首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Deng J  Cui H  Zhi D  Zhou C  Xia G 《Plant cell reports》2007,26(8):1233-1241
Callus-derived protoplasts of common wheat (Triticum aestivum L. cv. Hesheng 3) irradiated with ultraviolet light were fused by using the PEG method with cell suspension-derived protoplasts of Arabidopsis thaliana. Regenerated calli and green plants resembling that of wheat were obtained. The hybrid nature of putative calli and plants were confirmed by isozyme, random amplified polymorphic DNA and genomic in situ hybridization (GISH) analyses. GISH results indicated that 1∼3 small chromosome fragments of A. thaliana were found introgression into the terminals of wheat chromosomes, forming highly asymmetric hybrids. Cytoplasmic genome tests did not show any cytoplasmic genetic materials from A. thaliana. However, variations from the normal wheat cytoplasmic genome were found, indicating recombination or rearrangement occurred during the process of somatic hybridization. The chromosome elimination in the asymmetric somatic hybridization of remote phylogenetic relationship was discussed. A miniature inverted-repeat transposable element related sequence was found by chance in the hybrids which might accompany and impact the process of somatic hybridization. Jingyao Deng and Haifeng Cui provided same contribution to this work.  相似文献   

2.
Symmetric and asymmetric somatic hybrids were produced via protoplast fusion between common wheat ( TRITICUM AESTIVUM L.) cv. "Jinan 177" and Italian ryegrass ( LOLIUM MULTIFLORUM Lam.). The ryegrass without or with UV irradiation was used as a donor, providing a small amount of chromatin. In these somatic hybrids, most ryegrass chromosomes have been confirmed preferential elimination and the somatic hybrid calli and plants showed wheat-like morphology. Some of the hybrid lines were used for the analysis of distribution and heredity of donor DNA in the hybrid genome and the possibility of establishing a radiation hybrid (RH) panel of the ryegrass in the present experiment. These hybrids, subcultured for two and three years, retained the ryegrass DNA examined by RFLP and GISH analysis, respectively. Distribution of the ryegrass DNA in the wheat genomes of 20 single-cell individuals, randomly selected from hybrid cell lines produced, were analyzed by 21 ryegrass genome specific SSR markers. The average frequencies of molecular marker retention in symmetric hybrid lines (UV 0), as well as asymmetric hybrid lines from UV 30 s and 1 min were 10.88, 15.48 and 33.86, respectively. It was suggested that the UV dose increased the introgression of donor DNA into wheat genome. The ryegrass SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2 approximately 3 years. This revealed that those asymmetric somatic hybrids are suitable for the introgression of ryegrass DNA into wheat, and for RH panel and RH mapping.  相似文献   

3.
Li C  Xia G  Xiang F  Zhou C  Cheng A 《Plant cell reports》2004,23(7):461-467
Two types of protoplasts of wheat (Triticum aestivum L. cv. Jinan 177) were used in fusion experiments—cha9, with a high division frequency, and 176, with a high regeneration frequency. The fusion combination of either cha9 or 176 protoplasts with Russian wildrye protoplasts failed to produce regenerated calli. When a mixture of cha9 and 176 protoplasts were fused with those of Russian wildrye, 14 fusion-derived calli were produced, of which seven differentiated into green plants and two differentiated into albinos. The morphology of all hybrid plants strongly resembled that of the parental wheat type. The hybrid nature of the cell lines was confirmed by cytological, isozyme, random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH) analyses. GISH analysis revealed that only chromosome fragments of Russian wildrye were transferred to the wheat chromosomes of hybrid calli and plants. Simple sequence repeat (SSR) analysis of the chloroplast genome of the hybrids with seven pairs of wheat-specific chloroplast microsatellite primers indicated that all of the cell lines had band patterns identical to wheat. Our results show that highly asymmetric somatic hybrid calli and plants can be produced via symmetric fusion in a triparental fusion system. The dominant effect of two wheat cell lines on the exclusion of Russian wildrye chromosomes is discussed.Abbreviations GISH Genome in situ hybridization - RAPD Random amplified polymorphic DNA - SCF Small chromosome fragment - SSR Simple sequence repeat  相似文献   

4.
Cai Y  Xiang F  Zhi D  Liu H  Xia G 《Plant cell reports》2007,26(10):1809-1819
In order to genotype hybrid genomes of distant asymmetric somatic hybrids, we synthesized hybrid calli and plants via PEG-mediated protoplast fusion between recipient tall fescue (Festuca. arundinacea Schreb.) and donor wheat (Triticum aestivum L.). Seventeen and 25 putative hybrid clones were produced from the fusion combinations I and II, each with the donor wheat protoplast treated by UV light for 30 s and 1 min, respectively. Isozyme and RAPD profiles confirmed that ten hybrid clones were obtained from combination I and 19 from combination II. Out of the 29 hybrids, 12 regenerated hybrid plants with tall fescue phenotype. Composition and methylation-variation of the nuclear and cytoplasmic genomes of some hybrids, either with or without regenerative ability, were compared by genomic in situ hybridization, restriction fragment length polymorphism, and DNA methylation-sensitive amplification polymorphism. Our results indicated that these selected hybrids all contained introgressed nuclear and cytoplasmic DNA as well as obvious methylation variations compared to both parents. However, there were no differences either in nuclear/cytoplasmic DNA or methylation degree between the regenerable and non-regenerable hybrid clones. We conclude that both regeneration complementation and genetic material balance are crucial for hybrid plant regeneration.  相似文献   

5.
Protoplasts of Bupleurum scorzonerifolium irradiated with 380 μW/cm2 UV for 5 min were fused by the PEG-mediated method with untreated protoplasts of Arabidopsis thaliana. The fusion products were cultured in the P5 liquid medium for single hybrid cell clone formation. As a total, 81 independent putative hybrid clones (cell lines) were obtained, and seventeen of them were identified as somatic hybrids by chromosome counting, GISH, RAPD, and SSR analyses. More than 80 B. scorzonerifolium-like green introgressed plants and leaves were regenerated from 49 somatic hybrid cell lines, which contained chromatin and DNA characteristic of A. thaliana. To assess the UV tolerance of both parents with chromatin exclusion and introgression, their protoplasts were UV-irradiated (380 μW/cm2 for 0 and 5 min), and the protoplasts of A. thaliana were more sensitive to UV than those of B. scorzonerifolium as judged by Single Cell Gel Electrophoresis analysis. The possible relationship between UV resistance of B. scorzonerifolium and A. thaliana chromosome elimination and the formation of somatic introgressed hybrid plants is discussed.  相似文献   

6.
Wang M  Peng Z  Hong S  Zhi D  Xia G 《Protoplasma》2012,249(1):197-205
In our early experiments, a variety of Bupleurum scorzonerifolium-like somatic hybrid plants were obtained from protoplast fusion between Arabidopsis thaliana and UV-treated/untreated B. scorzonerifolium. To compare the effects of UV and γ-ray irradiation on the B. scorzonerifolium partner and obtain Arabidopsis-like hybrids, we designed a novel combination of somatic hybridization between A. thaliana and B. scorzonerifolium. Before protoplast isolation and fusion, the suspension cells of B. scorzonerifolium were irradiated by gamma ray (60Co, 50 Gy with 1.3 Gy min−1). Both parental protoplasts lost regeneration capacity, but over 100 somatic hybrids restored the capacity and developed to Arabidopsis-like inflorescences and flowers with some characteristics of B. scorzonerifolium. Some hybrid flowers showed yellow sepal, petal, or carpel, whose color was similar to the petal of B. scorzonerifolium; the others had silique of Arabidopsis with angularity of B. scorzonerifolium, and their parts possessed five stamens, the same as B. scorzonerifolium. Cytological analysis showed that three hybrids had Arabidopsis-like karyotypes. Random Amplified Polymorphic DNA (RAPD) and Simple Sequence Repeats (SSR) profiles revealed that both parental fragments were amplified from these hybrids. These results indicated chromatin introgression from B. scorzonerifolium to A. thaliana, which may be related to the complementation of hybrid inflorescence and flower generation.  相似文献   

7.
Intergeneric asymmetric somatic hybrids have been obtained by the fusion of metabolically inactivated protoplasts from embryogenic suspension cultures ofFestuca arundinacea (recipient) and protoplasts from a non-morphogenic cell suspension ofLolium multiflorum (donor) irradiated with 10, 25, 50, 100, 250 and 500 Gy of X-rays. Regenerating calli led to the recovery of genotypically and phenotypically different asymmetric somatic hybridFestulolium plants. The genome composition of the asymmetric somatic hybrid clones was characterized by quantitative dot-blot hybridizations using dispersed repetitive DNA sequences specific to tall fescue and Italian ryegrass. Data from dot-blot hybridizations using two cloned Italian ryegrass-specific sequences as probes showed that irradiation favoured a unidirectional elimination of most or part of the donor chromosomes in asymmetric somatic hybrid clones obtained from fusion experiments using donor protoplasts irradiated at doses 250 Gy. Irradiation of cells of the donor parent with 500 Gy prior to protoplast fusion produced highly asymmetric nuclear hybrids with over 80% elimination of the donor genome as well as clones showing a complete loss of donor chromosomes. Further information on the degree of asymmetry in regenerated hybrid plants was obtained from chromosomal analysis including in situ hybridizations withL. multiflorum-specific repetitive sequences. A Southern blot hybridization analysis using one chloroplast and six mitochondrial-specific probes revealed preferentially recipient-type organelles in asymmetric somatic hybrid clones obtained from fusion experiments with donor protoplasts irradiated with doses higher than 100 Gy. It is concluded that the irradiation of donor cells before fusion at different doses can be used for producing both nuclear hybrids with limited donor DNA elimination or highly asymmetric nuclear hybrid plants in an intergeneric graminaceous combination. For a wide range of radiation doses tested (25–250Gy), the degree of the species-specific genome elimination from the irradiated partner seems not to be dose dependent. A bias towards recipient-type organelles was apparent when extensive donor nuclear genome elimination occurred.Abbreviations cpDNA Chloroplast DNA - 2, 4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - IOA iodoacetamide - mtDNA mitochondrial DNA - RFLP restriction fragment length polymorphism  相似文献   

8.
In order to investigate chromosome elimination in symmetric somatic hybridization between Bupleurum scorzonerifolium and Arabidopsis thaliana, protoplasts were isolated from suspension cultures of both A. thaliana and B. scorzonerifolium parents. Biparental protoplasts were mixed at a rate of 1.5:1 and fused with PEG-method. After protoplast fusion, the products were cultured in the P5 liquid medium for microcallus formation. Single cell lines formed from microcalli after subculturing on the MB1 (Xia and Chen, Plant Sci 120:197–203, 1996) solid medium. The putative somatic hybrid cell lines were identified by cytological and molecular analysis. Of the 132 somatic cell lines generated, 16 were identified as somatic hybrids, with the phenotypes resembled B. scorzonerifolium parent. These hybrids showed a complete set of B. scorzonerifolium chromosome and 0–2 small chromosome(s) of A. thaliana. A few of them showed nuclear and cytoplasmic SSR fragments of A. thaliana. These hybrid cell lines could differentiate to green spots, buds/leaves through complementation of regeneration ability. The chromosomes elimination of A. thaliana was discussed. Wang Minqin and Zhao Junsheng contributed equally to the work.  相似文献   

9.
Symmetric and asymmetric protoplast fusion between long term cell suspension-derived protoplasts ofTriticum aestivum (cv. Jinan 177) and protoplasts ofHaynaldia villosa prepared from one-year-old embryogeneric calli was performed by PEG method. In asymmetric fusion, donor calli were treated with gamma ray at a dose of 40, 60, 80 Gy (1.3 Gy/min) respectively and then used to isolate protoplasts. Results of morphological, cytological, biochemical (isozyme) and 5S rDNA spacer sequence analysis revealed that we obtained somatic hybrid lines at high frequency from both symmetric and asymmetric fusion. Hybrid plants were recovered from symmetric and low dose γ-fusion combinations. GISH (genomicin situ hybridization) analysis proved exactly the existence of both parental chromosomes and the common occurrence of several kinds of translocation between them in the hybrid clones regenerated from symmetric and asymmetric fusion. And the elimination of donor DNA in hybrid clones regenerated from asymmetric fusion combinations was found to increase with the increasing gamma doses. It is concluded that transference and recombination of nuclear DNA can be achieved effectively by symmetric and asymmetric fusion, hybrids with small fragment translocation which are valuable in plant breeding can be obtained directly by asymmetric fusion.  相似文献   

10.
C Zhou  W Dong  L Han  J Wei  L Jia  Y Tan  D Zhi  ZY Wang  G Xia 《PloS one》2012,7(7):e40214
To explore the feasibility of constructing a whole genome radiation hybrid (WGRH) map in plant species with large genomes, asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Bupleurum scorzonerifolium Willd. was performed. The protoplasts of wheat were irradiated with ultraviolet light (UV) and gamma-ray and rescued by protoplast fusion using B. scorzonerifolium as the recipient. Assessment of SSR markers showed that the radiation hybrids have the average marker retention frequency of 15.5%. Two RH panels (RHPWI and RHPWII) that contained 92 and 184 radiation hybrids, respectively, were developed and used for mapping of 68 SSR markers in chromosome 5A of wheat. A total of 1557 and 2034 breaks were detected in each panel. The RH map of chromosome 5A based on RHPWII was constructed. The distance of the comprehensive map was 2103 cR and the approximate resolution was estimated to be ~501.6 kb/break. The RH panels evaluated in this study enabled us to order the ESTs in a single deletion bin or in the multiple bins cross the chromosome. These results demonstrated that RH mapping via protoplast fusion is feasible at the whole genome level for mapping purposes in wheat and the potential value of this mapping approach for the plant species with large genomes.  相似文献   

11.
Organellar DNA of asymmetric somatic hybrids betweenSolanum tuberosum and irradiatedS. brevidens were analysed by DNA hybridization methods using the spinach chloroplast probepSBD, wheat mitochondrial genenad5 and petunia mitochondrial geneorf25. Eight of the 12 asymmetric hybrid plants hadS. tuberosum chloroplast DNA and the remaining fourS. brevidens chloroplast DNA. A novel mitochondrial hybridization pattern was present in eight out of the 17 hybrids tested. In six hybrids, novel combinations of chloroplasts and mitochondria were found, indicating that both organelle types sorted out independently.  相似文献   

12.
Summary Intergeneric somatic hybrids Diplotaxis catholica (2n=18) + Brassica juncea (2n=36) were produced by fusing mesophyll protoplasts of the former and hypocotyl protoplasts of the latter using polyethylene glycol. Out of 52 somatic embryos, 24 produced plants of intermediate morphology. Cytological analysis of 16 plants indicated that 15 were symmetric hybrids carrying 54 chromosomes, the sum of the parental chromosome numbers. One hybrid was asymmetric with 45 chromosomes. Nuclear hybridity of five putative hybrids was confirmed by the Southern hybridization pattern of full length 18s-25s wheat nuclear rDNA probe which revealed the presence of Hind III fragments characteristic of both the parental species. The hybridization pattern of mitochondria specific gene probe cox I indicated that three of the hybrids carried B. juncea mitochondria and one carried mitochondria of D. catholica. Presence of novel 3.5 kb Hind III and 4.8 kb Bgl II fragments suggested the occurrence of mtDNA recombination in one of the hybrids. The hybrids were pollen sterile. However, seeds were obtained from most of the hybrids by back crossing with B. juncea.  相似文献   

13.
The protoplasts of tall fescue (Festuca arundinacea Schreb.) were fused with those of Bupleurum scorzonerifolium Willd. The latter were irradiated with UV at an intensity of 380 μW/cm2 for 0 s (combination I), 30 s (combination II), and 60 s (combination III) before fusion. Putative hybrid calli, leaves, and shoots were generated from the fusion products. They were recognized as somatic hybrids by a combined analysis of chromosome numbers, isozyme, RAPD, and 5S rDNA spacer sequence. The hybrid calli with morphogenetic ability and leaves/shoots differentiation had the B. scorzonerifolium phenotype, whether they were derived from symmetric fusion (UV 0 s) or asymmetric fusion (UV 30 s/60 s). Cytological tests revealed that these hybrids contained the complete set (12) of B. scorzonerifolium chromosomes and 0–4 partner tall fescue chromosomes. The tall fescue chromosomes were rapidly eliminated in combinations II and III, but gradually lost in combination I. It was noted that the green leaves and shoots were produced earlier, and the differentiation frequency was higher in combinations II and III than in combination I, which corresponded to the speed of elimination of the tall fescue chromosomes in the hybrids. Therefore, UV irradiation can indirectly promote elimination of tall fescue chromosomes and hybrid differentiation. B. scorzonerifolium can repel partner chromosomes with mechanism that differs from UV.  相似文献   

14.
Fertile somatic hybrids were obtained via symmetric electrofusion of protoplasts from two combinations of tetraploid cotton (G. hirsutum cv. Coker 201, AD genome) and diploid wild cottons G. bickii (G genome) and G. stockii (E genome), respectively. Observation by morphological, flow cytometric analysis, chromosome counting and RAPD analysis of the tested hybrids of Coker 201 + G. bickii and Coker 201 + G. stockii confirmed the regenerated plants as hybrid status. Cytological investigation of the metaphase root-tip cells revealed there were 78 chromosomes in the hybrids. Flow cytometric analysis showed the tested plants had a relative DNA contents close to the total DNA contents of the two parents. RAPD analysis revealed the hybrids contained specific genomic fragments from both fusion partners, further confirmed their hybridity. The morphology of the hybrids was intermediate between the two fusion partners. The hybrid plants were successfully transferred to the soil, and they bloomed and set bolls. It is sure that the new hexaploids developed by cell fusion would contribute to cotton breeding through backcrossing with the elite genotypes of G. hirsutum.  相似文献   

15.
Zhou A  Xia G 《Plant cell reports》2005,24(5):289-296
To study the effect of -ray treatment on donor and derived somatic hybrids, we carried out -ray donor treatment experiments with a wide range of -ray dosages and asymmetric somatic hybridization between protoplasts of wheat (Triticum aestivum L. Jinan 177) and protoplasts of Haynaldia villosa Schur. treated with different dosages of -rays (40, 60 and 80 Gy, respectively). We first screened the putative hybrids by isozyme analysis, followed by characterization of nuclear and organellar genome composition of the hybrids. Genomic in situ hybridization on mitotic metaphases demonstrated that the donor chromosome elimination in the hybrids increased with increased -ray dosage. Intergenomic chromosome recombination/translocations were observed in the hybrids from different dosages of -rays. PCR amplification of 5S rDNA spacer sequences showed that only some of the regenerated hybrid clones inherited donor 5S rDNA sequences, suggesting that the donor DNA was also eliminated randomly. Restriction fragment length polymorphism analysis using mitochondrion (mt) and chloroplast (cp) gene-specific probes showed that the hybrid calli contained mt genomes of both parents and the cp genome of only one of the parents. Recombinations between parental mt as well as cp genes were found in the hybrid clones. Furthermore, development of the hybrid clones was dependent on the -ray dosage used for the donor treatment. Regenerated plants were only obtained from fusion combinations of low (40 Gy) and intermediate (60 Gy) dose irradiation. The possible role and significance of -rays on the introgression of small segments of donor chromosomes to the receptor is discussed.  相似文献   

16.
Summary The production of asymmetric somatic hybrid calli after fusion between gamma-irradiated protoplasts from transgenic Solanum brevidens and protoplasts from S. tuberosum are reported. Transgenic (kanamycin-resistant, GUS-positive) S. brevidens plants and hairy root clones were obtained after transformation with Agrobacterium tumefaciens LBA 1060 (pRi1855) (pBI121) and LBA 4404 (pRAL4404) (pBI121), and A. rhizogenes LBA 9402 (pRi1855) (pBI121), respectively. Leaf protoplasts isolated from the transgenic plants or root protoplasts from the hairy root clones were fused with S. tuberosum leaf protoplasts, and several calli were selected on kanamycin-containing medium. The relative nuclear DNA content of the hybrid calli was measured by flow cytometry (FCM), and the percentages of DNA of the S. brevidens and S. tuberosum genomes in the calli were determined by dot blot analysis using species-specific DNA probes. Chromosome-specific restriction fragment length polymorphism (RFLP) markers were used to investigate the elimination of specific S. brevidens chromosomes in the hybrids. The combined data on FCM, dot blot and RFLP analysis revealed that 18–62% of the S. brevidens DNA was eliminated in the hybrid calli and that the RFLP marker for chromosome 7 was absent in seven out of ten calli. The absence of RFLP markers for chromosomes 5 and 11 hardly ever occurred. In most of the hybrids the ploidy level of the S. tuberosum genome had increased considerably.  相似文献   

17.
Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which corresponded to the sum of the parental genomes. From the asymmetric fusions, 11 hybrids contained 38 chromosomes. Among the other asymmetric hybrids, plants with 50 chromosomes and with chromosome numbers higher than the sum of the parental chromosomes were found. When different root squashes of the same plant were analysed, a total of 6 plants were found that had different chromosome numbers.  相似文献   

18.
Summary Irradiated mesophyll protoplasts from nine different accessions of B. juncea, B. nigra and B. carinata, all resistant to Phoma lingam, were used as gene donors in fusion experiments with hypocotyl protoplasts isolated from B. napus as the recipient. A toxin, sirodesmin PL, was used to select those fusion products in which the resistant gene(s) was present. In the fusion experiments different gene donors, various irradiation dosages and toxin treatments were combined. Symmetric and asymmetric hybrid plants were obtained from the cell cultures with and without toxin selection. Isozymes were used to verify hybrid characters in the symmetric hybrids, whereas two DNA probes were used to identify donor-DNA in the asymmetric hybrids. Resistance to P. lingam was expressed in all symmetric hybrids, and in 19 of 24 toxin-selected asymmetric hybrids, while all the unselected asymmetric hybrids were susceptible.  相似文献   

19.
Summary We have previously reported production of somatic hybrids between B. oleracea and B. campestris by fusion of B. oleracea protoplasts with X-irradiated B. campestris protoplasts, in order to transfer a part of the B. campestris genome into B. Oleracea. Our previous analysis of morphology, chromosome number, and isozyme patterns of the hybrids suggested that they are asymmetric in nature. To obtain further evidence for the asymmetric nature of the hybrids, we isolated B. campestris-specific repetitive sequences and used them for in situ hybridization of the chromosomes of the hybrids. The repetitive DNA probes could specifically identify 8 out of 20 chromosomes of the B. campestris genome, and analysis of the hybrids indicates that 1–3 chromosomes of B. campestris are lacking in all five hybrids examined, giving clear evidence for the asymmetric nature of the hybrids. Furthermore, in situ hybridization revealed that some of the abnormal chromosomes observed in the hybrids are generated by rearrangements of B. Campestris chromosomes caused by X-irradiation. Altogether, our study indicates that in situ hybridization using species-specific repetitive sequences is a useful tool to analyze chromosomal compositions of various types of hybrids obtained by cell fusion or conventional methods.  相似文献   

20.
Summary Tall fescue (Festuca arundinacea Schreb.) protoplasts, inactivated by iodoacetamide, and non-morphogenic Italian ryegrass (Lolium multiflorum Lam.) protoplasts, both derived from suspension cultures, were electrofused and putative somatic hybrid plants were recovered. Two different genotypic fusion combinations were carried out and several green plants were regenerated in one of them. With respect to plant habitus, leaf and inflorescence morphology, the regenerants had phenotypes intermediate between those of the parents. Southern hybridization analysis using a rice ribosomal DNA probe revealed that the regenerants contained both tall fescue- and Italian ryegrass-specific-DNA fragments. A cloned Italian ryegrass-specific interspersed DNA probe hybridized to total genomic DNA from Italian ryegrass and from the green regenerated somatic hybrid plants but not to tall fescue. Chromosome counts and zymograms of leaf esterases suggested nuclear genome instability of the somatic hybrid plants analyzed. Four mitochondrial probes and one chloroplast DNA probe were used in Southern hybridization experiments to analyze the organellar composition of the somatic hybrids obtained. The somatic hybrid plants analyzed showed tall fescue, additive or novel mtDNA patterns when hybridized with different mitochondrial gene-specific probes, while corresponding analysis using a chloroplast gene-specific probe revealed in all cases the tall fescue hybridization profile. Independently regenerated F. arundinacea (+) L. multiflorum somatic hybrid plants were successfully transferred to soil and grown to maturity, representing the first flowering intergeneric somatic hybrids recovered in Gramineae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号