共查询到20条相似文献,搜索用时 0 毫秒
1.
Long-term maintenance of tissue homeostasis relies on the accurate regulation of somatic stem cell activity. Somatic stem cells have to respond to tissue damage and proliferate according to tissue requirements while avoiding overproliferation. The regulatory mechanisms involved in these responses are now being unraveled in the intestinal epithelium of Drosophila, providing new insight into strategies and mechanisms of stem cell regulation in barrier epithelia. Here, we review these studies and highlight recent findings in vertebrate epithelia that indicate significant conservation of regenerative strategies between vertebrate and fly epithelia. 相似文献
2.
Wingless signaling regulates the maintenance of ovarian somatic stem cells in Drosophila 总被引:3,自引:0,他引:3
Identifying the signals involved in maintaining stem cells is critical to understanding stem cell biology and to using stem cells in future regenerative medicine. In the Drosophila ovary, Hedgehog is the only known signal for maintaining somatic stem cells (SSCs). Here we report that Wingless (Wg) signaling is also essential for SSC maintenance in the Drosophila ovary. Wg is expressed in terminal filament and cap cells, a few cells away from SSCs. Downregulation of Wg signaling in SSCs through removal of positive regulators of Wg signaling, dishevelled and armadillo, results in rapid SSC loss. Constitutive Wg signaling in SSCs through the removal of its negative regulators, Axin and shaggy, also causes SSC loss. Also, constitutive wg signaling causes over-proliferation and abnormal differentiation of somatic follicle cells. This work demonstrates that wg signaling regulates SSC maintenance and that its constitutive signaling influences follicle cell proliferation and differentiation. In mammals, constitutive beta-catenin causes over-proliferation and abnormal differentiation of skin cells, resulting in skin cancer formation. Possibly, mechanisms regulating proliferation and differentiation of epithelial cells, including epithelial stem cells, is conserved from Drosophila to man. 相似文献
3.
A I Ivanov 《Ontogenez》1990,21(1):52-55
A method of selective screening of recessive sex-linked lethal mutations, that are manifested only in somatic cells of D. melanogaster, has been developed. Lethals were induced with X-irradiation of X-chromosomes at the moment of their topographic segregation from embryonic somatic cells. Analysis of mutation expression confirmed the method selectivity. 相似文献
4.
A I Ivanov 《Radiobiologiia》1989,29(5):625-631
Exposure of 3-hour drosophila male embryos to gamma-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa. 相似文献
5.
The analysis of model systems has broadened our understanding of telomere-related aging processes. Telomerase-deficient mouse models have demonstrated that telomere dysfunction impairs tissue renewal capacity and shortens lifespan. Telomere shortening limits cell proliferation by activating checkpoints that induce replicative senescence or apoptosis. These checkpoints protect against an accumulation of genomically instable cells and cancer initiation. However, the induction of these checkpoints can also limit organ homeostasis, regeneration, and survival during aging and in the context of diseases. The decline in tissue regeneration in response to telomere shortening has been related to impairments in stem cell function. Telomere dysfunction impairs stem cell function by activation of cell-intrinsic checkpoints and by the induction of alterations in the micro- and macro-environment of stem cells. In this review, we discuss the current knowledge about the impact of telomere shortening on disease stages induced by replicative cell aging as indicated by studies on telomerase model systems. 相似文献
6.
Rafael Sênos Demarco 《Autophagy》2020,16(6):1145-1147
ABSTRACT In contrast to stress-induced macroautophagy/autophagy that happens during nutrient deprivation and other environmental challenges, basal autophagy is thought to be an important mechanism that cells utilize for homeostatic purposes. For instance, basal autophagy is used to recycle damaged and malfunctioning organelles and proteins to provide the building blocks for the generation of new ones throughout life. In addition, specialized autophagic processes, such as lipophagy, the autophagy-induced breakdown of lipid droplets (LDs), and glycophagy (breakdown of glycogen), are employed to maintain proper energy levels in the cell. The importance of autophagy in the regulation of stem cell behavior has been the focus of recent studies. However, the upstream signals that control autophagic activity in stem cells and the precise role of autophagy in stem cells are only starting to be elucidated. In a recent publication, we described how the Egfr (epidermal growth factor receptor) pathway stimulates basal autophagy to support the maintenance of somatic cyst stem cells (CySCs) and to control lipid levels in the Drosophila testis. 相似文献
7.
8.
de Navascués J Perdigoto CN Bian Y Schneider MH Bardin AJ Martínez-Arias A Simons BD 《The EMBO journal》2012,31(11):2473-2485
The Drosophila adult posterior midgut has been identified as a powerful system in which to study mechanisms that control intestinal maintenance, in normal conditions as well as during injury or infection. Early work on this system has established a model of tissue turnover based on the asymmetric division of intestinal stem cells. From the quantitative analysis of clonal fate data, we show that tissue turnover involves the neutral competition of symmetrically dividing stem cells. This competition leads to stem-cell loss and replacement, resulting in neutral drift dynamics of the clonal population. As well as providing new insight into the mechanisms regulating tissue self-renewal, these findings establish intriguing parallels with the mammalian system, and confirm Drosophila as a useful model for studying adult intestinal maintenance. 相似文献
9.
10.
Adult stem cells have been previously isolated from a variety of somatic tissues, including bone marrow and the central nervous system; however, contribution of these cells to the germ line has not been shown. Here we demonstrate that fetal somatic explants contain a subpopulation of somatic stem cells (FSSCs), which can be induced to display features of lineage-uncommitted stem cells. After injection into blastocysts, these cells give rise to a variety of cell types in the resultant chimeric fetuses, including those of the mesodermal lineage; they even migrate into the genital ridge. In vitro, FSSCs exhibit characteristics of embryonic stem cells, including extended self-renewal; expression of stem cell marker genes, such as Pou5f1 (Oct4), Stat3, and Akp2 (Tnap) and growth as multicellular aggregates. We report that fetal tissue contains somatic stem cells with greater potency than previously thought, which might form a new source of stem cells useful in somatic nuclear transfer and cell therapy. 相似文献
11.
The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals 总被引:4,自引:0,他引:4
The stem cell niches at the apex of Drosophila ovaries and testes have been viewed as distinct in two major respects. While both contain germline stem cells, the testis niche also contains "cyst progenitor" stem cells, which divide to produce somatic cells that encase developing germ cells. Moreover, while both niches utilize BMP signaling, the testis niche requires a key JAK/STAT signal. We now show, by lineage marking, that the ovarian niche also contains a second type of stem cell. These "escort stem cells" morphologically resemble testis cyst progenitor cells and their daughters encase developing cysts before undergoing apoptosis at the time of follicle formation. In addition, we show that JAK/STAT signaling also plays a critical role in ovarian niche function, and acts within escort cells. These observations reveal striking similarities in the stem cell niches of male and female gonads, and suggest that they are largely governed by common mechanisms. 相似文献
12.
13.
14.
Somatic mutation and recombination test on wing cells of Drosophila melanogaster showed that the recombination frequency in the somatic tissues of strains studied correlated with the presence of a full-length copy of the hobo transposable element in the genome. Transposition of hobo in somatic tissue cells at a frequency 3.5 × 10?2 per site per X chromosome was shown by fluorescence in situ hybridization with salivary gland polytene chromosomes of larvae of one of the D. melanogaster strains having a full-length hobo copy. 相似文献
15.
Somatic mutation and recombination test on wing cells of Drosophila melanogaster showed that the recombination frequency in the somatic tissues of strains studied correlated with the presence of a full-length copy of the hobo transposable element in the genome. Transposition of hobo in somatic tissue cells at a frequency 3.5 x 10-2 per site per X chromosome was shown by fluorescence in situ hybridization with salivary gland polytene chromosomes of larvae of one of the D. melanogaster strains having a full-length hobo copy. 相似文献
16.
Takehashi M Tada M Kanatsu-Shinohara M Morimoto H Kazuki Y Oshimura M Tada T Shinohara T 《Biology of reproduction》2012,86(6):178
Somatic cell hybridization is widely used to study the control of gene regulation and the stability of differentiated states. In contrast, the application of this method to germ cells has been limited in part because of an inability to culture germ cells. In this study, we produced germ cell hybrids using germ-line stem (GS) cells and multipotent germ-line stem (mGS) cells. While GS cells are enriched for spermatogonial stem cell (SSC) activity, mGS cells are similar to embryonic stem (ES) cells and originally derived from GS cells. Hybrids were successfully obtained between GS cells and ES cells, between GS cells and mGS cells, and between mGS cells and thymocytes. All exhibited ES cell markers and a behavior similar to ES cells, formed teratomas, and differentiated into somatic cell tissues. However, none of the hybrid cells were able to reconstitute spermatogenesis after microinjection into seminiferous tubules. Analyses of the DNA methylation patterns of imprinted genes also showed that mGS cells do not possess a DNA demethylation ability, which was found in embryonic germ cells derived from primordial germ cells. However, mGS cells reactivated the X chromosome and induced Pou5f1 expression in female thymocytes in a manner similar to ES cells. These data show that mGS cells possess ES-like reprogramming potential, which predominates over-SSC activity. 相似文献
17.
18.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。 相似文献
19.
Genotoxicity of 5-azacytidine in somatic cells of Drosophila 总被引:1,自引:0,他引:1
A J Katz 《Mutation research》1985,143(3):195-199
The newly developed somatic mutation and recombination test, utilizing the wing-hair mutations mwh and flr3, was used to evaluate the genotoxicity of the base analog 5-azacytidine in larvae of Drosophila melanogaster. Third instar larvae were fed media wetted with various concentrations of the compound, and wings of surviving adults were removed and scored for the presence of clones of cells possessing malformed hairs. Wings of exposed flies trans-dihybrid for mwh and flr3 had significantly increased frequencies of twin spots, small single spots and large single spots. Significant linear regression of twin-spot frequencies upon concentration was also obtained. Induction of twin spots by 5-azacytidine unambiguously demonstrates its recombinogenic activity in somatic cells of Drosophila. Significantly increased frequencies of large single spots on wings of inversion-heterozygous flies were also observed and suggest that 5-azacytidine may also be inducing somatic gene mutations (or deletions). 相似文献
20.
E W Vogel 《Mutation research》1992,284(1):159-175