首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Bird species turnover and stochastic extinction in woodland fragments   总被引:6,自引:0,他引:6  
Year-to-year turnover in bird species composition was recorded across, the whole size range (0 02-30 ha) of 146 woods studied The mean number of resident breeding species both lost and gained per wood between consecutive breeding seasons was 2 (range 0-8) No relationship was found between this absolute turnover rate and woodland area, or any other of 24 predictor variables (describing woodland structure, isolation, connectedness and surrounding land use) Extriction and colonisation rates (in terms of numbers of species lost and gained) were also unrelated to woodland area In all sizes of woods, the species most likely to show local extinctions and colonisations were those with small populations within those woods, but the identity of the species concerned changed as woodland area increased In the smallest woods, the majority of turnover involved common species, such as wren and dunnock, which occurred in only small numbers in these small woods As woodland area increased, these species attained sufficient numbers to usually avoid stochastic extinction The majority of turnover was then due to more specialist (and less numerous) woodland species, such as great-spotted woodpecker and marsh tit, which were usually lacking in small woods In Britain, much existing broadleaved woodland falls within the size range studied Thus the numbers of many bird species are liable to be small enough for yearly turnover in woodland bird communities to be appreciable, and for the long-term persistence of individual species in particular woods to depend on dispersal  相似文献   

2.
The Farm Woodland Scheme, which provided incentives to convert agricultural land to timber production, contained an implicit assumption that farm woodlands produce important benefits for wildlife. The moth fauna of 18 farm woodlands in the Vale of York was surveyed between May and November 1991. The aims were twofold. The first was to determine if there were benefits for moth species diversity. The second was to ascertain whether concepts of island biogeography and the plant species richness of the woods were related to the moth species composition.Eleven families, 214 species and over 16 000 individuals of moths were recorded. Classification of the species presence/absence matrix indicated that small woods (less than 1ha) did not have characteristic woodland moth communities. Woods larger than 5ha were judged to be more valuable for the long-term conservation of woodland moth diversity. The best predictor of moth species richness was the herbaceous plant species richness within woodlands. Species richness of the family Geometridae was positively related to woodland area, as well as to woodland shape (compact shapes being preferable to elongated shapes). Characteristic woodland species are influenced by isolation (less isolated woods being richer in species). The implications of different powers of dispersal between moth families are discussed. Farm woodlands will be of more value for the conservation of the Macrolepidoptera if they are large, compact and incorporate remnants of existing woodland with extant herbaceous vegetation. These should be factors which are taken into consideration when providing incentives to establish and manage farm woodlands.  相似文献   

3.
A study over 4 years into the number of breeding bird species and species turnover (extinctions and colonisations) in relation to area was conducted in 35 woodlands, set in an intensively farmed landscape, in north-east Essex, UK. A total of 46 species was recorded. The number of species breeding increased with woodland area; the slope of the species–area relationship did not differ between years. Habitat diversity was the only other measured variable to influence species richness. Absolute species turnover was independent of woodland area but relative turnover declined with increase in woodland area. The numbers of territories of nine species were determined. For four summer visitors the number of woods occupied increased as the overall populations increased but, for the other species, changes in overall population size led to changes in numbers in occupied woods. Chaffinch Fringilla coelebs and Song Thrush Turdus philomelos were more associated with woodland edges, Nightingale Luscinia megarhynchos, Garden Warbler Sylvia borin, Chiffchaff Phylloscopus collybita and Willow Warbler P. trochilus with interiors. Several species showed an inverse relationship between population density and woodland area. Collections of small woods hold similar species richness to single large woods. While the acquisition of large woods for conservation purposes should be a priority, the extension of smaller woods to a size of about 10 ha would be highly beneficial to both the species richness and population stability of regional woodland bird assemblages.  相似文献   

4.
Synchrony of woodland bird populations: the effect of landscape structure   总被引:3,自引:0,他引:3  
The influence of environmental stochasticity and dispersal in producing patterns in population synchrony was examined for 53 woods censused annually from 1990 to 1999 for nine resident bird species (wren Troglodytes troglodytes , dunnock Prunella modularis , robin Erithacus rubecula , blackbird Turdus merula , song thrush Turdus philomelos , long-tailed tit Aegithalos caudatus , blue tit Parus caeruleus , great tit Parus major , and chaffinch Fringilla coelebs ) and four migrant bird species (garden warbler Sylvia borin , blackcap Sylvia atricapilla , chiffchaff Phylloscopus collybita and willow warbler Phylloscopus trochilus ). Twelve species showed global synchrony of population counts due to regional population trends and widespread annual population fluctuations. There was a clear link between population fluctuations and winter weather for wren, and three other species showed their largest population declines after the coldest winters. Eight species showed a decline in synchrony with distance between woods, and there was evidence for dispersal causing this pattern in three species. Landscape structure affected patterns of synchrony in several species, with lower synchrony in landscapes with less woodland. For three species, this difference in synchrony across a landscape gradient of decreasing woodland cover accounted for the decline in synchrony over distance. Three species showed greater synchrony between woods with similar amounts of hedgerow in the surrounding landscape, suggesting that the surroundings of a wood influence the population dynamics of some species breeding in the wood. Habitat fragmentation can alter the processes contributing to population synchrony. Loss of woodland reduces the relative abundance of woodland bird species. The remaining patches of habitat are smaller, more isolated and are set in a more hostile landscape, all of which may disrupt dispersal between patches and alter the population dynamics within woods.  相似文献   

5.
Aim To compare bird abundances in woodlands along gradients from the city centre to the peri‐urban area. To evaluate the importance of the proportion of woodland within the city and in the peri‐urban landscape to forest bird communities breeding in urban woodlands. To test whether fragmentation effects on birds were linked to the type of peri‐urban matrix. Location A total of 34 Swedish cities with > 10,000 inhabitants in south‐central Sweden. The study area covered 105,000 km2, in which 84% of the Swedish population of 9.1 million lives. Methods Repeated point count surveys were conducted in 2004 in a total of 474 woodlands. General linear models were used to test for possible differences in abundance along urban to peri‐urban gradients, and to regress bird abundances in local urban woodlands on: (1) total woodland cover in the city, (2) total woodland cover in the peri‐urban landscape, (3) the interaction between woodland cover in the city and in the peri‐urban area, (4) region, and (5) human density. Results More than 12,000 individuals of 100 forest bird species were recorded. Of the 34 most common species detected, 13 bird species had higher abundances in urban than in peri‐urban woodlands, and seven species showed the opposite trend. The bird community of urban woodlands was characterized by species associated with deciduous forests and tree nesters, whereas the bird community of peri‐urban woodlands was characterized by species associated with coniferous woodland and ground nesters. Twelve species were significantly linearly associated with the proportion of urban woodland and/or the proportion of peri‐urban woodland, and a further eight species were associated with the interaction between these two factors. Local breeding bird abundances of four species were significantly positively associated with the proportion of urban woodland only in farmland‐dominated landscapes. Main conclusions Fragmentation effects on some urban birds are linked to the type of peri‐urban matrix. In farmland landscapes, peri‐urban woodlands may have been too scarce to act as a source of bird immigrants to fragmented urban woodlands. To maintain populations of specialized forest birds within cities in landscapes dominated by agriculture, it is of paramount importance to conserve any remaining urban woodlands.  相似文献   

6.
The effects of habitat fragmentation as a threat to biodiversity are well known; decreased connectivity can potentially influence population processes and dynamics, resulting in smaller, isolated populations that may not function optimally. However, fragmentation may also increase the amount of edge or ecotone habitat available to open country species, benefiting their populations and enabling them to dominate remnant habitats. Noisy miners (Manorina melanocephala) are one such species, occupying eastern‐Australian eucalypt woodlands. They are considered a ‘despotic’ species, in that their presence negatively impacts woodland avifauna biodiversity due to their aggressive exclusion of other taxa from occupied areas. Despite this well‐known impact, little information exists on the patterns of nest‐tree occupancy by noisy miners within eucalypt woodlands. In the current study, we explored the patterns of nest‐tree occupancy by noisy miners across two successive years, aiming to identify preferences for breeding areas relative to vegetation structure. Our results show that both habitat fragmentation and the characteristics of individual eucalypt trees in an area influenced nest‐tree occupancy. Noisy miners constructed nests in trees near the edge of woodland patches more often than expected. Moreover, the nest tree chosen was a eucalypt that was significantly smaller than randomly selected trees from the surrounding area. The results highlight the importance of habitat management measures that may reduce the suitability of woodland patches as nesting sites for this species, in order to mitigate the severe effects of this despotic edge specialist.  相似文献   

7.
S. MANU  W. PEACH  & W. CRESSWELL 《Ibis》2007,149(2):287-297
Almost nothing is known of the effects of forest fragmentation on bird diversity within the heavily degraded and fragmented forest remnants in West Africa. We examined the effects of edge, fragment size and isolation on bird species richness in southwestern Nigeria where forest fragmentation is pronounced. In total, 122 km of line transects were used to survey birds and vegetation within 45 forest patches between January 2000 and March 2002: 197 species were recorded. Avian species number and total counts in forest patches were unrelated to fragment area (within the observed range of 14–445 ha), but were negatively influenced by degree of isolation and increasing distance from the edge. As the total area of forested land within 15 km of a patch fell from 4 to 0%, so 21% of species were lost. In total, six and zero species (of 154 recorded more than once) were consistently recorded in the larger and smaller forest fragments, respectively, and four and two bird species were consistently recorded in unisolated and isolated forest fragments, respectively, suggesting that the addition of ‘edge’ species did not compensate for loss of species sensitive to fragmentation. Diversity index was not affected by either fragment area or degree of isolation, but decreased with distance from the edge. When individual species counts were considered, 68% of species (n = 62) showed no significant effect of distance to edge. Of those 20 species which showed an effect, 12 were less common close to the edge. Most species (65%) did not respond significantly to increasing isolation but of those 22 species that did, 20 were less common in more isolated fragments. Ninety‐seven per cent of species showed no significant response to area. As avian diversity and species composition, but not species number, were apparently insensitive to forest fragmentation, our findings suggest that fragmentation reduces the probability of occurrence of a wide range of West African bird species, rather than a subset of fragmentation‐sensitive species. The greater apparent sensitivity of present‐day West African forest bird communities to fragmentation rather than patch size might reflect previous extinctions of area‐sensitive species. Minimizing further forest fragmentation might be the most effective means of conserving avian diversity in current West African landscapes where most remaining forest patches are small (i.e. < 500 ha).  相似文献   

8.
Abstract The reduction and fragmentation of forest habitats is expected to have profound effects on plant species diversity as a consequence of the decreased area and increased isolation of the remnant patches. To stop the ongoing process of forest fragmentation, much attention has been given recently to the restoration of forest habitat. The present study investigates restoration possibilities of recently established patches with respect to their geographical isolation. Because seed dispersal events over 100 m are considered to be of long distance, a threshold value of 100 m between recent and old woodland was chosen to define isolation. Total species richness, individual patch species richness, frequency distributions in species occurrences, and patch occupancy patterns of individual species were significantly different among isolated and nonisolated stands. In the short term no high species richness is to be expected in isolated stands. Establishing new forests adjacent to existing woodland ensures higher survival probabilities of existing populations. In the long term, however, the importance of long‐distance seed dispersal should not be underestimated because most species showed occasional long‐distance seed dispersal. A clear distinction should be made between populations colonizing adjacent patches and patches isolated from old woodland. The colonization of isolated stands may have important effects on the dynamics and diversity of forest networks, and more attention should be directed toward the genetic traits and viability of founding populations in isolated stands.  相似文献   

9.
In the UK, wood cricket (Nemobius sylvestris) is a ‘Species of Conservation Concern’, being restricted to only three areas in southern England. Little information is available on the specific habitat requirements of this species. In 2006, a field investigation within three woodlands on the Isle of Wight was undertaken to identify its habitat preferences. Factors positively influencing wood cricket presence within woodlands included the presence of a well-developed leaf litter layer, relatively low ground vegetation cover and height, low canopy cover and relatively short distances between individual populations. Regression models identified the degree of isolation and variables describing vegetation structure as the main predictors for wood cricket presence within woodland fragments. The results of this study indicate the preference of wood cricket for open wooded edges. Conservation efforts for this species should focus on continuation of regular management activities aimed at providing permanent open edge habitat within woodlands, to maintain viable populations.  相似文献   

10.
The effects of habitat fragmentation on birds have often been studied in forest specialist species. Here we aimed at comparing the response of open habitat birds within a range of habitat specialization. The study area was a Mediterranean pseudo-steppe, designated as important for conservation yet fragmented by tree encroachment. We defined bird species dependency on steppe-like habitat by a correspondence analysis, allowing us to distinguish between specialists, generalists and scrubland species. We studied species abundance in relation to fragment area, testing whether species representation in fragments differed from those in continuous habitat. This analysis showed a contrasted response to fragment size between “open habitat” specialist species and generalist ones. Open habitat species were under-represented in the smallest fragments, while generalist were over-represented in small fragments in comparison to their distribution in continuous habitats. We discuss how these results can be linked to species habitat requirements. We find that scrubland species seem to be favoured by encroachment of woody vegetation, as they are able to explore and use the wooded matrix; however specialist species are restricted to open patches and are sensitive to a reduction in patch size. This allows us to predict how different species can exhibit a different sensitivity to habitat fragmentation.  相似文献   

11.
Aim The woodland ecosystems of south‐eastern Australia have been extensively disturbed by agriculture and urbanization. Herein, the occurrence of birds in woodland remnants in three distinct landscapes was analysed to examine the effects of different types of landscape matrices on species richness vs. area and species richness vs. isolation relationships and individual species responses to woodland fragmentation. Location The study system comprised three distinct woodland landscapes of the northern Australian Capital Territory and bordering areas of New South Wales. These landscapes (termed agricultural, peri‐urban and urban) are located within 50 km of each other, have remnant fragments of similar age, size, isolation, woodland cover, elevation and climates. The major distinguishing feature of the three landscapes was the properties of the habitats surrounding the numerous woodland remnants. Methods Bird surveys, using an area‐search methodology, were conducted in 1999 and 2000 in 127 remnants in the three landscapes to determine bird species presence/absence. Each remnant was characterized by measures of remnant area, isolation and habitat complexity. To characterize differences between each landscape, we conducted an analysis of the amount of tree cover and human disturbance in each landscape using SPOT imagery and aerial photographs. Linear regressions of woodland‐dependent species richness vs. remnant area and remnant isolation for the three different landscapes were calculated to see if there were any apparent differences. Binomial logistic regressions were used to determine the relationships between the occurrence of each species and the size and isolation of woodland habitat, in each landscape. Results All the landscapes displayed a significant (P < 0.01) species vs. area relationship, but the slope of the urban relationship was significantly greater than those of the other landscapes. In contrast, only the agricultural landscape displayed a significant (P < 0.01) species richness vs. isolation relationship. When individual species were investigated, we found species that were: (1) apparently insensitive to reduction in remnant area and increase in isolation across all landscapes, (2) absent in small remnants in all landscapes, (3) absent in small remnants in all landscapes and also absent in isolated remnants in the agricultural landscape, (4) absent in isolated remnants in the agricultural landscape, and (5) absent in small remnants in the urban landscape. Threshold values (50% probability of occurrence) for area and isolation for individual species were highly variable across the three landscapes. Main conclusions These results indicate that woodland bird communities have a varying response to habitat fragmentation in different landscapes. Whilst we cannot be sure how representative our chosen landscapes are of other similarly composed landscapes, these results suggest that the type of landscape matrix may have a considerable influence on how bird species are affected by woodland fragmentation in the region. For instance, the properties of a matrix may influence both the resources available in the landscape as a whole for different bird species, and the connectivity (dispersal of birds), between woodland remnants. We encourage further research that examines these hypotheses and argue that the management of the matrix should be included in conservation strategies for fragmented landscapes.  相似文献   

12.
Colonization of secondary woodlands by Anemone nemorosa   总被引:1,自引:0,他引:1  
Migration of the herb species Anemone nemorosa from older woodlands into adjacent, recently established deciduous woodlands on former arable land was studied. The wood anemone had colonized part of all studied recent woods, varying in age between 30 and 75 years. Cover of A. nemorosa in the recent woods decreased with increasing distance from the older woodland at all sites but one, indicating dispersal limitation during colonization. The advancing edge of most populations was characterized by negative logarithmic decrease in cover with establishment of isolated pioneer individuals and later gradual infill between pioneers. Migration rates were calculated by three methods. The mean migration rate of A. nemorosa based on observed maximum cover in the recent woods was 0.20 m year1, 0.40 m year-1 based on half maximum cover and 0.85 m year1 based on the individual found farthest from the former woodland border. The calculated migration rates were consistently higher than the rate of possible rhizome growth. Seed dispersal and establishment is thus very important for colonization of new woodlands. Migration rates increased with tree canopy cover–especially cover of broad-leaved species with quickly decomposing litter–and with soil pH. Migration rates decreased with increasing grass cover in the field layer. These differences in migration rates may be due to increased micro-site availability for establishment at high canopy cover, low grass cover and high soil pH. Our results show that the wood anemone generally colonizes recent woods from nearby source populations. However, colonization proceeds relatively slowly and is limited by both seed dispersal and availability of suitable micro-sites. Gradients in abundance of A. nemorosa within secondary woods may be detectable for long periods of time and indicate the recent origin of a woodland.  相似文献   

13.
Urban expansion threatens global biodiversity through the destruction of natural and semi-natural habitats and increased levels of disturbance. Whilst woodlands in urban areas may reduce the impact of urbanisation on biodiversity, they are often subject to under or over-management and consist of small, fragmented patches which may be isolated. Effective management strategies for urban woodland require an understanding of the ecology and habitat requirements of all relevant taxa. Yet, little is known of how invertebrate, and in particular moth, assemblages utilise urban woodland despite being commonly found within the urban landscape. Here we show that the abundance, species richness, and species diversity of moth assemblages found within urban woodlands are determined by woodland vegetation character, patch configuration and the surrounding landscape. In general, mature broadleaved woodlands supported the highest abundance and diversity of moths. Large compact woodlands with proportionally less edge exposed to the surrounding matrix were associated with higher moth abundance than small complex woodlands. Woodland vegetation characteristics were more important than the surrounding landscape, suggesting that management at a local scale to ensure provision of good quality habitat may be relatively more important for moth populations than improving habitat connectivity across the urban matrix. Our results show that the planting of broadleaved woodlands, retaining mature trees and minimising woodland fragmentation will be beneficial for moth assemblages.  相似文献   

14.
Aim To evaluate the joint and independent effects of spatial location, landscape composition and landscape structure on the distribution patterns of bird and carabid beetle assemblages in a mosaic landscape dominated by pine plantation forests. Location A continuous 3000‐ha landscape mosaic with native maritime pine Pinus pinaster plantations of different ages, deciduous woodlands and open habitats, located in the Landes de Gascogne forest of south‐western France. Methods We sampled breeding birds by 20‐min point counts and carabid beetles by pitfall trapping using a systematic grid sampling of 200 points every 400 m over the whole landscape. Explanatory variables were composed of three data sets derived from GIS habitat mapping: (1) spatial variables (polynomial terms of geographical coordinates of samples), (2) landscape composition as the percentage cover of the six main habitats, and (3) landscape structure metrics including indices of fragmentation and spatial heterogeneity. We used canonical correspondence analysis with variance partitioning to evaluate the joint and independent effects of the three sets of variables on the ordination of species assemblages. Moran's I correlograms and Mantel tests were used to assess for spatial structure in species distribution and relationships with separate landscape attributes. Results Landscape composition was the main factor explaining the distribution patterns of birds and carabids at the mesoscale of 400 × 400 m. Independent effects of spatial variables and landscape structure were still significant for bird assemblages once landscape composition was controlled for, but not for carabid assemblages. Spatial distributions of birds and carabids were primarily influenced by the amount of heathlands, young pine plantations, herbaceous firebreaks and deciduous woodlands. Deciduous woodland species had positive responses to edge density, while open habitat species were positively associated with mean patch area. Main conclusions Forest birds were favoured by an increase in deciduous woodland cover and landscape heterogeneity, but there was no evidence for a similar effect on carabid beetles. Fragmentation of open habitats negatively affected both early‐successional birds and carabids, specialist species being restricted to large heathlands and young plantations. Several birds of conservation concern were associated with mosaics of woodlands and grasslands, especially meadows and firebreaks. Conserving biodiversity in mosaic plantation landscapes could be achieved by the maintenance of a significant amount of early‐successional habitats and deciduous woodland patches within a conifer plantation matrix.  相似文献   

15.
Aim To test whether, in an urban area, small forest fragments are more important than large ones, the present study aimed at firstly exploring the relationship between plant functional groups or individual species and urban woodlot characteristics such as patch area and isolation, and secondly investigating whether equal‐sized combinations of islands tend to differ in species richness. Location The city of Brussels. Methods We considered the relationship between size, species richness and plant functional groups among one very large (1666 ha) and 11 rather small (2–123 ha) woodlots. Results The largest woodlot harboured species missing in the smaller ones. The species‐area relationship plotted for these wooded patches fitted the semilog model very well. Twenty‐three species had a significantly higher frequency in the main forest. Only six species had a significantly higher frequency in smaller woodlots. The occurrence of species groups with high conservation value (e.g. ancient forest species, rare species) was higher in large patches. However, a SLOSS analysis showed that habitat subdivision appeared to be associated with increased species counts. A marginally nonsignificant effect of distance to the main forest became significant when matrix species were removed from the patch samples. Conclusions Although overall the data showed a higher conservation value for large woods, some plant functional groups (e.g. woodland species vs. ancient forest species) responded differently to fragmentation. This illustrates that, for conservation strategies, studies considering the biotic characteristics of remnants should focus on the species number of particular plant functional groups, especially those with high conservation value. Furthermore, matrix species should be removed from the analysis in order not to mask underlying patch size and distance effects.  相似文献   

16.
Trees outside woodlands facilitate dispersal of woodland invertebrates and may buffer against fragmentation impacts. European ash (Fraxinus excelsior) is common outside woodlands but is threatened by the fungal disease ash dieback (Hymenoscyphus fraxineus). Loss of ash trees to disease or pre-emptive felling could represent a substantial loss in connectivity. We assess the impact of tree disease and the pre-emptive felling of non-woodland ash trees on dispersal and gene flow of woodland invertebrates. We use a stochastic individual-based modelling platform, RangeShifter, to explore impacts of tree loss on the spatial dynamics of ‘virtual’ ash-reliant insects, species which depend on ash to complete their life cycle, with varying dispersal abilities and population densities. We simulate the loss of individual trees in and out of woodlands using current tree cover data from 24 real-world landscapes and estimate functional and genetic connectivity in relation to species-specific habitat-dependent movement costs and the likelihood to move in a straight line. Removal of 10% of ash trees resulted in an increase in dispersal mortality of up to 14.6%, and an increase in isolated woodlands (receiving no immigrants) of up to 2.9%. In some landscapes this resulted in increased isolation by distance (IBD - correlation between genetic and geographic distance). Carrying capacity impacted the proportion of isolated patches and IBD. Species experiencing high dispersal cost were less successful at dispersing under high tree loss, and this decreased geneflow. The consequences of tree loss for woodland connectivity are influenced by the species dispersal traits, but the consequences for gene flow depends on the arrangement of trees within the landscape. Therefore, the focal landscape must be represented explicitly when predicting the impacts of tree diseases on connectivity for a given species.  相似文献   

17.
Forest fragmentation represents a threat to several bird species worldwide. Several factors can change across seasons (e.g. bird perception of the landscape, weather conditions, biotic interactions), which can modify the response of bird populations to forest fragmentation. However, most studies have been conducted only during the breeding season. Here we assessed the relationship between forest fragmentation (patch area and patch isolation) with population abundances of resident species during both the breeding and the non-breeding seasons. Bird population abundances (all species in the community, subsets of forest and habitat generalist species and for individual species) were estimated across a gradient of area-isolation in a semi-arid forest in Cordoba, Argentina. Population abundance of the overall avian community and of the subset of forest species declined with patch area reduction independently of the season. By contrast, the subset of habitat generalist species was not affected by patch area reduction or by the increase in patch isolation, either during the breeding or during the non-breeding season. When the analyses were carried out for individual species, we found four forest species and one habitat generalist species whose responses (the relationship between population abundance and patch area or with isolation) were different between breeding and non-breeding seasons. The negative effects of forest fragmentation were found mainly during the breeding season. Our results suggest that reduction of patch area may lead to a reduction of more than 65% of the population abundance of forest bird species, during both the breeding and the non-breeding season. Therefore, there is an urgent need to conserve large forest patches within the region as irreplaceable elements for the conservation of populations of several species.  相似文献   

18.
Lesser Spotted Woodpecker Dendrocopos minor numbers have declined greatly in England since the early 1980s for reasons that are not yet fully understood. It has been suggested that the species’ decline may be linked to the increase in Great Spotted Woodpeckers Dendrocopos major, changes in woodland habitat quality (such as deadwood abundance) and landscape‐scale changes in tree abundance. We tested some of these hypotheses by comparing the characteristics of woods in southern England where the species is still relatively numerous with those of woods used in the 1980s before the major decline. In each time period, habitat, predator and landscape information from woods known to be occupied by Lesser Spotted Woodpeckers was compared with those found to be unoccupied during surveys. Before the main period of decline, Lesser Spotted Woodpeckers used oak‐dominated, mature, open woods with a large amount of standing deadwood. Habitat use assessed from recent data was very similar, the species being present in mature, open, oak‐dominated woodlands. There was a strong relationship between wood use probability and the extent of woodland within a 3‐km radius, suggesting selection for more heavily wooded landscapes. In recent surveys, there was no difference in deadwood abundance or potential predator densities between occupied and unoccupied woods. Habitat management should focus on creating and maintaining networks of connected woodlands in areas of mature, open woods. Finer‐scale habitat selection by Lesser Spotted Woodpecker within woodlands should be assessed to aid development of beneficial management actions.  相似文献   

19.
Abstract. Recent studies indicate that, in the present-day agricultural landscape, the floristic composition of young woodland communities can be fully developed if the woods are situated adjacent to ancient woodlands. Four 70-yr-old deciduous woods in the Carpathian foothills were examined in relation to three adjacent ancient oak-hornbeam and oak-pine woodlands, which are the nearest source of woodland species diaspores. On the basis of data from 208 plots, the frequencies of various species groups in the field layer of the woods were analysed. The dependence of vegetation differentiation within the recent woods on (a) distance to the border with the ancient woodlands and (b) light intensity was examined by Partial Detrended Canonical Correspondence Analysis (DCCA). A significant relation between distance to ancient woodland and species composition was found for recent woods on rich brown soils. The vegetatively propagating species, myrmecochores and small autochores attained higher cover values near ancient woodland; endozoochores and anemochores were most abundant further away. Within recent, more open woods on poor podzolic and leached brown soils, colonisation is strongly inhibited by dense growth of Carex brizoides; here, vegetation regeneration is much slower than in woods on rich soils much further away from the source of diaspores.  相似文献   

20.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号