示,病蜂血淋巴蛋白质总量,在人工感染微孢子虫后1~10天呈上升趋势,然后逐渐下降,感染后12~27天保持在感染前意蜂血淋巴总蛋白质含量水平以下。螨侵染后意蜂血淋巴蛋白质含量明显增高,与健康意蜂相比差异极显著。高压超薄层等电点聚焦分析表明:狄斯瓦螨自然侵染意蜂后,意蜂血淋巴蛋白质组分与健康对照组相比发生了明显改变。这些结果提示,意蜂对于微孢子虫或狄斯瓦螨的侵染产生了一定的免疫反应。  相似文献   

17.
Honey bees are important pollinators and take micronutrients from different natural floral resources and turbid water to adequately meet their nutritional requirements. But the role of micronutrients for honey bee health is not well understood. Here, the present study was conducted to determine honey bees' micronutrients preference in summer and winter seasons. Also, the impact of micronutrients on foraging behaviour and brood increase was studied in different honey bee colonies. The results elucidated that honey bees exhibited a strong preference for a salt solution compared to deionized water during the summer and winter seasons. However, there was a notable switch in salt preference between seasons. Overall, honey bees showed significantly more foraging activity, more pollen collection, and increased brood area after sodium consumption compared to other minerals in the summer season. Further, pollen collection and brood area were significantly higher after the use of potassium in the winter season. Thus, the food preference of honey bees is strongly linked with the seasons and the availability of the floral resources. Our data suggested that honey bees may seek specific nutrients during variation of the seasonal conditions.  相似文献   

18.
We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds.  相似文献   

19.
Laboratory bioassays were conducted to evaluate neem oil and neem extract for the management of key honey bee (Apis mellifera L.) pests. Neem pesticides inhibited the growth of Paenibacillus larvae (Ash, Priest & Collins) in vitro but had no effect on the growth of Ascophaera apis (Olive & Spiltoir). Azadirachtin-rich extract (neem-aza) was 10 times more potent than crude neem oil (neem oil) against P. larvae suggesting that azadirachtin is a main antibiotic component in neem. Neem-aza, however, was ineffective at controlling the honey bee mite parasites Varroa jacobsoni (Ouduemans) and Acarapis woodi (Rennie). Honey bees also were deterred from feeding on sucrose syrup containing > 0.01 mg/ml of neem-aza. However, neem oil applied topically to infested bees in the laboratory proved highly effective against both mite species. Approximately 50-90% V. jacobsoni mortality was observed 48 h after treatment with associated bee mortality lower than 10%. Although topically applied neem oil did not result in direct A. woodi mortality, it offered significant protection of bees from infestation by A. woodi. Other vegetable and petroleum-based oils also offered selective control of honey bee mites, suggesting neem oil has both a physical and a toxicological mode of action. Although oils are not as selective as the V. jacobsoni acaricide tau-fluvalinate, they nonetheless hold promise for the simultaneous management of several honey bee pests.  相似文献   

20.
Abstract Interspecific competition for a limited resource can result in the reduction of survival, growth and/or reproduction in one of the species involved. The introduced honey bee (Apis mellifera Linnaeus) is an example of a species that can compete with native bees for floral resources. Often, research into honey bee/native bee competition has focused on floral resource overlap, visitation rates or resource harvesting, and any negative interaction has been interpreted as a negative impact. Although this research can be valuable in indicating the potential for competition between honey bees and native bees, to determine if the long‐term survival of a native bee species is threatened, fecundity, survival or population density needs to be assessed. The present review evaluates research that has investigated all these measurements of honey bee/native bee competition and finds that many studies have problems with sample size, confounding factors or data interpretation. Guidelines for future research include increasing replication and using long‐term studies to investigate the impact of both commercial and feral honey bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号