首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic structure of the McDonough strain of feline sarcoma virus (SM-FeSV) was deduced by analysis of molecularly cloned, transforming proviral DNA. The 8.2-kilobase pair SM-FeSV provirus is longer than those of other feline sarcoma viruses and contains a transforming gene (v-fms) flanked by sequences derived from feline leukemia virus. The order of genes with respect to viral RNA is 5'-gag-fms-env-3', in which the entire feline leukemia virus env gene and an almost complete gag sequence are represented. Transfection of NIH/3T3 cells with cloned SM-FeSV proviral DNA induced foci of morphologically transformed cells which expressed SM-FeSV gene products and contained rescuable sarcoma viral genomes. Cells transformed by viral infection or after transfection with cloned proviral DNA expressed the polyprotein (P170gag-fms) characteristic of the SM-FeSV strain. Two proteolytic cleavage products (P120fms and pp55gag) were also found in immunoprecipitates from metabolically labeled, transformed cells. An additional polypeptide, detected at comparatively low levels in SM-FeSV transformants, was indistinguishable in size and antigenicity from the envelope precursor (gPr85env) of feline leukemia virus. The complexity of the v-fms gene (3.1 +/- 0.3 kilobase pairs) is approximately twofold greater than the viral oncogene sequences (v-fes) of Snyder-Theilen and Gardner-Arnstein FeSV. By heteroduplex, restriction enzyme, and nucleic acid hybridization analyses, v-fms and v-fes sequences showed no detectable homology to one another. Radiolabeled DNA fragments representing portions of the two viral oncogenes hybridized to different EcoRI and HindIII fragments of normal cat cellular DNA. Cellular sequences related to v-fms (designated c-fms) were much more complex than c-fes and were distributed segmentally over more than 40 kilobase pairs in cat DNA. Comparative structural studies of the molecularly cloned proviruses of Synder-Theilen, Gardner-Arnstein, and SM-FeSV showed that a region of the feline-leukemia virus genome derived from the pol-env junction is represented adjacent to v-onc sequences in each FeSV strain and may have provided sequences preferred for recombination with cellular genes.  相似文献   

2.
The onc gene (v-fes) of the acutely transforming feline sarcoma virus (Snyder-Theilen strain) has homologous cellular sequences (c-fes) in all vertebrate species, including humans. We isolated from a human DNA library recombinant phages containing overlapping c-fes sequences. The human c-fes locus spans a region of 3.4 kilobases and contains 1.4 kilobases of DNA homologous to the viral onc sequence interspersed with three intervening sequences.  相似文献   

3.
The nucleotide sequence of the feline c-fes/fps proto-oncogene was analyzed. Comparison with v-fes and v-fps revealed that all v-fes/fps homologous sequences were dispersed over 11 kilobase pairs in 19 interspersed segments. All segments, numbered exon 1 to exon 19 as in the chicken and human loci, were flanked by consensus splice junctions. The putative promoter region contained a CATT sequence and three CCGCCC motifs which were also found in the human locus at similar positions. About 200 nucleotides downstream of a translational stop codon in exon 19, a putative poly(A) addition signal was identified. Using the putative translation initiation codon in exon 2, a 93,000-molecular-weight protein could be deduced. This protein resembled very well the putative protein of the human c-fes/fps proto-oncogene (94% overall homology) and, although less well, the putative protein of the chicken c-fes/fps proto-oncogene (70% overall homology). As far as the feline c-fes/fps proto-oncogene sequences transduced to the Gardner-Arnstein (GA) and Snyder-Theilen (ST) strains of feline sarcoma virus (FeSV) are concerned, homology in deduced amino acid sequences between the GA- and ST-v-fes viral oncogenes and the proto-oncogene was 99%. Analysis of the recombination junctions between feline leukemia virus and v-fes sequences in GA- and ST-FeSV proviral DNA revealed for the left-hand junction the involvement of homologous recombination, presumably at the DNA level. The right-hand junction, which appeared identical in the GA-FeSV and ST-FeSV genomes, could have been the result of a site-specific recombination at the RNA level.  相似文献   

4.
A single locus (designated c-fes) in the human genome which exhibits homology to the transformation-specific onc gene (v-fes) of Snyder-Theilen feline sarcoma virus was identified by the Southern blot technique. Recombinant clones containing 16- to 18-kilobase inserts of human DNA including the c-fes locus were constructed. Restriction endonuclease mapping of these clones verified their identity with native human c-fes and demonstrated the presence of at least two sequences in human c-fes interrupting v-fes-homologous regions. The v-fes-homologous locus in the human genome spans about 4 kilobases. The 5'-3' orientation of the c-fes clones with respect to feline sarcoma virus proviral DNA was determined. The region of the human genome that is homologous to v-fes is proximal to the highly reiterated human Alu sequence but not to the highly reiterated human alphoid sequence.  相似文献   

5.
The structure of the human c-fes/fps proto-oncogene.   总被引:21,自引:4,他引:17       下载免费PDF全文
We have determined the complete nucleotide sequence of a human DNA fragment of approximately 13 kbp, which was shown by Southern blot analysis to contain the entire v-fes/fps cellular homolog. The v-fes/fps homologous sequences were dispersed over 11 kbp in 18 interspersed segments which were flanked by splice junctions. Fusion of these segments created a DNA fragment in which coding regions similar to those observed in the viral oncogenes v-fes of the Gardner-Arnstein (GA) and Snyder-Theilen (ST) strains of feline sarcoma virus and v-fps found in Fujinami sarcoma virus could be identified. A potential initiation site in the first exon was found. About 200 nucleotides downstream of a translational stop codon in the v-fes/fps homologous region, a poly(A) addition signal was identified. The deduced amino acid sequence has a molecular weight of 93 390 dalton resembling NCP92, the recently described human c-fes/fps product. The topography of human c-fes/fps appeared to resemble that of chicken c-fps.  相似文献   

6.
Extrachromosomal DNA obtained from mink cells acutely infected with the Snyder-Theilen (ST) strain of feline sarcoma virus (feline leukemia virus) [FeSV(FeLV)] was fractionated electrophoretically, and samples enriched for FeLV and FeSV linear intermediates were digested with EcoRI and cloned in lambda phage. Hybrid phages were isolated containing either FeSV or FeLV DNA "inserts" and were characterized by restriction enzyme analysis, R-looping with purified 26 to 32S viral RNA, and heteroduplex formation. The recombinant phages (designated lambda FeSV and lambda FeLV) contain all of the genetic information represented in FeSV and FeLV RNA genomes but lack one extended terminally redundant sequence of 750 bases which appears once at each end of parental linear DNA intermediates. Restriction enzyme and heteroduplex analyses confirmed that sequences unique to FeSV (src sequences) are located at the center of the FeSV genome and are approximately 1.5 kilobase pairs in length. With respect to the 5'-3' orientation of genes in viral RNA, the order of genes in the FeSV genome is 5'-gag-src-env-c region-3'; only 0.9 kilobase pairs of gag and 0.6 kilobase pairs of env-derived FeLV sequences are represented in ST FeSV. Heteroduplex analyses between lambda FeSV or lambda FeLV DNA and Moloney murine sarcoma virus DNA (strain m1) were performed under conditions of reduced stringency to demonstrate limited regions of base pair homology. Two such regions were identified: the first occurs at the extreme 5' end of the leukemia and both sarcoma viral genomes, whereas the second corresponds to a 5' segment of leukemia virus "env" sequences conserved in both sarcoma viruses. The latter sequences are localized at the 3' end of FeSV src and at the 5' end of murine sarcoma virus src and could possibly correspond to regions of helper virus genomes that are required for retroviral transforming functions.  相似文献   

7.
Polyproteins encoded by several independent isolates of feline sarcoma virus (FeSV) were analyzed with respect to molecular weight, extent of phosphorylation, and tryptic peptide composition. As previously reported, cells nonproductively transformed by the Gardner strain of FeSV express a polyprotein which has a molecular weight of approximately 115,000 and contains feline leukemia virus p15, p12, and minor portion of p30. In addition, a major 72,000-dalton possible cleavage product can be identified. Snyder-Theilen FeSV-transformed cells express a major polyprotein of approximately 115,000 daltons and a second highly related 80,000-dalton protein. The p12 structural component of Gardner FeSV P115, but not Snyder-Theilen FeSV 115, corresponds to feline leukemia virus subgroup A with respect to immunological type specificity, a finding consistent with the independent origin of these viruses. Tryptic peptide analysis revealed five methionine-containing peptides specific to the nonstructural portion of Gardner FeSV 115, three of which were also represented in Snyder-Theilen FeSV P115, three of which were also represented in Snyder-Theilen FeSV P115. None of these [35S]methionine-labeled tryptic peptides were present in translational products representative of the complete feline leukemia virus subgroup A genome, including Pr180gag-pol, Pr65gag, and Pr82env. Similarly phosphorylated tryptic peptides within the structural (p12) and nonstructural components of Gardner FeSV P115 and Snyder-Theilen FeSV P115 Are highly related. These findings support the possibility that acquired sequences of two independently derived isolates of FeSV encode structurally related proteins.  相似文献   

8.
Mink cell cultures infected with the Snyder-Theilen strain of feline sarcoma-leukemia virus were cloned from single cells under conditions favoring single virus-single cell interactions. The primary colonies included (i) typical feline sarcoma virus (FeSV)-transformed nonproducer clones, one of which segregated revertants, and (ii) FeSV-infected, phenotypically normal clones, three of which spontaneously converted to the transformed phenotype. The revertants and spontaneous transformants were compared with parental and sister clones expressing the opposite phenotype. Transformed subclones formed colonies in agar, were tumorigenic in nude mice, and failed to bind epidermal growth factor, whereas flat sister subclones were indistinguishable from uninfected mink cells in each of these assays. Sister subclones derived from the same infectious event contained FeSV proviruses integrated at the same molecular site, regardless of which phenotype was expressed. One revertant clone, however, lacked most FeSV proviral DNA sequences but retained terminal portions of the FeSV genome which persisted at the original site of proviral DNA insertion. Two flat subclones expressed viral RNA and the phosphorylated "gag-x" polyprotein (pp78gag-x) encoded by the gag and src sequences of the FeSV genome. Both of these clones were susceptible to retransformation by FeSV. Although unable to induce foci, the viruses rescued from these cells contained as much FeSV RNA as the focus-forming viruses rescued from transformed sister subclones and could be retransmitted to mink cells, again inducing FeSV gene products without signs of morphological transformation. We conclude that these FeSV genomes represent transformation-defective mutants.  相似文献   

9.
10.
The nucleotide sequences encoding the transforming polyproteins of the Snyder-Theilen and Gardner-Arnstein strains of feline sarcoma virus (FeSV) have been determined. These sequences include a viral transforming gene (v-fes), derived from cellular proto-oncogene sequences (c-fes) of domestic cats by recombination with feline leukemia virus (FeLV). The v-fes sequences are predicted to encode a polypeptide domain strikingly similar to that specified by the transforming gene (v-fps) of the avian Fujinami sarcoma virus. In addition, the 3′ 0.8 kilobase pairs of v-fes encode amino acid sequences homologous to the carboxy-terminal portion of pp60src, the transforming protein encoded by the avian Rous sarcoma virus src gene. Thus different feline and avian retroviral transforming genes, all of which encode functionally related proteins with associated tyrosine-specific kinase activities, must be derived from divergent members of the same protooncogene family.  相似文献   

11.
Nature and distribution of feline sarcoma virus nucleotide sequences.   总被引:34,自引:19,他引:15       下载免费PDF全文
The genomes of three independent isolates of feline sarcoma virus (FeSV) were compared by molecular hybridization techniques. Using complementary DNAs prepared from two strains, SM- and ST-FeSV, common complementary DNA'S were selected by sequential hybridization to FeSV and feline leukemia virus RNAs. These DNAs were shown to be highly related among the three independent sarcoma virus isolates. FeSV-specific complementary DNAs were prepared by selection for hybridization by the homologous FeSV RNA and against hybridization by fline leukemia virus RNA. Sarcoma virus-specific sequences of SM-FeSV were shown to differ from those of either ST- or GA-FeSV strains, whereas ST-FeSV-specific DNA shared extensive sequence homology with GA-FeSV. By molecular hybridization, each set of FeSV-specific sequences was demonstrated to be present in normal cat cellular DNA in approximately one copy per haploid genome and was conserved throughout Felidae. In contrast, FeSV-common sequences were present in multiple DNA copies and were found only in Mediterranean cats. The present results are consistent with the concept that each FeSV strain has arisen by a mechanism involving recombination between feline leukemia virus and cat cellular DNA sequences, the latter represented within the cat genome in a manner analogous to that of a cellular gene.  相似文献   

12.
13.
In this study, we demonstrated the expression of a 170,000-Mr polyprotein in each of several McDonough feline sarcoma virus (FeSV)-transformed mink cell clones and one McDonough FeSV-transformed rat clone. This polyprotein designated McDonough FeSV P170, contained feline leukemia virus (FeLV) p15, p12, and p30 immunological determinants and shared two of its five [35S]methionine-labeled tryptic peptides with FeLV Pr180gag-pol. Both of these peptides were shown to be specific to the p30 component of Pr180gag-pol. The remaining McDonough FeSV P170 methionine-containing peptides were not represented within either FeLV Pr180gag-pol or Pr82env. Of interest, of the three peptides specific to the nonstructural component of McDonough FeSV P170, one was also represented in the 115,000-Mr polyproteins encoded by the Gardner and Snyder-Theilen strains of FeSV. These findings raise the possibility that the nonstructural components of polyproteins encoded by each of the three independently derived feline transforming viruses contained both common and unique regions. Moreover, if the sequences encoding these components are involved in transformation, as appears to be the case, our findings establish that the position of their insertion within the gag-pol region of the FeLV genome can vary among individual isolates.  相似文献   

14.
Hybridomas secreting monoclonal antibodies directed against polyprotein gene products of the Gardner, Snyder-Theilen, and McDonough strain of feline sarcoma virus have been isolated. Antibody produced by one hybridoma recognizes immunological determinants localized within a feline leukemia virus gag gene structural component (p15) common to polyproteins encoded by each feline sarcoma virus isolate while antibody produced by a second is specific for p30 determinants unique to P170gag-fms. Additional hybridomas secrete antibody directed against v-fes specific determinants common to the Gardner and Snyder-Theilen feline sarcoma virus-encoded polyproteins and to v-fms determinants unique to P170gas-fms polyprotein. GA P110gas-fes and ST P85gas-fes immunoprecipitated by antibody directed against p15 exhibit readily detectable levels of protein kinase activity but lack such activity when precipitated by antibody specific for their acquired sequence (v-fes) components. P170gas-fms immunoprecipitated by monoclonal antibody to either p15 or p30 lacks detectable levels of autophosphorylation but represents a substrate for the GA P110gag-fes and ST P85gag-fes enzymatic activities. These findings argue that the v-fes-associated protein kinase represents an intrinsic property of the v-fes gene product and recognizes tyrosine acceptor sites within polyprotein gene products of all three strains of feline sarcoma virus.  相似文献   

15.
An alpha-type transforming growth factor (TGF alpha) is produced at high levels by rat embryo cells transformed by the Snyder-Theilen strain of feline sarcoma virus (FeSV). Addition of 2 ng mouse epidermal growth factor (mEGF) during purification identified the presence of a second, EGF-dependent growth factor of the TGF beta type (TGF beta) in this conditioned medium. This factor had an approximate Mr of 12,000 and eluted at 37% acetonitrile during high performance liquid chromatography. This extracellular type of TGF beta activity also was present in conditioned medium of rat cells after infection with a transformation defective strain of Abelson leukemia virus, and hence expression of this growth factor activity was independent of cell transformation. Moreover, the presence of an EGF-dependent, 12,000 Mr clonogenic activity in extracts of bovine serum alone suggests serum as an origin for the B-type transforming growth factor initially observed in conditioned medium of Snyder-Theilen FeSV transformed cells. This does not, however, preclude the possibility that TGF beta is also secreted by the transformed rat embryo cells themselves.  相似文献   

16.
The nucleotide sequences of the Gardner-Arnstein feline sarcoma virus (FeSV) long terminal repeat and the adjacent leader sequences 5' to the viral gag gene were determined. These were compared with homologous portions of Synder-Theilen FeSV and with previously published sequences for Moloney murine sarcoma virus and simian sarcoma virus proviral DNA. More than 75% of the residues in the FeSV R and U5 regions were homologous to sequences within the same regions of the other viral long terminal repeats. Unexpectedly, alignment of the FeSV sequences with those of the Moloney murine sarcoma and simian sarcoma viruses showed similar extents of homology within U3. The homologous U3 regions included the inverted repeats, a single set of putative enhancer sequences, corresponding to a "72-base-pair" repeat, and sequences, including the CAT and TATA boxes, characteristic of eucaryotic promotors. The 5' leader sequences of both FeSV strains included a binding site for prolyl tRNA and a putative splice donor sequence. In addition, the FeSV leader contained a long open reading frame which was adjacent to and in phase with the ATG codon at the 5' end of the FeSV gag gene. The open reading frame could code for a signal peptide of about 7.4 kilodaltons. Our results support the concept that the virogenic portions of both FeSV and simian sarcoma virus were ancestrally derived from viruses of rodent origin, with conservation of regulatory sequences as well as the viral structural genes.  相似文献   

17.
The Gardner and Snyder-Theilen isolates of feline sarcoma virus (FeSV) have previously been shown to encode high-molecular-weight polyproteins with a transforming function and an associated tyrosine-specific protein kinase activity. Cells transformed by these viruses exhibited morphological alterations, elevated levels of phosphotyrosine, and a reduced capacity for binding epidermal growth factor. In addition, polyproteins encoded by both of these FeSV isolates bound to, and phosphorylated tyrosine acceptor sites within, a 150,000-molecular-weight cellular substrate (P150). McDonough FeSV-transformed cells resembled Gardner and Snyder-Theilen FeSV transformants with respect to morphological changes and a reduced capacity for epidermal growth factor binding. in contrast to the other two FeSV isolates, however, McDonough FeSV encoded as its major translational product a high-molecular-weight polyprotein with probable transforming function but without protein kinase activity detectable under similar assay conditions. Moreover, total cellular levels of phosphotyrosine remained unaltered in McDonough FeSV-transformed cells, and the major McDonough FeSV polyprotein translational product lacked binding affinity for P150. These findings argue for differences in the mechanisms of transformation by these independently derived FeSV isolates.  相似文献   

18.
The avian c-fps and mammalian c-fes proto-oncogenes are cognate cellular sequences. Antiserum raised against the P140gag-fps transforming protein of Fujinami avian sarcoma virus specifically recognized a 92,000-Mr protein in human and mouse hematopoietic cells which was closely related in structure to Snyder-Theilen feline sarcoma virus P87gag-fes. This polypeptide was apparently the product of the human c-fes gene and was therefore designated p92c-fes. Human p92c-fes was associated with a tyrosine-specific protein kinase activity in vitro and was capable of both autophosphorylation and phosphorylation of enolase as an exogenous protein substrate. The synthesis of human and mouse p92c-fes was largely, though not entirely, confined to myeloid cells. p92c-fes was expressed to relatively high levels in a multipotential murine myeloid cell line, in more mature human and mouse granulocyte-macrophage progenitors, and in differentiated macrophage like cells as well as in the mononuclear fraction of normal and leukemic human peripheral blood. p92c-fes was not found in erythroid cells, with the exception of a human erythroleukemia line which retains the capacity to differentiate into macrophage like cells. These results suggest a normal role for the p92c-fes tyrosine kinase in hematopoiesis, particularly in granulocyte-macrophage differentiation. In addition, a distinct 94,000-Mr polypeptide, antigenically related to p92c-fes, was identified in a number of hematopoietic and nonhematopoietic human and mouse cells and was also found to be associated with a tyrosine-specific protein kinase activity.  相似文献   

19.
The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180gag-fms encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180gag-fms) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120v-fms, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. Both constructs were biologically active when transfected into NIH 3T3 cells and produced morphologically transformed foci at equivalent efficiencies. When transfected into a cell line (psi 2) expressing complementary viral gene functions, G418-resistant (Neor) cells containing either of these vector DNAs produced high titers of transforming viruses. Analysis of proteins produced in cells containing the vector lacking gag gene sequences showed that gP180gag-fms was not synthesized, whereas normal levels of both immature gp120v-fms and mature gp140v-fms were detected. The glycoprotein was efficiently transported to the cell surface, and it retained wild-type tyrosine kinase activity. We conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180gag-fms is mediated by signal peptidase and that the amino termini of gp140v-fms and the c-fms gene product are identical.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号