首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We collected Oropsylla montana from rock squirrels, Spermophilus varigatus, and infected a subset of collected fleas with Yersinia pestis, the etiological agent of plague. We used bar-tagged DNA pyrosequencing to characterize bacterial communities of wild, uninfected controls and infected fleas. Bacterial communities within Y. pestis-infected fleas were substantially more similar to one another than communities within wild or control fleas, suggesting that infection alters the bacterial community in a directed manner such that specific bacterial lineages are severely reduced in abundance or entirely eliminated from the community. Laboratory conditions also significantly altered flea-associated bacterial communities relative to wild communities, but much less so than Y. pestis infection. The abundance of Firmicutes decreased considerably in infected fleas, and Bacteroidetes were almost completely eliminated from both the control and infected fleas. Bartonella and Wolbachia were unaffected or responded positively to Y. pestis infection.  相似文献   

2.
3.
Outbreaks of plague, a flea‐vectored bacterial disease, occur periodically in prairie dog populations in the western United States. In order to understand the conditions that are conducive to plague outbreaks and potentially predict spatial and temporal variations in risk, it is important to understand the factors associated with flea abundance and distribution that may lead to plague outbreaks. We collected and identified 20,041 fleas from 6,542 individual prairie dogs of four different species over a 4‐year period along a latitudinal gradient from Texas to Montana. We assessed local climate and other factors associated with flea prevalence and abundance, as well as the incidence of plague outbreaks. Oropsylla hirsuta, a prairie dog specialist flea, and Pulex simulans, a generalist flea species, were the most common fleas found on our pairs. High elevation pairs in Wyoming and Utah had distinct flea communities compared with the rest of the study pairs. The incidence of prairie dogs with Yersinia pestis detections in fleas was low (n = 64 prairie dogs with positive fleas out of 5,024 samples from 4,218 individual prairie dogs). The results of our regression models indicate that many factors are associated with the presence of fleas. In general, flea abundance (number of fleas on hosts) is higher during plague outbreaks, lower when prairie dogs are more abundant, and reaches peak levels when climate and weather variables are at intermediate levels. Changing climate conditions will likely affect aspects of both flea and host communities, including population densities and species composition, which may lead to changes in plague dynamics. Our results support the hypothesis that local conditions, including host, vector, and environmental factors, influence the likelihood of plague outbreaks, and that predicting changes to plague dynamics under climate change scenarios will have to consider both host and vector responses to local factors.  相似文献   

4.
5.
Plague, caused by the bacterium Yersinia pestis, is a mammalian vector-borne disease, transmitted by fleas that serve as the vector between rodent hosts. For many pathogens, including Y. pestis, there are strong evolutionary pressures that lead to a reduction in ‘useless genes'', with only those retained that reflect function in the specific environment inhabited by the pathogen. Genetic traits critical for survival and transmission between two environments, the rodent and the flea, are conserved in epizootic/epidemic plague strains. However, there are genes that remain conserved for which no function in the flea–rodent cycle has yet been observed, indicating an additional environment may exist in the transmission cycle of plague. Here, we present evidence for highly conserved genes that suggests a role in the persistence of Y. pestis after death of its host. Furthermore, maintenance of these genes points to Y. pestis traversing a post-mortem path between, and possibly within, epizootic periods and offering insight into mechanisms that may allow Y. pestis an alternative route of transmission in the natural environment.  相似文献   

6.

Comparative analysis of vector activity of fleas in the Siberian natural plague foci was carried out during two long-term periods of experimental studies: 1967–1980 and 1983–2007. The data on block formation frequency in adult fleas infected with Yersinia pestis were analyzed for 127 experiments with 15 flea species and subspecies. The vector activity of fleas in all the Siberian plague foci (Altai, Tuva, and Transbaikalia) has increased over a rather short time period of 30–40 years. The frequencies of flea blocking were significantly different (P < 0.001) between the analyzed periods in all the three plague foci.

  相似文献   

7.
Bubonic plague (Yersinia pestis) is a deadly zoonosis with black‐tailed prairie dogs (Cynomys ludovicianus) as a reservoir host in the United States. Systemic insecticides are a promising means of controlling the vectors, Oropsylla spp. fleas, infesting these prairie dogs, subsequently disrupting the Y. pestis cycle. The objective of this study was to conduct a field trial evaluating the efficacy of a grain rodent bait containing fipronil (0.005%) against fleas infesting prairie dogs. The study was performed in Larimer County, CO, where bait was applied to a treatment area containing a dense prairie dog population, three times over a three‐week period. Prairie dogs were captured and combed for fleas during four study periods (pre‐, mid‐, 1st post‐, and 2nd post‐treatment). Results indicated the use of bait containing fipronil significantly reduced flea burden. The bait containing fipronil was determined to reduce the mean number of fleas per prairie dog >95% for a minimum of 52 days post‐initial treatment application and 31 days post‐final treatment application. These results suggest the potential for this form of treatment to reduce flea population density on prairie dogs, and subsequently plague transmission, among mammalian hosts across the United States and beyond.  相似文献   

8.
Plague, caused by Yersinia pestis, is an exotic disease in North America circulating predominantly in wild populations of rodents and their fleas. Black-tailed prairie dogs (Cynomys ludovicianus) are highly susceptible to infection, often experiencing mortality of nearly all individuals in a town as a result of plague. The fleas of black-tailed prairie dogs are Oropsylla tuberculata cynomuris and Oropsylla hirsuta. We tested the efficiency of O. tuberculata cynomuris to transmit Y. pestis daily from 24 to 96 h postinfection and compared it to previously collected data for O. hirsuta. We found that O. tuberculata cynomuris has over threefold greater transmission efficiency (0.18 infected fleas transmit Y. pestis at 24 h postinfection) than O. hirsuta (0.05 fleas transmit). Using a simple model of flea-borne transmission, we combine these laboratory measurements with field data on monthly flea loads to compare the seasonal vectorial capacity of these two flea species. Coinciding with seasonal patterns of flea abundance, we find a peak in potential for flea-borne transmission in March, during high O. tuberculata cynomuris abundance, and in September–October when O. hirsuta is common. Our findings may be useful in determining the timing of insecticidal dusting to slow plague transmission in black-tailed prairie dogs.  相似文献   

9.
Alimentary activity and mortality was assessed in fleas Citellophilus tesquorum altaicus non-infected with Yersinia pestis and those with initial infection levels 50 and 100% during feeding on a non-specific host (white mice). The presence of the plague pathogen in fleas significantly stimulated their feeding activity, especially in females. No effect of infection on flea mortality was observed. At the same time, male fleas died more frequently than females.  相似文献   

10.
An improved understanding of the ecology of fleas on California ground squirrels, Otospermophilus beecheyi, is warranted given the role of fleas in the transmission, and perhaps persistence, of the plague‐causing bacterium Yersinia pestis. We sampled O. beecheyi on a seasonal basis from three study sites, each representing a different land use type (preserve, pasture, and agriculture) in the San Joaquin Valley, CA. Overall, the abundance of fleas on squirrels was greatest in spring at the preserve site, in summer at the agriculture and pasture sites, and in winter at the pasture site. Hoplopsyllus anomalus, the species most frequently found on squirrels, was most abundant in spring at the preserve site and in summer at the agriculture and pasture sites. Oropsylla montana was most abundant in winter at the pasture site and on adult squirrels. Echidnophaga gallinacea was most abundant in fall on juvenile squirrels at the preserve site. All three flea species we encountered are known to be potential vectors of Y. pestis. Future efforts to predict flea species occurrence and abundance (and plague risk) at sites of concern should consider seasonal microclimatic conditions and the potential influence of human land use practices.  相似文献   

11.
It has long been theorized that deer mice (Peromyscus maniculatus) are a primary reservoir of Yersinia pestis in California. However, recent research from other parts of the western USA has implicated deer mice as spillover hosts during epizootic plague transmission. This retrospective study analyzed deer mouse data collected for plague surveillance by public health agencies in California from 1971 to 2016 to help elucidate the role of deer mice in plague transmission. The fleas most commonly found on deer mice were poor vectors of Y. pestis and occurred in insufficient numbers to maintain transmission of the pathogen, while fleas whose natural hosts are deer mice were rarely observed and even more rarely found infected with Y. pestis on other rodent hosts. Seroprevalence of Y. pestis antibodies in deer mice was significantly lower than that of several chipmunk and squirrel species. These analyses suggest that it is unlikely that deer mice play an important role in maintaining plague transmission in California. While they may not be primary reservoirs, results supported the premise that deer mice are occasionally exposed to and infected by Y. pestis and instead may be spillover hosts.  相似文献   

12.
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged less than 6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer membrane proteins (Yops), the broad range protease Pla, pathogen-associated molecular patterns (PAMPs) and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and less than 48 h for pneumonic plague). In here, we review recent research advances on Y. pestis evolution, virulence factors function, bacterial strategies to subvert mammalian innate immune responses, vaccination and problems associated to pneumonic plague diagnosis.  相似文献   

13.
The paper considers, for the first time, the formation of the extracellular matrix envelope (EME), or the biofilm, by Yersinia pestis as the basis determining the nature of interaction of the plague agent with the flea organism. The significance of the insect proventriculus in the process of biofilm formation is shown. The ultrastructure of the conglomerates of the plague microbe in the flea proventriculus and midgut was studied and the uniform mechanism of their formation was established. The role of Yersinia pestis biofilm in preservation of the plague microbe in the intestine of ectoparasites and in the soil of rodent burrows was discussed. PCR analysis confirmed the presence of the agent in plague infected corpses and flea feces stored at +8−10°C for 7 years and 9 months.  相似文献   

14.

Background

The cat flea, Ctenocephalides felis, is prevalent worldwide, will parasitize animal reservoirs of plague, and is associated with human habitations in known plague foci. Despite its pervasiveness, limited information is available about the cat flea’s competence as a vector for Yersinia pestis. It is generally considered to be a poor vector, based on studies examining early-phase transmission during the first week after infection, but transmission potential by the biofilm-dependent proventricular-blocking mechanism has never been systematically evaluated. In this study, we assessed the vector competence of cat fleas by both mechanisms. Because the feeding behavior of cat fleas differs markedly from important rat flea vectors, we also examined the influence of feeding behavior on transmission dynamics.

Methodology/Principal Findings

Groups of cat fleas were infected with Y. pestis and subsequently provided access to sterile blood meals twice-weekly, 5 times per week, or daily for 4 weeks and monitored for infection, the development of proventricular biofilm and blockage, mortality, and the ability to transmit. In cat fleas allowed prolonged, daily access to blood meals, mimicking their natural feeding behavior, Y. pestis did not efficiently colonize the digestive tract and could only be transmitted during the first week after infection. In contrast, cat fleas that were fed intermittently, mimicking the feeding behavior of the efficient vector Xenopsylla cheopis, could become blocked and regularly transmitted Y. pestis for 3–4 weeks by the biofilm-mediated mechanism, but early-phase transmission was not detected.

Conclusions

The normal feeding behavior of C. felis, more than an intrinsic resistance to infection or blockage by Y. pestis, limits its vector competence. Rapid turnover of midgut contents results in bacterial clearance and disruption of biofilm accumulation in the proventriculus. Anatomical features of the cat flea foregut may also restrict transmission by both early-phase and proventricular biofilm-dependent mechanisms.  相似文献   

15.

Background/Aims

Arthropod-borne pathogens are transmitted into a unique intradermal microenvironment that includes the saliva of their vectors. Immunomodulatory factors in the saliva can enhance infectivity; however, in some cases the immune response that develops to saliva from prior uninfected bites can inhibit infectivity. Most rodent reservoirs of Yersinia pestis experience fleabites regularly, but the effect this has on the dynamics of flea-borne transmission of plague has never been investigated. We examined the innate and acquired immune response of mice to bites of Xenopsylla cheopis and its effects on Y. pestis transmission and disease progression in both naïve mice and mice chronically exposed to flea bites.

Methods/Principal Findings

The immune response of C57BL/6 mice to uninfected flea bites was characterized by flow cytometry, histology, and antibody detection methods. In naïve mice, flea bites induced mild inflammation with limited recruitment of neutrophils and macrophages to the bite site. Infectivity and host response in naïve mice exposed to flea bites followed immediately by intradermal injection of Y. pestis did not differ from that of mice infected with Y. pestis without prior flea feeding. With prolonged exposure, an IgG1 antibody response primarily directed to the predominant component of flea saliva, a family of 36–45 kDa phosphatase-like proteins, occurred in both laboratory mice and wild rats naturally exposed to X. cheopis, but a hypersensitivity response never developed. The incidence and progression of terminal plague following challenge by infective blocked fleas were equivalent in naïve mice and mice sensitized to flea saliva by repeated exposure to flea bites over a 10-week period.

Conclusions

Unlike what is observed with many other blood-feeding arthropods, the murine immune response to X. cheopis saliva is mild and continued exposure to flea bites leads more to tolerance than to hypersensitivity. The immune response to flea saliva had no detectable effect on Y. pestis transmission or plague pathogenesis in mice.  相似文献   

16.
Yersinia pestis, the causative agent of plague, is typically transmitted by the bite of an infected flea. Many aspects of mammalian innate immune response early after Y. pestis infection remain poorly understood. A previous study by our lab showed that neutrophils are the most prominent cell type recruited to the injection site after intradermal needle inoculation of Y. pestis, suggesting that neutrophil interactions with Y. pestis may be important in bubonic plague pathogenesis. In the present study, we developed new tools allowing for intravital microscopy of Y. pestis in the dermis of an infected mouse after transmission by its natural route of infection, the bite of an infected flea. We found that uninfected flea bites typically induced minimal neutrophil recruitment. The magnitude of neutrophil response to flea-transmitted Y. pestis varied considerably and appeared to correspond to the number of bacteria deposited at the bite site. Macrophages migrated towards flea bite sites and interacted with small numbers of flea-transmitted bacteria. Consistent with a previous study, we observed minimal interaction between Y. pestis and dendritic cells; however, dendritic cells did consistently migrate towards flea bite sites containing Y. pestis. Interestingly, we often recovered viable Y. pestis from the draining lymph node (dLN) 1 h after flea feeding, indicating that the migration of bacteria from the dermis to the dLN may be more rapid than previously reported. Overall, the innate cellular host responses to flea-transmitted Y. pestis differed from and were more variable than responses to needle-inoculated bacteria. This work highlights the importance of studying the interactions between fleas, Y. pestis and the mammalian host to gain a better understanding of the early events in plague pathogenesis.  相似文献   

17.
The black‐tailed prairie dog (Cynomys ludovicianus) is a keystone species on the mid‐ and short‐grass prairies of North America. The species has suffered extensive colony extirpations and isolation as a result of human activity including the introduction of an exotic pathogen, Yersinia pestis, the causative agent of sylvatic plague. The prairie dog flea, Oropsylla hirsuta, is the most common flea on our study colonies in north‐central Montana and it has been shown to carry Y. pestis. We used microsatellite markers to estimate the level of population genetic concordance between black‐tailed prairie dogs and O. hirsuta in order to determine the extent to which prairie dogs are responsible for dispersing this potential plague vector among prairie dog colonies. We sampled fleas and prairie dogs from six prairie dog colonies in two regions separated by about 46 km. These colonies were extirpated by a plague epizootic that began months after our sampling was completed in 2005. Prairie dogs showed significant isolation‐by‐distance and a tendency toward genetic structure on the regional scale that the fleas did not. Fleas exhibited higher estimated rates of gene flow among prairie dog colonies than the prairie dogs sampled from the same colonies. While the findings suggested black‐tailed prairie dogs may have contributed to flea dispersal, we attributed the lack of concordance between the population genetic structures of host and ectoparasite to additional flea dispersal that was mediated by mammals other than prairie dogs that were present in the prairie system.  相似文献   

18.
19.
Elucidating feeding relationships between hosts and parasites remains a significant challenge in studies of the ecology of infectious diseases, especially those involving small or cryptic vectors. Black‐tailed prairie dogs (Cynomys ludovicianus) are a species of conservation importance in the North American Great Plains whose populations are extirpated by plague, a flea‐vectored, bacterial disease. Using polymerase chain reaction (PCR) assays, we determined that fleas (Oropsylla hirsuta) associated with prairie dogs feed upon northern grasshopper mice (Onychomys leucogaster), a rodent that has been implicated in the transmission and maintenance of plague in prairie‐dog colonies. Our results definitively show that grasshopper mice not only share fleas with prairie dogs during plague epizootics, but also provide them with blood meals, offering a mechanism by which the pathogen, Yersinia pestis, may be transmitted between host species and maintained between epizootics. The lack of identifiable host DNA in a significant fraction of engorged Oropsylla hirsuta collected from animals (47%) and prairie‐dog burrows (100%) suggests a rapid rate of digestion and feeding that may facilitate disease transmission during epizootics but also complicate efforts to detect feeding on alternative hosts. Combined with other analytical approaches, e.g., stable isotope analysis, molecular genetic techniques can provide novel insights into host‐parasite feeding relationships and improve our understanding of the role of alternative hosts in the transmission and maintenance of disease.  相似文献   

20.
Plague, a zoonosis caused by Yersinia pestis, is still found in Africa, Asia, and the Americas. Madagascar reports almost one third of the cases worldwide. Y. pestis can be encountered in three very different types of foci: urban, rural, and sylvatic. Flea vector and wild rodent host population dynamics are tightly correlated with modulation of climatic conditions, an association that could be crucial for both the maintenance of foci and human plague epidemics. The black rat Rattus rattus, the main host of Y. pestis in Madagascar, is found to exhibit high resistance to plague in endemic areas, opposing the concept of high mortality rates among rats exposed to the infection. Also, endemic fleas could play an essential role in maintenance of the foci. This review discusses recent advances in the understanding of the role of these factors as well as human behavior in the persistence of plague in Madagascar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号