首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protonated and a completely deuterated two-iron algal ferredoxin from Synechococcus lividus have been studied by optical, electron paramagnetic resonance, electron-nuclear double resonance, proton magnetic resonance and Mossbauer spectroscopies; temperature dependent magnetic susceptibility measurements are reported as well. These studies have confirmed the electron localized model of the active center in the two-iron ferredoxins, as previously deduced from studies of spinach ferredoxin, have yielded much more precise spectroscopic parameters for this center, and have thus greatly increased the confidence in this model.  相似文献   

2.
Recent spectroscopic and magnetic susceptibility studies of the iron center in the two-iron ferredoxins provide criteria which any model for the iron-sulfur complex in these proteins must satisfy. These criteria are most stringent for parsley and spinach ferredoxin: the reduced proteins contain a high-spin ferric atom antiferromagnetically exchange-coupled (presumably via sulfide bridging ligands) to a high-spin ferrous atom. In the oxidized proteins the iron atoms are antiferromagnetically spin-coupled, high-spin ferric atoms. Arguments are given to substantiate the claim that the ferrous atom in the reduced protein is ligated by four sulfur atoms in a distorted tetrahedral configuration: two are the bridging sulfides, two are cysteinyl sulfurs. A treatment of proton contact shifts based upon the above model is pertinent to proton magnetic resonance data already available and provides a means to identify directly the ligands at both iron atoms via further PMR experiments.  相似文献   

3.
Plant ferredoxin serves as the physiological electron donor for sulfite reductase, which catalyzes the reduction of sulfite to sulfide. Ferredoxin and sulfite reductase form an electrostatically stabilized 1:1 complex for the intermolecular electron transfer. The protein-protein interaction between these proteins from maize leaves was analyzed by nuclear magnetic resonance spectroscopy. Chemical shift perturbation and cross-saturation experiments successfully mapped the location of two major interaction sites of ferredoxin: region 1 including Glu-29, Glu-30, and Asp-34 and region 2 including Glu-92, Glu-93, and Glu-94. The importance of these two acidic patches for interaction with sulfite reductase was confirmed by site-specific mutation of acidic ferredoxin residues in regions 1 and 2, separately and in combination, by which the ability of mutant ferredoxins to transfer electrons and bind to sulfite reductase was additively lowered. Taken together, this study gives a clear illustration of the molecular interaction between ferredoxin and sulfite reductase. We also present data showing that this interaction surface of ferredoxin significantly differs from that when ferredoxin-NADP(+) reductase is the interaction partner.  相似文献   

4.
The seven-iron-containing ferredoxins from Azotobacter vinelandii and Thermus thermophilus have been investigated by low-temperature magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectroscopies and room temperature ultraviolet-visible absorption spectroscopy. The results confirm the presence of one trinuclear and one tetranuclear iron-sulfur cluster in both ferredoxins and facilitate comparison of the electronic and magnetic properties of the oxidized and reduced [3Fe-xS] clusters. MCD magnetization data are consistent with an S = 2 ground state for both reduced [3Fe-xS] clusters, but indicate differences in the rhombicity of the zero-field splittings. The data permit rationalization of the absence of a delta M = 4 EPR transition for the reduced [3Fe-xS] cluster in A. vinelandii ferredoxin I. Spectroscopic studies of anaerobically isolated A. vinelandii ferredoxin I do not support the hypothesis that the [3Fe-xS] cluster arises as a result of aerial oxidative damage to a [4Fe-4S] cluster during isolation. The possibility that two distinct forms of [3Fe-xS] clusters can exist in A. vinelandii ferredoxin I was investigated by spectroscopic studies as a function of pH. The results reveal two distinct and interconvertible forms of the reduced [3Fe-xS] cluster, but do not permit rationalization of the inconsistencies in the structural data that have been reported for the oxidized clusters.  相似文献   

5.
The PsaC protein of the Photosystem I (PSI) complex in thylakoid membranes coordinates two [4Fe-4S] clusters, FA and FB. Although it is known that PsaC participates in electron transfer to ferredoxin, the pathway of electrons through this protein is unknown. To elucidate the roles of FA and FB, we created two site-directed mutant strains of the cyanobacterium Anabaena variabilis ATCC 29413. In one mutant, cysteine 13, a ligand for FB was replaced by an aspartic acid (C13D); in the other mutant, cysteine 50, a ligand for FA was modified similarly (C50D). Low-temperature electron paramagnetic resonance studies demonstrated that the C50D mutant has a normal FB center and a modified FA center. In contrast, the C13D strain has normal FA, but failed to reveal any signal from FB. Room-temperature optical studies showed that C13D has only one functional electron acceptor in PsaC, whereas two such acceptors are functional in the C50D and wild-type strains. Although both mutants grow under photoautotrophic conditions, the rate of PSI-mediated electron transfer in C13D under low light levels is about half that of C50D or wild type. These data show that (i) FB is not essential for the assembly of the PsaC protein in PSI and (ii) FB is not absolutely required for electron transfer from the PSI reaction center to ferredoxin.  相似文献   

6.
A model is proposed to explain the variation of some physical parameters within the reduced [2Fe-2S] ferredoxin group. According to this model, the main effects result from a variable mixing of some d orbitals of the Fe2+ ion owing to rhombic distortion of the active site having the same geometrical character, but different in intensity, for each protein. Some peculiar experimental results such as the axial electron paramagnetic resonance spectra of adrenal ferredoxin and Pseudomonas putida ferredoxin and the electric field gradient tensor of P. putida ferredoxin are explained without assuming properties drastically different from those of the other ferredoxins, as had been suggested in the literature.  相似文献   

7.
Haloferax mediterranei is a halophilic archaeon that can grow in aerobic conditions with nitrate as sole nitrogen source. The electron donor in the aerobic nitrate reduction to ammonium was a ferredoxin. This ferredoxin has been purified and characterised. Air-oxidized H. mediterranei ferredoxin has a UV-visible absorption spectra typical of 2Fe-type ferredoxins with an A420/A280 of 0.21. The nuclear magnetic resonance (NMR) spectra of the ferredoxin showed similarity to those of ferredoxins from plant and bacteria, containing a [2Fe-2S] cluster. The physiological function of ferredoxin might be to serve as an electron donor for nitrate reduction to ammonium by assimilatory nitrate (EC 1.6.6.2) and nitrite reductases (EC 1.7.7.1). The apparent molecular weight (Mr) of the ferredoxin was estimated to be 21 kDa on SDS-polyacrylamide gel electrophoresis (SDS-PAGE).  相似文献   

8.
Complexes of Photosynthetic Redox Proteins Studied by NMR   总被引:2,自引:2,他引:0  
In the photosynthetic redox chain, small electron transfer proteins shuttle electrons between the large membrane-associated redox complexes. Short-lived but specific protein:protein complexes are formed to enable fast electron transfer. Recent nuclear magnetic resonance (NMR) studies have elucidated the binding sites on plastocyanin, cytochrome c (6) and ferredoxin. Also the orientation of plastocyanin in complex with cytochrome f has been determined. Based on these results, general features that enable the formation of such transient complexes are discussed.  相似文献   

9.
The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with M?ssbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and M?ssbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The M?ssbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Münck, E. (1980) J. Biol. Chem. 255, 1793-1796).  相似文献   

10.
Crystal structures of formaldehyde ferredoxin oxidoreductase (FOR), a tungstopterin-containing protein from the hyperthermophilic archaeon Pyrococcus furiosus, have been determined in the native state and as a complex with the inhibitor glutarate at 1.85 A and 2. 4 A resolution, respectively. The native structure was solved by molecular replacement using the structure of the homologous P. furiosus aldehyde ferredoxin oxidoreductase (AOR) as the initial model. Residues are identified in FOR that may be involved in either the catalytic mechanism or in determining substrate specificity. The binding site on FOR for the physiological electron acceptor, P. furiosus ferredoxin (Fd), has been established from an FOR-Fd cocrystal structure. Based on the arrangement of redox centers in this structure, an electron transfer pathway is proposed that begins at the tungsten center, leads to the (4Fe:4S) cluster of FOR via one of the two pterins that coordinate the tungsten, and ends at the (4Fe:4S) cluster of ferredoxin. This pathway includes two residues that coordinate the (4Fe:4S) clusters, Cys287 of FOR and Asp14 of ferredoxin. Similarities in the active site structures between FOR and the unrelated molybdoenzyme aldehyde oxidoreductase from Desulfovibrio gigas suggest that both enzymes utilize a common mechanism for aldehyde oxidation.  相似文献   

11.
The details of most electron transfer reactions involving iron-sulfur proteins have remained undisclosed because of the lack of experimental methods suitable to measure precisely the relevant rates. Nuclear magnetic resonance (NMR) provides a powerful means to overcome these problems, at least with selected proteins. A combination of NMR studies and site-directed mutagenesis experiments has been instrumental in defining both the site of interaction and the main trends of the intracomplex electron transfer in the case of rubredoxin electron self-exchange. Analysis of the NMR data obtained for mixtures of different redox levels of several 2[4Fe-4S] ferredoxins provided both first-order, for intramolecular, and second-order, for intermolecular, rate constants. Their dependence as a function of structural changes gave insight into the mechanism of electron transfer in this type of protein. Contrary to some expectations, the high-spin [4Fe-4Se]+ clusters assembled in isopotential ferredoxins do not change the intramolecular electron transfer rate as compared to low-spin [4Fe-4S]+ homologs. In combination with activity measurements, the kinetic data have been used to model the electron transfer competent complexes between Clostridium pasteurianum ferredoxin and the main enzymes acting as redox partners in vivo.  相似文献   

12.
A partially-purified sample of hydrogenase from Methanobacterium thermoautotrophicum (delta H strain) has been investigated by optical absorption, magnetic circular dichroism and electron paramagnetic resonance spectroscopy. Variable temperature magnetic circular dichroism studies reveal, for the first time, the optical transitions associated with the Ni(III) center in the oxidized enzyme. Low temperature magnetic circular dichroism spectroscopy provides a new method of assessing both the coordination environment of Ni in hydrogenase and the appropriateness of inorganic model complexes.  相似文献   

13.
Ferredoxins are proteins which contain iron and inorganic sulfide and are capable of electron transport. They are found in a wide range of organisms, from anaerobic bacteria, to plants and mammals. Although NMR spectroscopy has been used to study ferredoxins since the 1970s, little important structural or biochemical information has resulted from these investigations. The major difficulty has been the effect of the paramagnetic iron-sulfur clusters on the peptide resonances, hindering nuclear Overhauser effect (NOE) studies and causing broad line widths. These effects are most pronounced on resonances arising from the nuclei closest to the iron-sulfur center. Unfortunately, these are likely to be the most interesting nuclei, as they report the events and geometry in the vicinity of the active sites. In this paper, the first direct assignment of beta-cysteinyl 13C resonances for any iron-sulfur protein is reported for the spectrum of Pseudomonas putida ferredoxin. These resonances are of special significance, as they arise from the atoms on the protein closest to the iron centers, with the exception of the directly bound cysteinyl sulfur atoms. In addition, cysteinyl and ring system 1H NMR resonance assignments are made for the spectra of P. putida ferredoxin and Azotobacter vinelandii ferredoxin I.  相似文献   

14.
Archaeal zinc-containing ferredoxin from Sulfolobus sp. strain 7 contains one [3Fe-4S] cluster (cluster I), one [4Fe-4S] cluster (cluster II), and one isolated zinc center. Oxidative degradation of this ferredoxin led to the formation of a stable intermediate with 1 zinc and approximately 6 iron atoms. The metal centers of this intermediate were analyzed by electron paramagnetic resonance (EPR), low temperature resonance Raman, x-ray absorption, and (1)H NMR spectroscopies. The spectroscopic data suggest that (i) cluster II was selectively converted to a cubane [3Fe-4S](1+) cluster in the intermediate, without forming a stable radical species, and that (ii) the local metric environments of cluster I and the isolated zinc site did not change significantly in the intermediate. It is concluded that the initial step of oxidative degradation of the archaeal zinc-containing ferredoxin is selective conversion of cluster II, generating a novel intermediate containing two [3Fe-4S] clusters and an isolated zinc center. At this stage, significant structural rearrangement of the protein does not occur. We propose a new scheme for oxidative degradation of dicluster ferredoxins in which each cluster converts in a stepwise manner, prior to apoprotein formation, and discuss its structural and evolutionary implications.  相似文献   

15.
Here we provide insights into the molecular structure of the two-iron 19-kDa rubredoxin (AlkG) of Pseudomonas oleovorans using solution-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering studies. Sequence alignment and biochemical studies have suggested that AlkG comprises two rubredoxin folds connected by a linker region of approximately 70 amino acid residues. The C-terminal domain (C-Rb) of this unusual rubredoxin, together with approximately 35 amino acid residues of the predicted linker region, was expressed in Escherichia coli, purified in the one-iron form and the structure of the cadmium-substituted form determined at high-resolution by NMR spectroscopy. The structure shows that the C-Rb domain is similar in fold to the conventional one-iron rubredoxins from other organisms, whereas the linker region does not have any discernible structure. This tandem "flexible-folded" structure of the polypeptide chain derived for the C-Rb protein was confirmed using solution X-ray scattering methods. X-ray scattering studies of AlkG indicated that the 70-amino acid residue linker forms a structured, yet mobile, polypeptide segment connecting the globular N- and C-terminal domains. The X-ray scattering studies also showed that the N-terminal domain (N-Rb) has a molecular conformation similar to that of C-Rb. The restored molecular shape indicates that the folded N-Rb and C-Rb domains of AlkG are noticeably separated, suggesting some domain movement on complex formation with rubredoxin reductase to allow interdomain electron transfer between the metal centers in AlkG. This study demonstrates the advantage of combining X-ray scattering and NMR methods in structural studies of dynamic, multidomain proteins that are not suited to crystallographic analysis. The study forms a structural foundation for functional studies of the interaction and electron-transfer reactions of AlkG with rubredoxin reductase, also reported herein.  相似文献   

16.
S Aono  F O Bryant    M W Adams 《Journal of bacteriology》1989,171(6):3433-3439
The archaebacterium Pyrococcus furiosus is a strict anaerobe that grows optimally at 100 degrees C by a fermentative-type metabolism in which H2 and CO2 are the only detectable products. A ferredoxin, which functions as the electron donor to the hydrogenase of this organism was purified under anaerobic reducing conditions. It had a molecular weight of approximately 12,000 and contained 8 iron atoms and 8 cysteine residues/mol but lacked histidine or arginine residues. Reduction and oxidation of the ferredoxin each required 2 electrons/mol, which is consistent with the presence of two [4Fe-4S] clusters. The reduced protein gave rise to a broad rhombic electronic paramagnetic resonance spectrum, with gz = 2.10, gy = 1.86, gx = 1.80, and a midpoint potential of -345 mV (at pH 8). However, this spectrum represented a minor species, since it quantitated to only approximately 0.3 spins/mol. P. furiosus ferredoxin is therefore distinct from other ferredoxins in that the bulk of its iron is not present as iron-sulfur clusters with an S = 1/2 ground state. The apoferredoxin was reconstituted with iron and sulfide to give a protein that was indistinguishable from the native ferredoxin by its iron content and electron paramagnetic resonance properties, which showed that the novel iron-sulfur clusters were not artifacts of purification. The reduced ferredoxin also functioned as an electron donor for H2 evolution catalyzed by the hydrogenase of the mesophilic eubacterium Clostridium pasteurianum. P. furiosus ferredoxin was resistant to denaturation by sodium dodecyl sulfate (20%, wt/vol) and was remarkably thermostable. Its UV-visible absorption spectrum and electron carrier activity to P. furiosus hydrogenase were unaffected by a 12-h incubation of 95 degrees C.  相似文献   

17.
Electron paramagnetic resonance studies of Complex II from the mitochondrial respiratory chain and soluble preparations of succinate dehydrogenase have, for the first time, identified a signal arising from a [4Fe-4S]1+ cluster, S2, in dithionite-reduced samples. Redox titrations, monitored by electron paramagnetic resonance spectroscopy demonstrate that this signal appears at the same midpoint potential as the enhancement of the spin relaxation properties of the [2Fe-2S]1+ center, S1, in both Complex II and reconstitutively active soluble enzyme. The results complement recent magnetic circular dichroism studies of succinate dehydrogenase (Johnson, M. K., Morningstar, J. E., Bennett, D. E., Ackrell, B. A. C., and Kearney, E. B. (1985) J. Biol. Chem. 260, 7368-7378) which assigned cluster S2 as a [4Fe-4S]2+,1+ center and provide evidence for spin interaction between the paramagnetic reduced forms of centers S1 and S2.  相似文献   

18.
Vertebrate ferredoxins function in the transfer of reducing equivalents from NADPH:ferredoxin oxidoreductase to cytochrome P450 enzymes involved in steroid metabolism. We report here the expression of human mitochondrial ferredoxin in the yeast Saccharomyces cerevisiae. The full-length ferredoxin protein containing the ferredoxin mitochondrial leader sequence could not be stably expressed in S. cerevisiae, but a fusion protein consisting of the mature portion of ferredoxin linked to the mitochondrial leader sequence of the S. cerevisiae cytochrome c oxidase subunit Va protein (COX5a) could be stably expressed. The COX5a:ferredoxin fusion protein was targeted to the mitochondria as a preprotein and was cleaved at the normal processing site of the COX5a presequence during import into the matrix. Absorption spectra and electron transfer activity of the isolated fusion protein established that the [2Fe-2S] center was correctly assembled and incorporated into the recombinant ferredoxin in this heterologous system.  相似文献   

19.
Spinach chloroplast membranes were oriented onto mylar sheets by partial dehydration, and the orientation of the magnetic axes of membrane-bound paramagnetic clusters determined by electron paramagnetic resonance (EPR) spectroscopy. Our results indicate that the reduced Rieske iron-sulfur cluster signal is of orthorhombic symmetry oriented with th gy = 1.90 axis orthogonal to the membrane plane and with the gz = 2.03 axis in the membrane plane; the gx-axis is undetectable, presumably due to its broadness. If the Rieske center is a two-iron iron-sulfur cluster, we conclude that the iron-iron axis lies in the plane of the membrane. Illumination reduces the two bound chloroplast iron-sulfur proteins known as Clusters A and B. Center A is oriented such that gx = 1.86 and gy = 1.94 lie at an angle of about 40, and gz = 2.05 is at approximately 25, to the membrane plane. There are two possible orientations of Cluster B depending on the set of g-values assigned to this cluster. For one set of g-values, gz = 2.04 and gx = 1.89 are oriented in the plane of the membrane while gy = 1.92 is orthogonal to the plane. Alternatively, gz = 2.07 and gy = 1.94 are oriented approximately 50 and 40 to the membrane plane respectively, and gx = 1.80 is in the plane of the membrane. An additional light-induced signal at g = 2.15 oriented orthogonal to the plane is currently unexplained, as are other membrane perpendicular signals seen at g = 2.3 and g = 1.73 in dark-adapted samples.  相似文献   

20.
Azotobacter vinelandii (4Fe-4S)2 ferredoxin I (Fd I) is an electron transfer protein with Mr equals 14,500 and Eo equals -420 mv. It exhibits and EPR signal of g equals 2.01 in its isolated form. This resonance is almost identical with the signal that originates from a "super-oxidized" state of the 4Fe-4S cluster of potassium ferricyanide-treated Clostridium ferredoxin. A cluster that exhibits this EPR signal at g equals 2.01 is in the same formal oxidation state as the cluster in oxidized Chromatium High-Potential-Iron-Protein (HiPIP). On photoreduction of Fd I with spinach chloroplast fragments, the resonance at g equals 2.01 vanishes and no EPR signal is observed. This EPR behavior is analogous to that of reduced HiPIP, which also fails to exhibit an EPR spectrum. These characteristics suggest that a cluster in A. vinelandii Fd I functions between the same pair of states on reduction as does the cluster in HiPIP, but with a midpoint reduction potential of -420 mv in contrast to the value of +350 mv characteristic of HiPIP. Quantitative EPR and stoichoimetry studies showed that only one 4Fe-4S cluster in this (4Fe-4S)2 ferredoxin is reduced. Oxidation of Fd I with potassium ferricyanide results in the uptake of 1 electron/mol as determined by quantitative EPR spectroscopy. This indicates that a cluster in Fd I shows no electron paramagnetic resonance in the isolated form of the protein accepts an electron on oxidation, as indicated by the EPR spectrum, and becomes paramagnetic. The EPR behavior of this oxidizable cluster indicates that it also functions between the same pair of oxidation states as does the Fe-S cluster in HiPIP. The midpoint reduction potential of this cluster is approximately +340 mv. A. vinelandii Fd I is the first example of an iron-sulfur protein which contains both a high potential cluster (approximately +340 mv) and a low potential cluster (-420 mv). Both Fe-S clusters appear to function between the same pair of oxidation states as the single Fe-S cluster in Chromatium HiPIP, although the midpoint reduction potentials of the two clusters are approximately 760 mv different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号