首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyze and promote resource efficiency in urban areas, it is important to characterize urban metabolism and particularly, material flows. Material flow analysis (MFA) offers a means to capture the dynamism of cities and their activities. Urban‐scale MFAs have been conducted in many cities, usually employing variants of the Eurostat methodology. However, current methodologies generally reduce the study area into a “black box,” masking details of the complex processes within the city's metabolism. Therefore, besides the aggregated stocks and flows of materials, the movement of materials—often embedded in goods or commodities—should also be highlighted. Understanding the movement and dispersion of goods and commodities can allow for more detailed analysis of material flows. We highlight the potential benefits of using high‐resolution urban commodity flows in the context of understanding material resource use and opportunities for conservation. Through the use of geographic information systems and visualizations, we analyze two spatially explicit datasets: (1) commodity flow data in the United States, and (2) Global Positioning System‐based commercial vehicle (truck) driver activity data in Singapore. In the age of “big data,” we bring advancements in freight data collection to the field of urban metabolism, uncovering the secondary sourcing of materials that would otherwise have been masked in typical MFA studies. This brings us closer to a consumption‐based, finer‐resolution approach to MFA, which more effectively captures human activities and its impact on urban environments.  相似文献   

2.
Sustainable urbanization requires streamlining of resource management in urban systems which in turn requires understanding of urban metabolism (UM). Even though various methods have been applied for UM analysis, to date there is no standardized method for comprehensive accounting of material flows in urban systems. Moreover, the accounting of material flows is rarely implemented with a bottom‐up approach that can provide a thorough analysis of UM. This article presents the Urban Accounting Model (UAM) which aims to allow comprehensive accounting of urban material flows based on a bottom‐up approach. The model comprises two interlinked sub‐models. The first was developed by integrating a new physical input output table (PIOT) framework for urban systems into a three‐dimensional structure. The second comprises a set of physical accounts for systematic accounting of material flows of each economic sector in the system in order to support the compilation of the PIOTs. The functions of the UAM were explored through its application to two urban neighborhoods in the Stockholm Royal Seaport district. The application highlighted that the UAM can describe the physical interactions between the urban system and the environment or other socioeconomic systems, and capture the intersectoral flows within the system. Moreover, its accounts provide information that allow an in‐depth analysis of the metabolism of specific sectors. Overall, the UAM can function as a useful tool for UM analysis as it systematizes data collection and at the same time depicts the physical reality of the urban system.  相似文献   

3.
Urban metabolism (UM) is a way of characterizing the flows of materials and energy through and within cities. It is based on a comparison of cities to living organisms, which, like cities, require energy and matter flows to function and which generate waste during the mobilization of matter. Over the last 40 years, this approach has been applied in numerous case studies. Because of the data‐intensive nature of a UM study, however, this methodology still faces some challenges. One such challenge is that most UM studies only present macroscopic results on either energy, water, or material flows at a particular point in time. This snapshot of a particular flow does not allow the tracing back of the flow's evolution caused by a city's temporal dynamics. To better understand the temporal dynamics of a UM, this article first presents the UM for Brussels Capital Region for 2010, including energy, water, material, and pollution flows. A temporal evaluation of these metabolic flows, as well as some urban characteristics starting from the seminal study of Duvigneaud and Denayer‐De Smet in the early 1970s to 2010, is then carried out. This evolution shows that Brussels electricity, natural gas, and water use increased by 160%, 400%, and 15%, respectively, over a period of 40 years, whereas population only increased by 1%. The effect of some urban characteristics on the UM is then briefly explored. Finally, this article succinctly compares the evolution of Brussels’ UM with those of Paris, Vienna, Barcelona, and Hong Kong and concludes by describing further research pathways that enable a better understanding of the complex functioniong of UM over time.  相似文献   

4.
The article presents the results of a research project aimed at (1) examining the feasibility of material flow analysis (MFA) on a regional and urban scale in France, (2) selecting the most appropriate method, (3) identifying the available data, and (4) calculating the material balance for a specific case. Using the Eurostat method, the study was conducted for the year 2003 and for three regional levels: Paris, Paris and its suburbs, and the entire region. Applying the method on a local scale required two local indicators to be defined in order to take into account the impact of exported wastes on MFA: LEPO, local and exported flows to nature, and DMCcorr, a modified domestic material consumption (DMC) that excludes exported wastes (and imported ones if necessary). As the region extracts, produces, and transforms less material than the country as a whole, its direct material input (DMI) is lower than the national DMI. In all the areas, LEPO exceeds 50% of DMI; in contrast, recycling is very low. The multiscale approach reveals that urban metabolism is strongly impacted by density and the distribution of activities: the dense city center (Paris) exports all of its wastes to the other parts of the region and concentrates food consumption, whereas the agricultural and urban sprawl area consumes high levels of construction materials and fuel. This supports the use of MFA on an urban and regional scale as a basis for material flow management and dematerialization strategies and clearly reveals the important interactions between urban and regional planning and development, and material flows.  相似文献   

5.
This synthesis article presents an overview of an urban metabolism (UM) approach using mixed methods and multiple sources of data for Los Angeles, California. We examine electric energy use in buildings and greenhouse gas emissions from electricity, and calculate embedded infrastructure life cycle effects, water use and solid waste streams in an attempt to better understand the urban flows and sinks in the Los Angeles region (city and county). This quantification is being conducted to help policy‐makers better target energy conservation and efficiency programs, pinpoint best locations for distributed solar generation, and support the development of policies for greater environmental sustainability. It provides a framework to which many more UM flows can be added to create greater understanding of the study area's resource dependencies. Going forward, together with policy analysis, UM can help untangle the complex intertwined resource dependencies that cities must address as they attempt to increase their environmental sustainability.  相似文献   

6.
This work aims to contribute to the number of urban metabolism case studies using a standardized methodology. An economy‐wide material flow analysis (EW‐MFA) was conducted on the Metropolitan Municipality of Cape Town (South Africa) for the year 2013, using the Eurostat framework. The study provides insights into the city's metabolism through various indicators including direct material input (DMI), domestic material consumption (DMC), and direct material output (DMO), among others. In order to report on the uncertainty of the data, a set of data quality indicators originating from the life cycle assessment literature was used. The results show that domestic extraction involves significant quantities of non‐metallic minerals, and that imports consist primarily of biomass and fossil fuels. The role of the city as a regional hub is also made clear from this study and illustrated by large quantities of food and other materials flowing through the city on their way to or from international markets. The results are compared with indicators from other cities and with previous metabolism work done on Cape Town. To fully grasp the impacts of the city's metabolism, more work needs to be done. It will be necessary to understand the upstream impact of local consumption, and consumption patterns should be differentiated on a more nuanced level (taking into account large differences between household income levels as well as separating the metabolism of industry and commerce from residential consumption).  相似文献   

7.
This article describes a new methodological framework to account for urban material flows and stocks, using material flow accounting (MFA) as the underlying method. The proposed model, urban metabolism analyst (UMAn), bridges seven major gaps in previous urban metabolism studies: lack of a unified methodology; lack of material flows data at the urban level; limited categorizations of material types; limited results about material flows as they are related to economic activities; limited understanding of the origin and destination of flows; lack of understanding about the dynamics of added stock; and lack of knowledge about the magnitude of the flow of materials that are imported and then, to a great extent, exported. To explore and validate the UMAn model, a case study of the Lisbon Metropolitan Area was used. An annual time series of material flows from 2003 to 2009 is disaggregated by the model into 28 material types, 55 economic activity categories, and 18 municipalities. Additionally, an annual projection of the obsolescence of materials for 2010–2050 was performed. The results of the case study validate the proposed methodology, which broadens the contribution of existing urban MFA studies and presents pioneering information in the field of urban metabolism. In particular, the model associates material flows with economic activities and their spatial location within the urban area.  相似文献   

8.
Modern environmental and sustainability policy that acknowledges the linkages between socioeconomic processes and environmental pressures and impacts, and designs policies to decouple economic activity from environmental pressures and impacts, requires a sophisticated and comprehensive knowledge base. The concept of industrial metabolism provides a sound conceptual base, and material flow accounting—including primary material inputs and outflows of waste and emissions—provides a well‐accepted operationalization. Studies presenting a comprehensive material flow account for a national economy are rare, especially for developing countries. Countries such as Lao People's Democratic Republic (Lao PDR or Laos) face dual objectives of improving the material standard of living of their people while managing natural resources sustainably and mitigating adverse environmental impacts from growing resource throughput. Our research fills a knowledge gap, presents a comprehensive account of material inputs and outflows of waste and emissions for the Lao PDR national economy, and applies the accounting approach for a low‐income economy in Asia. We present a material balance for the years 2000 and 2015. For this research, we used data from Lao PDR national statistics and the accounting guidelines of the European Statistical Office (Eurostat), which pioneered the use of material flow data as part of its official statistical reporting. We demonstrate the feasibility of the accounting approach and discuss the robustness of results using uncertainty analysis conducted with statistical approaches commonly used in the field of industrial ecology, including Gauss's law of error propagation and Monte Carlo simulation. We find that the fast‐changing scale and composition of Lao PDR material flows, waste, and emissions presents challenges to the existing policy capacity and will require investment into governance of changed patterns of material use, waste disposal, and emissions. We consider the data analysis sufficiently robust to inform such a change in policy direction.  相似文献   

9.
The stock‐driven dynamic material flow analysis (MFA) model is one of the prevalent tools to investigate the evolution and related material metabolism of the building stock. There exists substantial uncertainty inherent to input parameters of the stock‐driven dynamic building stock MFA model, which has not been comprehensively evaluated yet. In this study, a probabilistic, stock‐driven dynamic MFA model is established and China's urban housing stock is selected as the empirical case. This probabilistic dynamic MFA model has the ability to depict the future evolution pathway of China's housing stock and capture uncertainties in its material stock, inflow, and outflow. By means of probabilistic methods, a detailed and transparent estimation of China's housing stock and its material metabolism behavior is presented. Under a scenario with a saturation level of the population, urbanization, and living space, the median value of the urban housing stock area, newly completed area, and demolished area would peak at around 49, 2.2, and 2.2 billion square meters, respectively. The corresponding material stock and flows are 79, 3.5, and 3.3 billion tonnes, respectively. Uncertainties regarding housing stock and its material stock and flows are non‐negligible. Relative uncertainties of the material stock and flows are above 50%. The uncertainty importance analysis demonstrates that the material intensity and the total population are major contributions to the uncertainty. Policy makers in the housing sector should consider the material efficiency as an essential policy to mitigate material flows of the urban building stock and to lower the risk of policy failures.  相似文献   

10.
Shaping sustainable, equitable African cities requires strengthened investigations into the cities’ current resource flows, infrastructure systems, and future resource requirements. The field of urban metabolism (UM) offers multiple forms of analysis with which to map, analyse, and visualize urban resource profiles. Challenges in assessing UM in African cities include data scarcity at the city level, difficulty in tracking informal flows, lack of standardized methods, and the open nature of cities. However, such analyses are needed at the local level, given that city practitioners cannot rely purely on urban planning traditions of the global North or the typically broad studies about urban Africa, for supporting strategies toward sustainable urban development. This article aims to draw together the concepts of sustainable development and UM and explore their application in the African context. Further, the article estimated resource profiles for 120 African cities, including consumption of biomass, fossil fuels, electricity, construction materials, and water, as well as emissions of carbon dioxide. These resource profiles serve as a baseline from which to begin assessing the current and future resource intensity of these cities. It also provides insights into the cities’ relative resource impact, future consumption trends, and potential options for sustainability interventions.  相似文献   

11.
In view of urbanization trends coupled with climate‐change challenges, it is increasingly important to establish less‐harmful means of urban living. To date, urban metabolism (UM) studies have quantified the aggregate material and energy flows into and out of cities and, further, have identified how consumer activity causes these flows. However, little attention has been paid to the networks of conversion processes that link consumer end‐use demands to aggregate metabolic flows. Here, we conduct a systematic literature search to assemble a database of 202 urban energy, water, and waste management processes. We show how the database can help planners and policy makers choose the preferred process to meet a specific resource management need; identify synergies between energy, water, and waste management processes; and compute optimal networks of processes to meet an area's consumer demand at minimum environmental cost. We make our database publicly available under an open‐source license and discuss the possibilities for how it might be used alongside other industrial ecology data sets to enhance research opportunities. This will encourage more holistic UM analyses, which appreciate how both consumer activity and the engineered urban system work together to influence aggregate metabolic flows and thus support efforts to make cities more sustainable.  相似文献   

12.
Urbanization and Socioeconomic Metabolism in Taipei   总被引:2,自引:0,他引:2  
The analysis of socioeconomic metabolism has largely been dominated by quantification of material flows on a mass basis. This neglects the energetic dimensions of the urban metabolism and makes analysis that integrates material and energy flows difficult. The present research applies Odum's emergy concept to integrate energy and material flows for the study of the socioeconomic metabolism of the Taipei area. We also take into consideration the urban sprawl in the Taipei area to study its relationship to the change of socioeconomic metabolism. We interpret SPOT satellite images from 1992 and 2002 to provide a deeper understanding of the whole urban system; results show that Taipei's urban areas increased in size during the past decades. Emergy-based indicators show decreasing empower densities (total emergy use per area) of undeveloped and agricultural areas, whereas the empower density of urban areas has increased, which signals a convergence of resource flows toward urban areas. Such an increase of empower density is mainly due to fossil fuel use and translates into increased environmental loading and decreased sustainability. An analysis of the relationship between urbanization and socioeconomic metabolism indicates that changes in land use affect the characteristics of socioeconomic metabolism in Taipei. The effects of urban sprawl on Taipei's urban sustainability are also discussed.  相似文献   

13.
Although urban metabolism has been a subject of renewed interest for some years, the related studies remain fragmented throughout the world. Most of them concern major cities (megacities and/or national capitals) and, more rarely, intermediate, medium‐sized or small cities. However, urbanization trends show that together with the metropolization process, another one is characterized by the proliferation of intermediate cities. We have studied the metabolism of two French intermediate cities for the year 2012: Rennes Métropole (400,000 inhabitants) and Le Mans Métropole (200,000 inhabitants). To this end, we used material flow analysis (MFA) based on the methodology developed by Eurostat, adapted to the subnational level. This has been made possible by the use, for the first time, of very precise statistical sources concerning freight. We have developed a multiscale approach in order to weigh the urban metabolism of those two cities and to compare it to other cases and larger territories. This allows a better understanding of the specific territorial metabolism of intermediate cities, their hinterlands, and their logistics‐hub function. We conclude with the “urban dimension” of social metabolism, and, thanks to the multiscale approach, to the debate regarding logistical hubs, dematerialization, and territorial autonomy.  相似文献   

14.
The Changing Metabolism of Cities   总被引:7,自引:0,他引:7  
Data from urban metabolism studies from eight metropolitan regions across five continents, conducted in various years since 1965, are assembled in consistent units and compared. Together with studies of water, materials, energy, and nutrient flows from additional cities, the comparison provides insights into the changing metabolism of cities. Most cities studied exhibit increasing per capita metabolism with respect to water, wastewater, energy, and materials, although one city showed increasing efficiency for energy and water over the 1990s. Changes in solid waste streams and air pollutant emissions are mixed.
The review also identifies metabolic processes that threaten the sustainability of cities. These include altered ground water levels, exhaustion of local materials, accumulation of toxic materials, summer heat islands, and irregular accumulation of nutrients. Beyond concerns over the sheer magnitudes of resource flows into cities, an understanding of these accumulation or storage processes in the urban metabolism is critical. Growth , which is inherently part of metabolism, causes changes in water stored in urban aquifers, materials in the building stock, heat stored in the urban canopy layer, and potentially useful nutrients in urban waste dumps.
Practical reasons exist for understanding urban metabolism. The vitality of cities depends on spatial relationships with surrounding hinterlands and global resource webs. Increasing metabolism implies greater loss of farmland, forests, and species diversity; plus more traffic and more pollution. Urban policy makers should consider to what extent their nearest resources are close to exhaustion and, if necessary, appropriate strategies to slow exploitation. It is apparent from this review that metabolism data have been established for only a few cities worldwide, and interpretation issues exist due to lack of common conventions. Further urban metabolism studies are required.  相似文献   

15.
Life cycle assessment (LCA) and urban metabolism (UM) are popular approaches for urban system environmental assessment. However, both approaches have challenges when used across spatial scales. LCA tends to decompose systemic information into micro‐level functional units that mask complexity and purpose, whereas UM typically equates aggregated material and energy flows with impacts and is not ideal for revealing the mechanisms or alternatives available to reduce systemic environmental risks. This study explores the value of integrating UM with LCA, using vehicle transportation in the Phoenix metropolitan area as an illustrative case study. Where other studies have focused on the use of LCA providing upstream supply‐chain impacts for UM, we assert that the broader value of the integrated approach is in (1) the ability to cross scales (from micro to macro) in environmental assessment and (2) establishing an analysis that captures function and complexity in urban systems. The results for Phoenix show the complexity in resource supply chains and critical infrastructure services, how impacts accrue well beyond geopolitical boundaries where activities occur, and potential system vulnerabilities.  相似文献   

16.
One of the ultimate goals of systems biology research is to obtain a comprehensive understanding of the control mechanisms of complex cellular metabolisms. Metabolic Flux Analysis (MFA) is a important method for the quantitative estimation of intracellular metabolic flows through metabolic pathways and the elucidation of cellular physiology. The primary challenge in the use of MFA is that many biological networks are underdetermined systems; it is therefore difficult to narrow down the solution space from the stoichiometric constraints alone. In this tutorial, we present an overview of Flux Balance Analysis (FBA) and (13)C-Metabolic Flux Analysis ((13)C-MFA), both of which are frequently used to solve such underdetermined systems, and we demonstrate FBA and (13)C-MFA using the genome-scale model and the central carbon metabolism model, respectively. Furthermore, because such comprehensive study of intracellular fluxes is inherently complex, we subsequently introduce various pathway mapping and visualization tools to facilitate understanding of these data in the context of the pathways. Specific visualization of MFA results using the BioCyc Omics Viewer and Pathway Projector are shown as illustrative examples.  相似文献   

17.
戴刚  严力蛟  郭慧文  章戈 《生态学报》2015,35(7):2184-2194
通过社会代谢多尺度综合评估(Multi-Scale Integrated Assessment of Societal Metabolism,MSIASM)方法,采用生物-经济压力和不同组织尺度下的体外能代谢率、能源密度指标,并将能源消费碳排放融入评估框架,评价了中国四大直辖市2004年至2010年的社会代谢及其综合发展状况。研究中能源消费碳排放的加入较好补充了MSIASM在生态评估方面的弱势。研究结果显示,四大直辖市整体社会代谢发展良好,体外能代谢率和生物-经济压力稳步上升,能源密度和单位能耗碳排放不断降低,总体呈现良性发展态势。从各个直辖市的社会经济系统各部门表现来看,各城市体现了自己的突出特点。在深入到行业尺度研究体外能代谢率、能源密度后,整体显示出控制工业部门和交通运输部门的能耗增长对于提高经济生产能源效率的突出作用,同时应继续加大金融和计算机等低能耗高经济生产率行业的发展力度。  相似文献   

18.
Purpose

The population living in urban areas of the world continues to grow rapidly. It is, thus, a great priority for the planning practice to embed sustainability concept in their urban development endeavors. Currently, development and expansion of urban systems stress the need to control consumption of resources, especially non-renewable ones. There is also a need to reduce related environmental impacts, while stimulating a sustainable pathway for the population and urban growth.

Methods

Strategic environmental assessment (SEA) is useful for policy design to build an integrated method for supporting the development of a sustainable society. It undertakes territorial assessments and describes urban flows and impacts related to them by using a variety of tools, including material flow accounting (MFA). This study employs MFA, as it fits well within the scope of SEA and supports the growing environmental attention in the urban metabolism approach. Although helpful, MFA has not been systematically applied in the urban development context; for this reason, this paper proposes the integration of SEA and MFA.

Results and discussion

Integration of SEA and MFA generates a new framework for sustainable development planning. The framework is structured in phases oriented to the continual improvement based on the Deming cycle (i.e., plan, do, check, act), a key management approach mainly used in businesses for improving the effectiveness of an organization. It can also be implemented at the urban system level. In order to maintain normative compliance, each process (urban planning, strategic environmental assessment with urban metabolism approach, participatory processes) is standardized in line with a common and mandatory approach. While the processes are integrated among them, highlighting the reciprocal contact points, the results are combined in a holistic perspective. The framework, hence, transforms the voluntary MFA tool into a mandatory process.

Conclusions

The proposed SEA-MFA framework has the potential to unify and standardize the processes of categorizing and quantifying data in order to improve the understanding of urban metabolic principles and scale effects. It also supports management and policy development and meets the requirements of different stakeholders. The framework, thus, generated a novel approach for sustainable urban development planning by providing solutions for specific policy problems and ensuring urban ecological balance and sustainable urban futures.

  相似文献   

19.
The biophysical features of the Argentinean economy are examined using a social metabolism approach. A material flow analysis (MFA) for this economy was conducted for the period 1970–2009. Results show that Argentina follows a resource‐intensive and export‐oriented development model with a persistent physical trade deficit. Also, Argentina's terms of trade (the average weight in tonnes of imports that can be purchased through the sale of 1 tonne of exports) show a declining trend in the period of study. Argentina's economy shows a pattern typical of countries whose economies are based primarily on exports. Comparisons between Argentina's metabolic profile and the metabolic profile of other countries in Latin America and of Australia and Spain show that the Argentinean economy presents the same pattern as other Latin American exporting economies, and its terms of trade are opposite to those of industrialized economies.  相似文献   

20.
In 2007, imports accounted for approximately 34% of the material input (domestic extraction and imports) into the Austrian economy and almost 60% of the GDP stemmed from exports. Upstream material inputs into the production of traded goods, however, are not yet included in the standard framework of material flow accounting (MFA). We have reviewed different approaches accounting for these upstream material inputs, or raw material equivalents (RME), positioning them in a wider debate about consumption‐based perspectives in environmental accounting. For the period 1995–2007, we calculated annual RME of Austria's trade and consumption applying a hybrid approach. For exports and competitive imports, we used an environmentally extended input‐output model of the Austrian economy, based on annual supply and use tables and MFA data. For noncompetitive imports, coefficients for upstream material inputs were extracted from life cycle inventories. The RME of Austria's imports and exports were approximately three times larger than the trade flows themselves. In 2007, Austria's raw material consumption was 30 million tonnes or 15% higher than its domestic material consumption. We discuss the material composition of these flows and their temporal dynamics. Our results demonstrate the need for a consumption‐based perspective in MFA to provide robust indicators for dematerialization and resource efficiency analysis of open economies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号