首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schisanhenol (Sal) did not diminish the antitumor activity of adriamycin in mice bearing P388 ascites tumor. Sal did not antagonize the suppressive effect of adriamycin on DNA synthesis and cell proliferation in an L1210 ascitic tumor cell culture. Furthermore, Sal at the concentration of 0.1, 0.25, or 1 mM accelerated adriamycin-dependent DNA damage in the presence of Fe3+ in vitro. It appears that Sal was able to protect against adriamycin induced heart mitochondrial toxicity, while it did not antagonize the antitumor activity of adriamycin.  相似文献   

2.
Satoh M  Naganuma A  Imura N 《Life sciences》2000,67(6):627-634
The effect of tissue specific induction of metallothionein (MT) by preadministration of metal compounds on the antitumor activity and adverse effects of adriamycin (ADR) was examined using mice bearing colon 38 adenocarcinoma. Significant increase in MT concentration was observed in the heart and bone marrow but not in the tumor tissue of the mice given bismuth (Bi) compound. Copper (Cu) increased MT in the tumor tissue but did not induce MT either in bone marrow or in the heart, whereas zinc (Zn) increased MT level in the heart and bone marrow as well as in the tumor tissue. ADR exerted cardiotoxicity, indicated by increase in lipid peroxidation in the heart, bone marrow toxicity, indicated by decrease in number of peripheral leukocytes, and antitumor activity, assessed by reduction of tumor weight, in tumor-bearing mice untreated with MT inducing metal compounds. Preadministration of Bi significantly reduced the cardiotoxicity and bone marrow toxicity without compromising the antitumor activity of ADR. Cu pretreatment did not affect the extent of cardiotoxicity and bone marrow toxicity but significantly suppressed the antitumor effect. Pretreatment with Zn markedly reduced not only the adverse side effects but also the antitumor activity. The results described above suggest that ADR toxicity can be attenuated in the tissues in which the MT level was elevated and that the tissue specific induction of MT synthesis may provide a promising regimen for cancer chemotherapy.  相似文献   

3.
The effects of anthracyclines on the stimulation of oxygen consumption in the presence of HL-60 cell sonicates, beef heart mitochondria and NADPH cytochrome c reductase were determined as a measure of oxygen radical production. Drug-induced oxygen radical formation in each of these systems was modulated by structural changes in the aglycone as well as in the amino sugar portion of the anthracycline molecule. Cytotoxic potency was not correlated with anthracycline-induced oxygen consumption, suggesting that net oxygen radical production was not the primary factor in tumor cell killing by anthracyclines. In contrast, available data on anthracycline cardiotoxicity appeared to correlate with the drug-induced stimulation of oxygen consumption by beef heart mitochondria, providing support for the premise that drug-induced oxygen radicals formed in the presence of mitochondrial flavoproteins are involved in the adverse effects of anthracyclines on the heart. Cyanomorpholinoadriamycin, an analogue which is 100 to 1000 times more potent than adriamycin (doxorubicin) as an antineoplastic agent, has been shown here and elsewhere to be equivalent to adriamycin in stimulating oxygen radical production by beef heart mitochondria and to produce similar cardiotoxicity at equimolar concentrations. Thus, it appears possible to separate the favorable antitumor activity of adriamycin from its unwanted cardiotoxicity by structural changes such as substitution of the antibiotic by a cyanomorpholino moiety.  相似文献   

4.
Jesridonin, a small molecule obtained through the structural modification of Oridonin, has extensive antitumor activity. In this study, we evaluated both its in vitro activity in the cancer cell line EC109 and its in vivo effect on tumor xenografts in nude mice. Apoptosis induced by Jesridonin was determined using an MTT assay, Annexin-V FITC assay and Hoechest 33258 staining. Apoptosis via mitochondrial and death receptor pathways were confirmed by detecting the regulation of MDM2, p53, and Bcl-2 family members and by activation of caspase-3/-8/-9. In addition, vena caudalis injection of Jesridonin showed significant inhibition of tumor growth in the xenograft model, and Jesridonin-induced cell apoptosis in tumor tissues was determined using TUNEL. Biochemical serum analysis of alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT), total protein (TP) and albumin (ALB) indicated no obvious effects on liver function. Histopathological examination of the liver, kidney, lung, heart and spleen revealed no signs of JD-induced toxicity. Taken together, these results demonstrated that Jesridonin exhibits antitumor activity in human esophageal carcinomas EC109 cells both in vitro and in vivo and demonstrated no adverse effects on major organs in nude mice. These studies provide support for new drug development.  相似文献   

5.
Dichloroacetate (DCA) is a metabolic modulator for the treatment of lactic acidosis and inherited mitochondrial diseases. A recent study showed that DCA treatment could induce apoptosis in many kinds of tumor cell lines via mitochondrial apoptotic pathway while sparing normal cells. ONYX-015 (dl 1520) is one of the oncolytic adenoviruses developed by the deletion of E1B-55kD gene of type 5 adenoviral DNA, and it replicates efficiently and selectively in tumor cells. ZD55-IL-24, an E1B-55kD deleted oncolytic adenovirus carrying interleukin-24 (IL-24, also called melanoma differentiation associated gene-7), had showed potent antitumor efficacy in a variety of tumor cells and exerted no apparent toxicity on normal cells. Given both the good therapeutic effect and low toxicity of these agents, here we investigated whether DCA in combination with ZD55-IL-24 or ONYX-015 could have more efficient antitumor activity in vitro experiments. Therefore, we tested the cytotoxicity of combination therapy in normal hepatic cells L-02 and QSG-7701 using the MTT assay. Our results showed that DCA combined with ONYX-015 or ZD55-IL-24 exhibited more potent antitumor activity than DCA or virus alone, and the combination treatment did not have superimposed toxicities in normal cells. Thus, a novel combination therapy associating oncolytic adenoviruses with relatively low toxic drug without severe side effects was proposed.  相似文献   

6.
We studied the effects of treatments with adrenaline hydrochloride, obsidan (a -adrenoblocker), melipramine (an inhibitor of monoamine uptake by neurons), and reserpine (a sympatholytic drug) on tumor growth (Pliss' lymphosarcoma in rats) and on the antitumor activity of a novel cytostatic drug, chlofiden. We found that adrenaline and reserpine enhanced the antitumor effect of chlofiden. Isolated applications of adrenaline and melipramine exerted slight antitumor effects, while after reserpine treatment there was a trend toward stimulation of tumor growth. Under the conditions of the model used, obsidan demonstrated no noticeable antitumor activity and did not modify the antitumor effect of chlofiden. Possible mechanisms of the observed effects are discussed.  相似文献   

7.
Effect of dimethyl sulphoxide (DMSO) on mitochondrial biogenesis in regenerating rat liver and cells of Saccharomyces cerevisiae during aerobiosis has been studied by monitoring the cytochrome oxidase activity. A single dose of DMSO (275 mg/100-125 g body wt) to normal rats stimulated cytochrome oxidase activity in liver mitochondria while the same dose to partial hepatectomized rats inhibited the enzyme activity. Administration of low dose of DMSO (92 mg/100-125 g body wt) to partial hepatectomized rats did not alter the enzyme activity. Anaerobic cells of S. cerevisiae on aerobiosis for 2 hr attained cytochrome oxidase activity level on par with aerobic cells. Inclusion of DMSO (275 mg/100 ml) in the growth medium of S. cerevisiae during respiratory adaptation exerted partial inhibitory effect on the formation of cytochrome oxidase at 2 hr period, while the 10-fold concentration inhibited the enzyme formation completely. However, the inhibitory effect of DMSO on enzyme formation was abolished on prolonged growth (18 hr and above), while these doses had no influence on cytochrome oxidase in aerobic cells of S. cerevisiae. The results imply that DMSO may be exerting its effect on the assembly of subunits into active enzyme complex during mitochondrial biogenesis.  相似文献   

8.
9.
目的:应用超声波分散法制备脂质体阿霉素,并比较脂质体阿霉素与游离性阿霉素抗肿瘤活性。方法:以卵磷脂和胆固醇为原料,将阿霉素包封于脂质体中,采用超声分散法制备脂质体阿霉素,对其在290-700nm范围内进行紫外扫描,用SephedexG-50柱分离脂质体阿霉素并计算其包封率。以昆明种小鼠为载体建立肿瘤模型(S180型肉瘤)和细胞荧光染色法研究脂质体阿霉素的抗肿瘤活性,以ZITA SIZER3000型表面电位与粒度测定仪测定其粒径分布。结果:脂质体阿霉素在480nm处有最大吸收峰值,包封率达91.3%,细胞荧光染色显示,脂质体及游离型阿霉素均对S180细胞有明显的抑制作用。结论:此法制备的脂质体阿霉素包封率高,粒径分布集中,脂质体阿霉素较游离型阿霉素有较强的抗肿瘤活性剂及较低的细胞毒作用,对阿霉素的临床应用有一定的参考价值。  相似文献   

10.
A large part of the hexokinase activity of the rat brain 20,000g supernatant became mitochondrial bound when incubated with rat heart mitochondria which had been pretreated with glucose-6-phosphate. This binding was dependent on small-molecular compounds (as yet unidentified) of the brain supernatant. Divalent cations, spermine, and pentalysine strongly stimulated the binding of brain supernatant hexokinase to heart mitochondria. Inorganic phosphate, alpha-glycerophosphate, and fructose-1,6-diphosphate showed some stimulatory effect. No effect was observed with insulin or glucose. Mitochondria isolated from hearts of fasted rats had less specific hexokinase activity than mitochondria from fasted and then carbohydrate refed rats. This dietary treatment had no significant effect on the total heart hexokinase activity. Oligomycin did not inhibit the formation of creatine phosphate or glucose-6-phosphate by isolated rabbit heart mitochondria incubated in the presence of phosphoenolpyruvate and pyruvate kinase. However, the presence of creatine inhibited the formation of glucose-6-phosphate when the ATP/ADP ratio was low, indicating that creatine kinase has a greater access to ATP/ADP translocation than has hexokinase.  相似文献   

11.
A series of 2-hydroxyarylidene-4-cyclopentene-1,3-diones were designed, synthesized, and evaluated with respect to protein tyrosine kinase (PTK) inhibition, mitochondrial toxicity, and antitumor activity. Our results show that the cyclopentenedione-derived TX-1123 is a more potent antitumor tyrphostin and also shows lower mitochondrial toxicity than the malononitrile-derived AG17, a potent antitumor tyrphostin. The O-methylation product of TX-1123 (TX-1925) retained its tyrphostin-like properties, including mitochondrial toxicity and antitumor activities. However, the methylation product of AG17 (TX-1927) retained its tyrphostin-like antitumor activities, but lost its mitochondrial toxicity. Our comprehensive evaluation of these agents with respect to protein tyrosine kinase inhibition, mitochondrial inhibition, antitumor activity, and hepatotoxicity demonstrates that PTK inhibitors TX-1123 and TX-1925 are more promising candidates for antitumor agents than tyrphostin AG17.  相似文献   

12.
Several front-line chemotherapeutics cause mitochondria-derived, oxidative stress-mediated cardiotoxicity. Iron chelators and other antioxidants have not completely succeeded in mitigating this effect. One hindrance to the development of cardioprotectants is the lack of physiologically-relevant animal models to simultaneously study antitumor activity and cardioprotection. Therefore, we optimized a syngeneic rat model and examined the mechanisms by which oxidative stress affects outcome. Immune-competent spontaneously hypertensive rats (SHRs) were implanted with passaged, SHR-derived, breast tumor cell line, SST-2. Tumor growth and cytokine responses (IL-1A, MCP-1, TNF-α) were observed for two weeks post-implantation. To demonstrate the utility of the SHR/SST-2 model for monitoring both anticancer efficacy and cardiotoxicity, we tested cardiotoxic doxorubicin alone and in combination with an established cardioprotectant, dexrazoxane, or a nitroxide conjugated to a triphenylphosphonium cation, Mito-Tempol (4) [Mito-T (4)]. As predicted, tumor reduction and cardiomyopathy were demonstrated by doxorubicin. We confirmed mitochondrial accumulation of Mito-T (4) in tumor and cardiac tissue. Dexrazoxane and Mito-T (4) ameliorated doxorubicin-induced cardiomyopathy without altering the antitumor activity. Both agents increased the pro-survival autophagy marker LC3-II and decreased the apoptosis marker caspase-3 in the heart, independently and in combination with doxorubicin. Histopathology and transmission electron microscopy demonstrated apoptosis, autophagy, and necrosis corresponding to cytotoxicity in the tumor and cardioprotection in the heart. Changes in serum levels of 8-oxo-dG-modified DNA and total protein carbonylation corresponded to cardioprotective activity. Finally, 2D-electrophoresis/mass spectrometry identified specific serum proteins oxidized under cardiotoxic conditions. Our results demonstrate the utility of the SHR/SST-2 model and the potential of mitochondrially-directed agents to mitigate oxidative stress-induced cardiotoxicity. Our findings also emphasize the novel role of specific protein oxidation markers and autophagic mechanisms for cardioprotection.  相似文献   

13.
The influence of Adriamycin (doxorubicin) on the rate of superoxide radical formation in isolated rat heart mitochondria was studied by EPR with the Tiron spin trap not penetrating the mitochondrial inner membrane. Adriamycin at 10–150 μM considerably enhanced superoxide generation in the presence of succinate (substrate of the respiratory chain complex II) and glutamate/malate (complex I substrate) when electron transfer was blocked in complex III with antimycin A. Such effects may partly account for the known cardiotoxicity of this antitumor drug.  相似文献   

14.
Adriamycin (doxorubicin), an anticancer agent, stimulated the formation of superoxide in submitochondrial particles isolated from bovine heart. Superoxide formation was detected by oxygen uptake, by the cooxidation of epinephrine to adrenochrome and by the reduction of acetylated cytochrome c. These processes were sensitive to superoxide dismutase (SOD). Rotenone-insensitive oxidation of NADH by the mitochondrial respiratory chain in the presence of oxygen caused the formation of approx 4 nmol of superoxide per min/mg of protein. Adriamycin at a concentration of 400 micron stimulated the rate of superoxide formation 6-fold to 25 nmol.min-1.mg-1, but this was not a maximum rate. Approximately 50 micron adriamycin was estimated to be sufficient for obtaining one-half maximal stimulation. Hydrogen peroxide accumulated as a final reaction product. Measurements of the relative catalase activity of blood-free tissues of rabbits and rats indicated that heart contained 2 to 4% of the catalase activity of liver or kidney. An enhanced production of superoxide and hydrogen peroxide and the relatively low catalase content of heart tissue may be factors in the cardiotoxicity induced by adriamycin chemotherapy if a similar reaction occurs in vivo.  相似文献   

15.
Cu deficiency disrupts the architecture of mitochondria, impairs respiration, and inhibits the activity of cytochrome c oxidase - the terminal, Cu-dependent respiratory complex (Complex IV) of the electron transport chain. This suggests that perturbations in the respiratory chain may contribute to the changes in mitochondrial structure caused by Cu deficiency. This study investigates the effect of Cu deficiency on Ca2+-induced mitochondrial swelling as it relates to changes in respiratory complex activities in cardiac mitochondria of rats. Male weanling rats were fed diets containing either no added Cu (Cu0), 1.5 mg Cu/kg (Cu1.5), 3 mg Cu/kg (Cu3) or 6 mg Cu/kg (Cu6). The rate of Ca2+-induced mitochondrial swelling in the presence of succinate and oligomycin was reduced, and the time to reach maximal swelling was increased only in the rats consuming Cu0 diet. Cytochrome c oxidase activity was reduced 60% and 30% in rats fed Cu0 and Cu1.5, respectively, while NADH:cytochrome c reductase (Complex I+ComplexIII) activity was reduced 30% in rats consuming both Cu0 and Cu1.5. Mitochondrial swelling is representative of mitochondrial permeability transition pore (MPTP) formation and the results suggest that Ca2+-induced MPTP formation occurs in cardiac mitochondria of Cu-deficient rats only when cytochrome c oxidase activity falls below 30% of normal. Decreased respiratory complex activities caused by severe Cu deficiency may inhibit MPTP formation by increasing matrix ADP concentration or promoting oxidative modifications that reduce the sensitivity of the calcium trigger for MPTP formation.  相似文献   

16.
17.
Dopamine Neurotoxicity: Inhibition of Mitochondrial Respiration   总被引:15,自引:6,他引:9  
Abstract: Dopamine, due to metabolism by monoamine oxidase or autoxidation, can generate toxic products such as hydrogen peroxide, oxygen-derived radicals, semiquinones, and quinones and thus exert its neurotoxic effects. Intracerebroventricular injection of dopamine into rats pretreated with the monoamine oxidase nonselective inhibitor pargyline caused mortality in a dose-dependent manner with LD50 = 90 µg. Norepinephrine was less effective with LD50 = 141 µg. The iron chelator desferrioxamine completely protected against dopamine-induced mortality. In the absence of pargyline more rats survived, indicating that the products of dopamine enzymatic metabolism are not the main contributors to dopamine-induced toxicity. Biochemical analysis of frontal cortex and striatum from rats that received a lethal dose of dopamine did not show any difference from control rats in lipid and protein peroxidation and glutathione reductase and peroxidase activities. Moreover, dopamine significantly reduced the formation of iron-induced malondialdehyde in vitro, thus suggesting that earlier events in cell damage are involved in dopamine toxicity. Indeed, dopamine inhibited mitochondrial NADH dehydrogenase activity with IC50 = 8 µ M , and that of norepinephrine was twice as much (IC50 = 15 µ M ). Dopamine-induced inhibition of NADH dehydrogenase activity was only partially reversed by desferrioxamine, which had no effect on norepinephrine-induced inhibition. These results suggest that catecholamines can cause toxicity not only by inducing an oxidative stress state but also possibly through direct interaction with the mitochondrial electron transport system. The latter was further supported by the ability of ADP to reverse dopamine-induced inhibition of NADH dehydrogenase activity in a dose-dependent manner.  相似文献   

18.
Generation and enhanced detoxification of toxic free radicals by glutathione peroxidase and glutathione transferase in human breast tumor cells have been suggested to play an important role in toxicity and in resistance to adriamycin. We have examined the biochemical basis of paraquat-induced free radical formation and the mechanism of resistance to this agent in human breast tumor cell lines. We have also compared the similarities and differences between adriamycin and paraquat in their mode of free radical formation and tumor cell kill. Anaerobic incubation of paraquat resulted in the formation of the paraquat cation radical in both the sensitive and resistant cells which increased with time and was enhanced by NADPH addition. Our studies show that while both adriamycin and paraquat form hydroxyl radicals (.OH) in these cell lines, adriamycin was 2-3 fold better at reducing oxygen. The formation of .OH was inhibited by exogenously added superoxide dismutase and catalase, indicating the involvement of both superoxide anion radical and hydrogen peroxide. In the adriamycin-resistant cell line, less .OH was formed by each of these drugs. While the .OH appeared to be formed outside by both adriamycin and paraquat in the drug-sensitive cells, experiments using chromium oxalate as a spin-broadening agent suggest that the drug-induced .OH formation in the resistant cells is an intracellular event. The adriamycin-resistant cell line was also cross-resistant to paraquat, suggesting a common mechanism of toxicity for both drugs. However, adriamycin was significantly more toxic (4000-times) to the sensitive cells suggesting that either other mechanisms or site-specific free radical formation are also important in biochemical mechanisms of adriamycin toxicity.  相似文献   

19.
Mitochondrial electron transport inhibitors induced two distinct pathways for acute cell death: lipid peroxidation-dependent and -independent in isolated rat hepatocytes. The toxic effects of mitochondrial complex I and II inhibitors, rotenone (ROT) and thenoyltrifluoroacetone (TTFA), respectively, were dependent on oxidative stress and lipid peroxidation, while cell death induced by inhibitors of complexes III and IV, antimycin A (AA) and cyanide (CN), respectively, was caused by MMP collapse and loss of cellular ATP. Accordingly, cellular and mitochondrial antioxidant depletion or supplementation, in general, resulted in a dramatic potentiation or prevention, respectively, of toxic injury induced by complex I and II inhibitors, with little or no effect on complex III and IV inhibitor-induced toxicity. ROT-induced oxidative stress was prevented by the addition of d-alpha-tocopheryl succinate (TS) but surprisingly TS did not afford hepatocytes protection against TTFA-induced oxidative damage. TS treatment prevented ROT-induced mitochondrial lipid hydroperoxide formation but had no effect on the loss of mitochondrial GSH or cellular ATP, suggesting a mitochondrial lipid peroxidation-mediated mechanism for ROT-induced acute cell death. In contrast, only fructose treatment provided excellent cytoprotection against AA- and CN-induced toxicity. Our findings indicate that complex III and IV inhibitors cause a rapid and severe depletion of cellular ATP content resulting in acute cell death that is dependent on cellular energy impairment but not lipid peroxidation. In contrast, inhibitors of mitochondrial complex I or II moderately deplete cellular ATP levels and thus cause acute cell death via a lipid peroxidation pathway.  相似文献   

20.
Adriamycin plays a prominent role in the treatment of leukemia and solid tumors in man. The mode of interaction of adriamycin with its nuclear target, responsible for its therapeutic effect, is known [Berman, H. M., & Young, P.R. (1981) Annu. Rev. Biophys. Bioeng. 10, 87-114]. The planar anthracycline moiety of adriamycin intercalates between the base pairs whereas the sugar moiety fits into the DNA large groove. However, the cardiotoxicity of adriamycin places a limit on the total dose that may be given [Minow, R. A., Banjamin, R.S., & Gottlieb, J. A. (1975) Cancer Chemother. Rep. 6, 195-202]. Much evidence suggests that the mitochondrial membrane could be the target responsible for adriamycin cardiotoxicity. The formation of a very stable complex between adriamycin and cardiolipin, a phospholipid specific to the inner mitochondrial membrane, has been shown to inhibit several mitochondrial membrane enzymes whose activities depend on the presence of cardiolipin. Using attenuated total reflection infrared spectroscopy, we demonstrate here that, in the adriamycin-cardiolipin complex, both cardiolipin and adriamycin structures are modified as compared with the pure substances. Dichroism values indicate a slight reorientation of the cardiolipin molecule toward a normal to the plane of the bilayer whereas adriamycin, which shows no ordering in a pure phase, is highly ordered in the complex, the anthracycline moiety titled at about 40 degrees with respect to the normal to the plane of the bilayer. The partial disappearance of NH3+ characteristic bands indicates the involvement of the positively charged amino group of adriamycin in the complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号