首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Jin M  Wu A  Dorzhin S  Yue Q  Ma Y  Liu D 《Cytotechnology》2012,64(4):379-389
Although isolation and characterization of embryonic stem cells have been successful in cattle, maintenance of bovine embryonic stem cells in culture remains difficult. In this study, we compared different methods of cell passaging, feeder cell layers and medium conditions for bovine embryonic stem cell-like cells. We found that a murine embryonic fibroblast feeder layer is more suitable for embryonic stem cell-like cells than bovine embryonic fibroblasts. When murine embryonic fibroblasts were used, a mechanical method of passaging led to better cell growth than passaging by trypsin digestion. We also found that exogenous supplementation with leukemia inhibitory factor maintained the embryonic stem cell-like cells in an undifferentiated state, whereas addition of stem cell factor resulted in their differentiation. Our findings provide an experimental basis for the establishment of an effective culture system for bovine embryonic stem cells.  相似文献   

3.
The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.  相似文献   

4.
Induced pluripotent stem(iPS)cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs)are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentivirai expressed reprogramming factors.In our study,iPS cells expressed common pluripotency markers,displayed human embryonic stern cells(hESCs)morphology and unmethylated promoters of NANOG and OCT4.These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.  相似文献   

5.
6.
7.
Human pluripotent embryonic stem cells (hESC) have great promise for research into human developmental biology and the development of cell therapies for the treatment of diseases. To meet the increased demand for characterized hESC lines, we present the derivation and characterization of five hESC lines on mouse embryonic fibroblast cells. Our stem cell lines are characterized by morphology, long-term expansion, and expression profiles of a number of specific markers, including TRA-1-60, TRA-1-81, alkaline phosphatase, connexin 43, OCT-4, NANOG, CXCR4, NODAL, LEFTY2, THY-1, TDGF1, PAX6, FOXD3, SOX2, EPHA2, FGF4, TAL1, AC133 and REX-1. The pluripotency of the cell line was confirmed by spontaneous differentiation under in vitro conditions. Whereas all of the cell lines expressed all the characteristics of undifferentiated pluripotent hESC, two of the cell lines carried a triploid karyotype.  相似文献   

8.
9.
10.
The unique pluripotential characteristic of human embryonic stem cells heralds their use in fields such as medicine, biotechnology, biopharmaceuticals, and developmental biology. However, the current availability of sufficient quantities of embryonic stem cells for such applications is limited, and generating sufficient numbers for downstream therapeutic applications is a key concern. In the absence of feeder layers or their conditioned media, human embryonic stem cells readily differentiate to form embryoid bodies, indicating that trophic factors secreted by the feeder layers are required for long-term proliferation and maintenance of pluripotency. Adding further complexity to the elucidation of the factors required for the maintenance of pluripotency is the variability of different fibroblast feeder layers (of mouse or human origin) to effectively support human embryonic stem cells. Currently, the deficiency of knowledge concerning the exact identity of factors within the pathways for self-renewal illustrates that a number of factors may be required to support pluripotent, undifferentiated growth of human embryonic stem cells. This study utilized a proteomic analysis (multidimensional chromatography coupled to tandem mass spectrometry) to isolate and identify proteins in the conditioned media of three mitotically inactivated fibroblast lines (human fetal, human neonatal, and mouse embryonic fibroblasts) used to support the undifferentiated growth of human embryonic stem cells. One-hundred seventy-five unique proteins were identified between the three cell lines using a 相似文献   

11.
The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.  相似文献   

12.
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.  相似文献   

13.
Differentiated trophoblast cell lineages arise from trophoblast stem (TS) cells. To date such a stem cell population has only been established in the mouse. The objective of this investigation was to establish TS cell populations from rat blastocysts. Blastocysts were cultured individually on a feeder layer of rat embryonic fibroblasts (REFs) in fibroblast growth factor-4 (FGF4) and heparin supplemented culture medium. Once cell colonies were established REF feeder layers could be replaced with REF conditioned medium. The blastocyst-derived cell lines, in either proliferative or differentiated states, did not express genes indicative of ICM-derived tissues. In the proliferative state the cells expressed established stem cell-associated markers of TS cells. Cells ceased proliferation and differentiated when FGF4, heparin, and REF conditioned medium were removed. Differentiation was characterized by a decline of stem cell-associated marker gene expression, the appearance of large polyploid cells (trophoblast giant cells), and the expression of trophoblast differentiation-associated genes. Collectively, the data indicate that the rat blastocyst-derived cell lines not only possess many features characteristic of mouse TS cells but also possess some distinct properties. These rat TS cell lines represent valuable new in vitro models for analyses of mechanisms controlling TS cell renewal and differentiation.  相似文献   

14.
Human embryonic stem (hES) cells are usually established and maintained on mouse embryonic fibroblast (MEFs) feeder layers. However, it is desirable to develop human feeder cells because animal feeder cells are associated with risks such as viral infection and/or pathogen transmission. In this study, we attempted to establish new hES cell lines using human uterine endometrial cells (hUECs) to prevent the risks associated with animal feeder cells and for their eventual application in cell-replacement therapy. Inner cell masses (ICMs) of cultured blastocysts were isolated by immunosurgery and then cultured on mitotically inactivated hUEC feeder layers. Cultured ICMs formed colonies by continuous proliferation and were allowed to proliferate continuously for 40, 50, and 55 passages. The established hES cell lines (Miz-hES-14, -15, and -9, respectively) exhibited typical hES cells characteristics, including continuous growth, expression of specific markers, normal karyotypes, and differentiation capacity. The hUEC feeders have the advantage that they can be used for many passages, whereas MEF feeder cells can only be used as feeder cells for a limited number of passages. The hUECs are available to establish and maintain hES cells, and the high expression of embryotrophic factors and extracellular matrices by hUECs may be important to the efficient growth of hES cells. Clinical applications require the establishment and expansion of hES cells under stable xeno-free culture systems.  相似文献   

15.
昆明白小鼠胚胎干细胞分离与体外培养   总被引:4,自引:0,他引:4  
为探索昆明白小鼠胚胎干细胞建系方法,将受孕4.5天的昆明白小鼠囊胚用免疫手术法去除滋胚层,然后将内细胞团(ICM)接种于胎鼠成纤维细胞饲养层上培养,形成的胚胎干细胞样集落用胰蛋白酶-EDTA消化法传代,培养后进行相差显微镜观察及碱性磷酸酶染色。结果饲养层上生长的ICM细胞呈典型的ES样细胞集落,传至第8代碱性磷酸酶染色呈强阳性。实验表明免疫手术法适用于昆明白小鼠ES细胞建系,获得的细胞集落具有ES细胞的主要生物学性状。  相似文献   

16.
Growth factor-defined culture medium for human mesenchymal stem cells   总被引:1,自引:0,他引:1  
Human bone marrow-derived mesenchymal stem cells (hMSCs) are potential cellular sources of therapeutic stem cells as they have the ability to proliferate and differentiate into a wide array of mesenchymal cell types such as osteoblasts, chondroblasts and adipocytes. hMSCs have been used clinically to treat patients with graft vs. host disease, osteogenesis imperfect, or alveolar cleft, suggesting that transplantation of hMSCs is comparatively safe as a stem cell-based therapy. However, conventional culture medium for hMSCs contains fetal bovine serum (FBS). In the present study, we developed a growth factor-defined, serum-free medium for culturing hMSCs. Under these conditions, TGF-beta1 promoted proliferation of hMSCs. The expanded hMSC population expressed the human pluripotency markers SSEA-3, -4, NANOG, OCT3/4 and SOX2. Furthermore, double positive cells for SSEA-3 and a mesenchymal cell marker, CD105, were detected in the population. The potential to differentiate into osteoblasts and adipocytes was confirmed. This work provides a useful tool to understand the basic biological properties of hMSCs in culture.  相似文献   

17.
18.
Bovine embryonic stem (ES) cell lines reported to date vary in morphology and marker expression (e.g., alkaline phosphatase [ALPL], stage-specific embryonic antigen 4 [SSEA4], and OCT4) that normally are associated with the undifferentiated, pluripotent state. These observations suggest that the proper experimental conditions for consistently producing bovine ES cells have not been identified. Here, we report three bovine ES cell lines, one from in vitro-fertilized and two from nuclear transfer embryos. These bovine ES cells grew in large, multicellular colonies resembling the mouse ES and embryonic germ (EG) cells and human EG cells. Throughout the culture period, most of the cells within the colonies stained positive for ALPL and the cell surface markers SSEA4 and OCT4. The staining patterns of nuclear transfer ES cells were identical to those of the blastocysts generated in vitro yet different from most previously reported bovine ES cell lines, which were either negative or not detected. After undifferentiated culture for more than 1 yr, these cells maintained the ability to differentiate into embryoid bodies and derivatives of all three EG layers, thus demonstrating their pluripotency. However, unlike the mouse and human ES cells, following treatment with trypsin, type IV collagenase, or protease E, our bovine ES cells failed to self-renew and became spontaneously differentiated. Presumably, this resulted from an interruption of the self-renewal pathway. In summary, we generated pluripotent bovine ES cells with morphology similar to those of established ES cells in humans and mice as well as marker-staining patterns identical to those of the bovine blastocysts.  相似文献   

19.
Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells.  相似文献   

20.
Large‐scale manufacture of human embryonic stem cells (hESCs) is prerequisite to their widespread use in biomedical applications. However, current hESC culture strategies are labor‐intensive and employ highly variable processes, presenting challenges for scaled production and commercial development. Here we demonstrate that passaging of the hESC lines, HUES7, and NOTT1, with trypsin in feeder‐free conditions, is compatible with complete automation on the CompacT SelecT, a commercially available and industrially relevant robotic platform. Pluripotency was successfully retained, as evidenced by consistent proliferation during serial passage, expression of stem cell markers (OCT4, NANOG, TRA1‐81, and SSEA‐4), stable karyotype, and multi‐germlayer differentiation in vitro, including to pharmacologically responsive cardiomyocytes. Automation of hESC culture will expedite cell‐use in clinical, scientific, and industrial applications. Biotechnol. Bioeng. 2009;102: 1636–1644. © 2008 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号