首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Phospholipase D (PLD), a phospholipid phosphohydrolase, catalyzes the hydrolysis of phosphatidylcholine and other membrane phospholipids to phosphatidic acid (PA) and choline. PLD, ubiquitous in mammals, is a critical enzyme in intracellular signal transduction. PA generated by agonist- or reactive oxygen species (ROS)-mediated activation of the PLDI and PLD2 isoforms can be subsequently converted to lysoPA (LPA) or diacylglycerol (DAG) by phospholipase A1/A2 or lipid phosphate phosphatases. In pulmonary epithelial and vascular endothelial cells, a wide variety of agonists stimulate PLD and involve Src kinases, p-38 mitogen activated protein kinase, calcium and small G proteins. PA derived from the PLD pathway has second-messenger functions. In endothelial cells, PA regulates NAD[P]H oxidase activity and barrier function. In airway epithelial cells, sphingosine-1-phosphate and PA-induced IL-8 secretion and ERKI/2 phosphorylation is regulated by PA. PA can be metabolized to LPA and DAG, which function as first- and second-messengers, respectively. Signaling enzymes such as Raf 1, protein kinase Czeta and type I phosphatidylinositol-4-phosphate 5-kinase are also regulated by PA in mammalian cells. Thus, PA and its metabolic products play a central role in modulating endothelial and epithelial cell functions.  相似文献   

2.
Phospholipase D (PLD), a phospholipid phosphohydrolase, catalyzes the hydrolysis of phosphatidylcholine and other membrane phospholipids to phosphatidic acid (PA) and choline. PLD, ubiquitous in mammals, is a critical enzyme in intracellular signal transduction. PA generated by agonist- or reactive oxygen species (ROS)-mediated activation of the PLD1 and PLD2 isoforms can be subsequently converted to lysoPA (LPA) or diacylglycerol (DAG) by phospholipase A1/A2 or lipid phosphate phosphatases. In pulmonary epithelial and vascular endothelial cells, a wide variety of agonists stimulate PLD and involve Src kinases, p-38 mitogen activated protein kinase, calcium and small G proteins. PA derived from the PLD pathway has second messenger functions. In endothelial cells, PA regulates NAD[P]H oxidase activity and barrier function. In airway epithelial cells, sphingosine-1-phosphate and PA-induced IL-8 secretion and ERK1/2 phosphorylation is regulated by PA. PA can be metabolized to LPA and DAG, which function as first- and second-messengers, respectively. Signaling enzymes such as Raf 1, protein kinase C and type I phosphatidylinositol-4-phosphate 5-kinase are also regulated by PA in mammalian cells. Thus, PA and its metabolic products play a central role in modulating endothelial and epithelial cell functions.  相似文献   

3.
Phospholipase D 2 (PLD2) is the major PLD isozyme associated with the cardiac sarcolemmal (SL) membrane. Hydrolysis of SL phosphatidylcholine (PC) by PLD2 produces phosphatidic acid (PA), which is then converted to 1,2 diacylglycerol (DAG) by the action of phosphatidate phosphohydrolase type 2 (PAP2). In view of the role of both PA and DAG in the regulation of Ca2+ movements and the association of abnormal Ca2+ homeostasis with congestive heart failure (CHF), we examined the status of both PLD2 and PAP2 in SL membranes in the infarcted heart upon occluding the left coronary artery in rats for 1, 2, 4, 8 and 16 weeks. A time-dependent increase in both SL PLD2 and PAP2 activities was observed in the non-infarcted left ventricular tissue following myocardial infarction (MI); however, the increase in PAP2 activity was greater than that in PLD2 activity. Furthermore, the contents of both PA and PC were reduced, whereas that of DAG was increased in the failing heart SL membrane. Treatment of the CHF animals with imidapril, an angiotensin-converting enzyme (ACE) inhibitor, attenuated the observed changes in heart function, SL PLD2 and PAP2 activities, as well as SL PA, PC and DAG contents. The results suggest that heart failure is associated with increased activities of both PLD2 and PAP2 in the SL membrane and the beneficial effect of imidapril on heart function may be due to its ability to prevent these changes in the phospholipid signaling molecules in the cardiac SL membrane.  相似文献   

4.
Previous work from our laboratory demonstrated that 1,25(OH)2D3 rapidly stimulated hydrolysis of membrane polyphosphoinositides (PI) in rat colonocytes and in Caco-2 cells, generating the second messengers DAG and IP3. [Ca2+]i subsequently increased due to IP3-mediated release of intracellular Ca2+ stores, and to Ca2+ influx through a receptor-mediated Ca channel. Studies examining purified antipodal plasma membranes and experiments using Caco-2 cell monolayers found that 1,25(OH)2D3 influenced PI turnover only in the basolateral (BLM) and not brush border (BBM) membranes. Vitamin D analogues with poor affinity for the vitamin D receptor were found to effectively stimulate PI turnover, suggesting the presence of a unique vitamin D receptor in the BLM. Studies from our laboratory have demonstrated saturable, reversible binding of 1,25(OH)2 D3 to colonocyte BLM. Recently, we found that 1,25(OH)2D3 activated the tyrosine kinase c-src in colonocyte BLM by a heterotrimeric guanine nucleotide binding protein (G-protein)-dependent mechanism, with subsequent phosphorylation, translocation to the BLM, and activation of PI-specific phospholipase C gamma. Due to the rise in [Ca2+]i and DAG, two isoforms of protein kinase C (PKCalpha and PKCbeta2), but not other isoforms were activated by 1,25(OH)2D3 in rat colonocytes. Recent studies demonstrated that the seco-steroid translocated the beta2 isoform to the BLM, but not the BBM. In contrast, the alpha isoform did not translocate to either antipodal plasma membrane, but modulated IP3-mediated Ca2+ release from the endoplasmic reticulum. Preliminary studies have shown that 1,25(OH)2D3 also activated phosphatidylcholine phospholipase D (PLD) in Caco-2 cells, generating phosphatidic acid and contributing to the sustained rise in DAG. PLD stimulation occurred by both PKC-dependent and -independent mechanisms. Inhibitors of G-proteins, c-src, and PKC blunted the seco-steroid-mediated activation of PLD. Cells stably transfected with sense PKCalpha showed increased 1,25(OH)2D3-stimulated PLD activation, whereas transfectants with antisense PKCalpha had an attenuated response. In addition, 1,25(OH)2D3 also regulated PLD by activating the monomeric G-protein rho A by a mechanism independent of the G-protein/ c-src/PKC pathway.  相似文献   

5.
We made stable cell lines overexpressing PLD1 (GP-PLD1) from GP+envAm12 cell, a derivative of NIH 3T3 cell. PLD1 activity and extracellular signal-regulated kinase (ERK) phosphorylation were enhanced in GP-PLD1 cells by the treatment of lysophosphatidic acid (LPA). In contrast, these LPA-induced effects were attenuated with the pretreatment of pertussis toxin (PTX) or protein kinase C (PKC) inhibitor. Moreover, accumulation of phosphatidic acid (PA), a product of PLD action, potentiated the LPA-induced ERK activation in GP-PLD1 cells while blocking of PA production with the treatment of 1-butanol attenuated LPA-induced ERK phosphorylation. From these results, we suggest that LPA activate PLD1 through pertussis toxin-sensitive G protein and PKC-dependent pathways, then PA produced from PLD1 activation facilitate ERK phosphorylation.  相似文献   

6.
Background information. At fertilization in mammalian eggs, the sperm induces a series of Ca2+ oscillations via the production of inositol 1,4,5‐trisphosphate. Increased inositol 1,4,5‐trisphosphate production appears to be triggered by a sperm‐derived PLCζ (phospholipase C‐ζ) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5‐bisphosphate hydrolytic activity of PLCζ implies that DAG (diacylglycerol) production, and hence PKC (protein kinase C) stimulation, also occurs during mammalian egg fertilization. Fertilization‐mediated increase in PKC activity has been demonstrated; however, its precise role is unclear. Results. We investigated PLCζ‐ and fertilization‐mediated generation of DAG in mouse eggs by monitoring plasma‐membrane translocation of a fluorescent DAG‐specific reporter. Consistent plasma‐membrane DAG formation at fertilization, or after injection of physiological concentrations of PLCζ, was barely detectable. However, when PLCζ is overexpressed in eggs, significant plasma‐membrane DAG production occurs in concert with a series of unexpected secondary high‐frequency Ca2+ oscillations. We show that these secondary Ca2+ oscillations can be mimicked in a variety of situations by the stimulation of PKC and that they can be prevented by PKC inhibition. The way PKC leads to secondary Ca2+ oscillations appears to involve Ca2+ influx and the loading of thapsigargin‐sensitive Ca2+ stores. Conclusions. Our results suggest that overproduction of DAG in PLCζ‐injected eggs can lead to PKC‐mediated Ca2+ influx and subsequent overloading of Ca2+ stores. These results suggest that DAG generation in the plasma membrane of fertilizing mouse eggs is minimized since it can perturb egg Ca2+ homoeostasis via excessive Ca2+ influx.  相似文献   

7.
Abstract: The mechanism for carbachol (CCh)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled pheochromocytoma PC12 cells with respect to the involvement of protein tyrosine phosphorylation and Ca2+. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol in the presence of 0.3% butanol. Pretreatment of cells with the tyrosine kinase inhibitors herbimycin A, genistein, and tyrphostin inhibited PLD activation by CCh. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands (111, 91, 84, 74, 65–70, 44, and 42 kDa) in PC12 cells treated with CCh. Phosphorylation of the 111-, 91-, 84-, and 65–70-kDa proteins peaked within 1 min, and their time-dependent changes seemingly correlated with that of PLD activation. Others (74, 44MAPK, and 42MAPK kDa) were phosphorylated rather slowly, and maximal tyrosine phosphorylation was observed at 2 min. Herbimycin A inhibited PLD activity and tyrosine phosphorylation of four proteins (111, 91, 84, and 65–70 kDa) in a preincubation time- and concentration-dependent fashion. In Ca2+-free buffer, CCh-induced [3H]phosphatidylbutanol formation and protein tyrosine phosphorylation were abolished. A Ca2+ ionophore, A23187, caused PLD activation and tyrosine phosphorylation of four proteins of 111, 91, 84, and 65–70 kDa only in the presence of extracellular Ca2+. Extracellular Ca2+ dependency for CCh-induced PLD activation was well correlated with that for tyrosine phosphorylation of the four proteins listed above, especially the 111-kDa protein. These results suggest that Ca2+-dependent protein tyrosine phosphorylation is closely implicated in CCh-induced PLD activation in PC12 cells.  相似文献   

8.
The G protein-coupled receptor agonistsangiotensin II (ANG II) and lysophosphatidic acid (LPA) rapidly inducetyrosine phosphorylation of the cytosolic proline-rich tyrosine kinase2 (Pyk2) in IEC-18 intestinal epithelial cells. The combined Pyk2tyrosine phosphorylation induced by phorbol 12,13-dibutyrate, a directagonist of protein kinase C (PKC), and ionomycin, a Ca2+ionophore, was equal to that induced by ANG II. Inhibition of eitherPKC or Ca2+ signaling attenuated the effect of ANG II andLPA, although simultaneous inhibition of both pathways failed tocompletely abolish Pyk2 tyrosine phosphorylation. Cytochalasin D, whichdisrupts stress fibers, strongly inhibited the response of Pyk2 to ANGII or LPA. The distinct Rho-associated kinase (ROK) inhibitors HA-1077and Y-27632, as well as the Rho inhibitor Clostridiumbotulinum C3 exoenzyme, also significantly attenuated ANG II- andLPA-stimulated Pyk2 tyrosine phosphorylation. Simultaneous inhibitionof PKC, Ca2+, and either actin assembly or ROK completelyabolished the Pyk2 response. Together, these results show that ANG IIand LPA rapidly induce Pyk2 tyrosine phosphorylation in intestinalepithelial cells via separate Ca2+-, PKC-, and Rho-mediated pathways.

  相似文献   

9.
1alpha,25-(OH)(2)D(3) regulates protein kinase C (PKC) activity in growth zone chondrocytes by stimulating increased phosphatidylinositol-specific phospholipase C (PI-PLC) activity and subsequent production of diacylglycerol (DAG). In contrast, 24R,25-(OH)(2)D(3) regulates PKC activity in resting zone (RC) cells, but PLC does not appear to be involved, suggesting that phospholipase D (PLD) may play a role in DAG production. In the present study, we examined the role of PLD in the physiological response of RC cells to 24R,25-(OH)(2)D(3) and determined the role of phospholipases D, C, and A(2) as well as G-proteins in mediating the effects of vitamin D(3) metabolites on PKC activity in RC and GC cells. Inhibition of PLD with wortmannin or EDS caused a dose-dependent inhibition of basal [3H]-thymidine incorporation by RC cells and further increased the inhibitory effect of 24R,25-(OH)(2)D(3). Wortmannin also inhibited basal alkaline phosphatase activity and [35]-sulfate incorporation and decreased the stimulatory effect of 24R,25-(OH)(2)D(3). This inhibitory effect of wortmannin was not seen in cultures treated with the PI-3-kinase inhibitor LY294002, verifying that wortmannin affected PLD. Wortmannin also inhibited basal PKC activity and partially blocked the stimulatory effect of 24R,25-(OH)(2)D(3) on this enzyme activity. Neither inhibition of PI-PLC with U73122, nor PC-PLC with D609, modulated PKC activity. Wortmannin had no effect on basal PLD in GC cells, nor on 1alpha,25-(OH)(2)D(3)-dependent PKC. Inhibition of PI-PLC blocked the 1alpha,25-(OH)(2)D(3)-dependent increase in PKC activity but inhibition of PC-PLC had no effect. Activation of PLA(2) with melittin inhibited basal and 24R,25-(OH)(2)D(3)-stimulated PKC in RC cells and stimulated basal and 1alpha,25-(OH)(2)D(3)-stimulated PKC in GC cells, but wortmannin had no effect on the melittin-induced changes in either cell type. Pertussis toxin modestly increased the effect of 24R,25-(OH)(2)D(3) on PKC, whereas GDPbetaS had no effect, suggesting that PLD2 is the isoform responsible. This indicates that 1alpha,25-(OH)(2)D(3) regulates PKC in GC cells via PI-PLC and PLA(2), but not PC-PLC or PLD, whereas 24R,25-(OH)(2)D(3) regulates PKC in RC cells via PLD2.  相似文献   

10.
Lysophosphatidate (LPA) mediates multiple cellular responses via heterotrimeric G protein coupled LPA-1, LPA-2, and LPA-3 receptors. Many G protein-coupled receptors stimulate ERK following tyrosine phosphorylation of growth factor receptors; however, the mechanism(s) of transactivation of receptor tyrosine kinases are not well defined. Here, we provide evidence for the involvement of phospholipase D (PLD) in LPA-mediated transactivation of platelet-derived growth factor receptor-beta (PDGF-R beta). In primary cultures of human bronchial epithelial cells (HBEpCs), LPA stimulated tyrosine phosphorylation of PDGF-R beta and threonine/tyrosine phosphorylation of ERK1/2. The LPA-mediated activation of ERK and tyrosine phosphorylation of PDGF-R beta was attenuated by tyrphostin AG 1296, an inhibitor of PDGF-R kinase, suggesting transactivation of PDGF-R by LPA. Furthermore, LPA-, but not PDGF beta-chain homodimer-induced tyrosine phosphorylation of PDGF-R beta was partially blocked by pertussis toxin, indicating coupling of LPA-R(s) to Gi. Exposure of HBEpCs to LPA activated PLD. Butan-1-ol, which acts as an acceptor of phosphatidate generated by the PLD pathway, blocked LPA-mediated transactivation of PDGF-R beta. This effect was not seen with butan-3-ol, suggesting PLD involvement. The role of PLD1 and PLD2 in the PDGF-R beta transactivation by LPA was investigated by infection of cells with adenoviral constructs of wild type and catalytically inactive mutants of PLD. LPA activated both PLD1 and PLD2 in HBEpCs; however, infection of cells with cDNA for wild type PLD2, but not PLD1, increased the tyrosine phosphorylation of PDGF-R beta in response to LPA. Also, the LPA-mediated tyrosine phosphorylation of PDGF-R beta was attenuated by the catalytically inactive mutant mPLD2-K758R. Infection of HBEpCs with adenoviral constructs of wild type hPLD1, mPLD2, and the inactive mutants of hPLD1 and mPLD2 resulted in association of PLD2 wild type and inactive mutant proteins with the PDGF-R beta compared with PLD1. These results show for the first time that transactivation of PDGF-R beta by LPA in HBEpCs is regulated by PLD2.  相似文献   

11.
Angiotensin (Ang) II acts as a mitogen in vascular smooth muscle cells (VSMC) via the activation of multiple signaling cascades, including phospholipase C, tyrosine kinase, and mitogen-activated protein kinase pathways. However, increasing evidence supports signal-activated phospholipases A(2) and D (PLD) as additional mechanisms. Stimulation of PLD results in phosphatidic acid (PA) formation, and PA has been linked to cell growth. However, the direct involvement of PA or its metabolite diacylglycerol (DAG) in Ang II-induced growth is unclear. PLD activity was measured in cultured rat VSMC prelabeled with [(3)H]oleic acid, while the incorporation of [(3)H]thymidine was used to monitor growth. We have previously reported the Ang II-dependent, AT(1)-coupled stimulation of PLD and growth in VSMC. Here, we show that Ang II (100 nM) and exogenous PLD (0.1-100 units/mL; Streptomyces chromofuscus) stimulated thymidine incorporation (43-208% above control). PA (100 nM-1 microM) also increased thymidine incorporation to 135% of control. Propranolol (100 nM-10 microM), which inhibits PA phosphohydrolase, blocked the growth stimulated by Ang II, PLD, or PA by as much as 95%, an effect not shared by other beta-adrenergic antagonists. Propranolol also increased the production of PA in the presence of Ang II by 320% and reduced DAG and arachidonic acid (AA) accumulation. The DAG lipase inhibitor RHC-80267 (1-10 microM) increased Ang II-induced DAG production, while attenuating thymidine incorporation and release of AA. Thus, it appears that activation of PLD, formation of PA, conversion of PA to DAG, and metabolism of DAG comprise an important signaling cascade in Ang II-induced growth of VSMC.  相似文献   

12.
Endothelins (ETs) are a family of extremely potent vasoconstrictor peptides. In addition, ET-1 acts as a potent mitogen and activates phospholipase C in smooth muscle cells and fibroblasts. We examined the effects of ET-1 on phosphatidylcholine (PC) metabolism and thymidine incorporation in control Rat-6 fibroblasts and in cells that overexpress protein kinase C beta 1 (PKC). PC pools were labeled with [3H]myristic acid, and formation of phosphatidylethanol (PEt), an unambiguous marker of phospholipase D (PLD) activation, was monitored. ET-1 stimulated much greater PEt formation in the PKC overexpressing cells. ET-1 action was dose-dependent with a half-maximal effect at 1.0 x 10(-9) M. With increasing ethanol concentrations, [3H]PEt formation increased at the expense of [3H]phosphatidic acid (PA). Propranolol, an inhibitor of PA phosphohydrolase, increased [3H]PA accumulation and decreased [3H]diacylglycerol (DAG) formation. These data are consistent with the formation of [3H]DAG from PC by the sequential action of PLD and PA phosphohydrolase. Phorbol esters are known to stimulate thymidine incorporation and PLD activity to a greater extent in PKC overexpressing cells than in control cells. ET-1 also stimulates thymidine incorporation to a greater extent in the PKC overexpressing cells. The effect of ET-1 on thymidine incorporation into DNA in the overexpressing cells was also dose-dependent with a half-maximal effect at 0.3 x 10(-9) M. Enhanced PLD activity induced by ET-1 in the overexpressing cells may contribute to the mitogenic response, especially in light of a possible role of the PLD product, PA, in regulation of cell growth.  相似文献   

13.
Abstract: The mechanism for hydrogen peroxide (H2O2)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled PC12 cells. In the presence of butanol, H2O2 caused a great accumulation of [3H]phosphatidylbutanol in a concentration- or time-dependent manner. However, treatment with H2O2 of cell lysates exerted no effect on PLD activity. Treatment with H2O2 had only a marginal effect on phospholipase C (PLC) activation. A protein kinase C (PKC) inhibitor, Ro 31-8220, did not inhibit but rather slightly enhanced H2O2-induced PLD activity. Thus, H2O2-induced PLD activation is considered to be independent of the PLC-PKC pathway in PC12 cells. In contrast, pretreatment with tyrosine kinase inhibitor herbimycin A, genistein, or ST638 resulted in a concentration-dependent inhibition of H2O2-induced PLD activation. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands after the H2O2 treatment and tyrosine phosphorylation of these proteins was inhibited by these tyrosine kinase inhibitors. Moreover, depletion of extracellular Ca2+ abolished H2O2-induced PLD activation and protein tyrosine phosphorylation. Extracellular Ca2+ potentiated H2O2-induced PLD activation in a concentration-dependent manner. Taken together, these results suggest that a certain Ca2+-dependent protein tyrosine kinase(s) somehow participates in H2O2-induced PLD activation in PC12 cells.  相似文献   

14.
Abstract: Activation of phospholipase D (PLD) is involved in receptor-mediated signal transduction responses. Signaling from PLD to a downstream molecule(s) appears to be mediated by the PLD product phosphatidic acid (PA). A target molecule(s) of PA, however, has not yet been identified. The present study sought to define such a target molecule(s) of PA. In bovine brain cytosol, proteins with apparent molecular weights of 29,000 (p29) and 32,000 (p32) were prominently phosphorylated in the presence of PA, but not in its absence, indicating that there is a PA-regulated protein kinase (PARK) in bovine brain that phosphorylates p29 and p32. One of these substrates, p29, was purified to near homogeneity. Its partial amino acid sequence was determined and found to be identical to that of a known brain-specific 25-kDa protein (p25). The purified p29 was also readily recognized by and immunoprecipitated with an anti-p25 antibody. These results suggest that p29 is very similar to or identical with p25. Using the purified p29 as a substrate, PARK was purified to near homogeneity. The purified PARK had an apparent molecular weight of 80,000, was strongly recognized by an anti-protein kinase C (PKC)α antibody, and was activated by phosphatidylserine (PS) as well as PA. The PA- and PS-stimulated PARK activity was extremely augmented by the presence of 1 µM free Ca2+. In the presence of 1 mM EGTA, phorbol 12-myristate 13-acetate activated PARK synergistically with PA or PS. Similar results were obtained with the purified recombinant PKCα. From these results, it is suggested that the PARK activity purified might be attributed to PKCα. In p25-depleted bovine brain cytosol, which was prepared by treatment of bovine brain cytosol with the anti-p25 antibody, PA-dependent phosphorylation of p29, but not p32, was almost completely eliminated. When PKCα in bovine brain cytosol was depleted by its precipitation with the anti-PKCα antibody, neither p29 nor p32 in this PKCα-depleted cytosol was phosphorylated in the presence of PA. These results indicate that in bovine brain cytosol PA activates PKCα, which, in turn, phosphorylates p29, which may be identical with p25.  相似文献   

15.
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [32P] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [32P] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC and , the major isotypes of PKC in BPAECs, by TPA ( 100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [32P] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.  相似文献   

16.
The regulatory mechanism through which the phospholipase D (PLD) isoforms PLD1 and PLD2 are activated is poorly understood. We investigated the possibility that the PLD isozymes are differentially regulated in response to pharmacologic stimulants in cells. In this report, we demonstrate for the first time that H2O2 and EGF differentially induce tyrosine phosphorylation of the PLD isozymes in A431 cells, which express both PLD1 and PLD2. H2O2 induced tyrosine phosphorylation of PLD1 and PLD2, whereas EGF only caused the tyrosine phosphorylation of PLD2. Both agents also induced phosphorylation of the EGF receptor. Interestingly, the PLD isozymes were associated with the EGF receptor and PKC-alpha in a ligand independent manner. Activation of PLD by H2O2 and EGF nearly correlated with tyrosine phosphorylation of the protein in PLD1 immune complexes. Activation of PLD by both agents was inhibited by the PKC inhibitor, Ro 31-8220, and by the down-regulation of PKC. Pretreatment of the cells with the tyrosine kinase inhibitor tyrphostin AG1478 resulted in inhibition of the H2O2 and EGF-induced tyrosine phosphorylation and PLD activation. These results indicate that H2O2 and EGF induce differential tyrosine phosphorylation of PLD isozymes. Also, the activation of PLD by these agonists involves tyrosine phosphorylation and PKC activation.  相似文献   

17.
The addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) to human peripheral blood neutrophils primes phospholipase D (PLD) to subsequent stimulation by N-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). The present investigation was directed at the elucidation of the pathway(s) involved in the regulation of the activity of PLD in untreated as well as in GM-CSF-primed neutrophils. Pretreatment with pertussis toxin (PT) totally inhibited fMLP-induced activation of PLD in control or GM-CSF-treated cells. PT did not affect the activation of PLD by PMA but inhibited the priming effect of GM-CSF. Activation of PLD by fMLP was dose-dependently inhibited by erbstatin, an inhibitor of tyrosine kinases. Furthermore, pre-incubation with GM-CSF accelerated the tyrosine phosphorylation response to fMLP (as analysed by protein immunoblot with antiphosphotyrosine antibodies). In PMA-stimulated neutrophils, erbstatin antagonized the priming effect of GM-CSF on PLD without affecting the direct effects of the phorbol ester. Buffering cytoplasmic calcium with the chelator BAPTA inhibited fMLP-induced activation of PLD as monitored by the formation of phosphatidylethanol. The stimulation of PLD by PMA was partially attenuated in BAPTA-loaded cells while the priming effect of GM-CSF was abolished. Thus, priming of human neutrophil PLD by GM-CSF may be mediated by G-proteins, by increases in the levels of cytosolic free calcium, and by stimulation of protein kinase C and/or tyrosine kinase(s).  相似文献   

18.
The effect of modulators of protein kinase C (PKC) activity on Ca2+ translocation in retinal rod microsomes was studied. It is shown that PKC activators (phorbol 12-myristate-13-acetate (PMA) and diacylglycerol (DAG)) and inhibitors (chelerythrine chloride, polymyxin B, and phloretin) stimulate and inhibit ATP-dependent Ca2+ uptake in retinal rod microsomes, respectively. This effect is apparently due to an influence of PKC on Ca-ATPase contained in these vesicular structures. It was found that PKC inhibitors (chelerythrine chloride, polymyxin B, and phloretin) and activators (PMA and DAG) potentiate Ca2+ release from Ca2+ -loaded retinal rod microsomes. Specific and nonspecific mechanisms of Ca-release stimulation by the modulators of PKC activity are discussed.  相似文献   

19.
The muscarinic agonist, acetylcholine (ACh), stimulates phospholipase D (PLD) activity in tracheal smooth muscle cells. Direct activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) also stimulates PLD in this tissue. Activation of ACh-induced PLD was inhibited by the tyrosine kinase inhibitor genistein in a concentration-dependent manner. Presently known isoforms of PLD, PLD1 and PLD2, were identified in tracheal smooth muscle and their activation-induced phosphorylation status studied. Both ACh and PMA increased phosphorylation of PLD1 that was significantly blocked by genistein or the PKC inhibitor calphostin C. PLD2 phosphorylation was not detected in the present experiments. Western blots probed with an anti-phosphotyrosine antibody indicate that PLD1 in this tissue is phosphorylated on tyrosine residues after ACh or PMA stimulation. Tyrosine phosphorylation of PLD1 was blocked by genistein and calphostin C. No tyrosine residues were phosphorylated on PLD2. Taken together, these results demonstrate that porcine tracheal smooth muscle cells express both isoforms PLD1 and PLD2. However, on muscarinic activation only PLD1 in this tissue is phosphorylated by PKC via a tyrosine-kinase-dependent pathway.  相似文献   

20.
We previously found that lysophosphatidic acid (LPA), a bioactive phospholipid, induced Na+-dependent Ca2+ efflux from cultured bovine adrenal chromaffin cells, possibly by activating a Na+/Ca2+ exchanger. The present study on the structure-activity relationship of its action revealed that 1-acyl type LPAs were stronger stimulants than the corresponding 1-O-alkyl type LPAs having a long alkyl moiety with the same chain length. Lysophosphatidylglycerol, suramin and N-palmitoyl-tyrosine phosphoric acid have all been reported to inhibit the action of LPA in some animal cells and platelets, but only lysophosphatidylglycerol was found to inhibit selectively LPA-induced Ca2+ efflux from chromaffin cells. LPA-induced Ca2+ extrusion was suggested to be involved in both acceleration of return of intracellular Ca2+ in Fura 2-loaded bovine chromaffin cells after addition of carbachol, and inhibition of carbachol-induced catecholamine release when the cells were co-incubated with LPA. The Ca2+ efflux from chromaffin cells stimulated by LPA was augmented by their pretreatment with staurosporine or calphostin C, inhibitors of protein kinase C, but reduced by their preincubation with phorbol 12-myristate 13-acetate. Furthermore, the response to LPA was potentiated by sodium vanadate, a protein tyrosine phosphatase inhibitor, but inhibited by genistein, an inhibitor of protein tyrosine kinase. These results suggest that protein kinase C and protein tyrosine kinase are involved negatively and positively, respectively, in the signal transduction triggered by LPA, leading to activation of the Na+/Ca2+ exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号