首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Objective

To estimate the prognostic value of T-cell subsets in Zambian patients initiating antiretroviral therapy (ART), and to assess the impact of a nutritional intervention on T-cell subsets.

Methods

This was a sub-study of a randomised clinical trial of a nutritional intervention for malnourished adults initiating ART. Participants in a randomised controlled trial (NUSTART trial) were enrolled between April and December 2012. Participants received lipid-based nutritional supplement either with or without additional vitamins and minerals. Immunophenotyping was undertaken at baseline and, in survivors, after 12 weeks of ART to characterize T-cell subsets using the markers CD3, CD4, CD8, CD45RA, CCR7, CD28, CD57, CD31, α4β7, Ki67, CD25 and HLA-DR. Univariate and multivariate survival analysis was performed, and responses to treatment were analysed using the Wicoxon rank-sum test.

Results

Among 181 adults, 36 (20%) died by 12 weeks after starting ART. In univariate analysis, patients who died had fewer proliferating, more naïve and fewer gut homing CD4+ T-cells compared to survivors; and more senescent and fewer proliferating CD8+ T-cells. In a multivariate Cox regression model high naïve CD4+, low proliferating CD4+, high senescent CD8+ and low proliferating CD8+ subsets were independently associated with increased risk of death. Recent CD4+ thymic emigrants increased less between recruitment and 12 weeks of ART in the intervention group compared to the control group.

Conclusions

Specific CD4+ T-cell subsets are of considerable prognostic significance for patients initiating ART in Zambia, but only thymic output responded to this nutritional intervention.  相似文献   

2.
3.
Diversity of T cell receptor (TCR) genes is primarily generated by nucleotide insertions upon rearrangement from their germ line-encoded V, D and J segments. Nucleotide insertions at V-D and D-J junctions are random, but some small subsets of these insertions are exceptional, in that one to three base pairs inversely repeat the sequence of the germline DNA. These short complementary palindromic sequences are called P nucleotides. We apply the ImmunoSeq deep-sequencing assay to the third complementarity determining region (CDR3) of the β chain of T cell receptors, and use the resulting data to study P nucleotides in the repertoire of naïve and memory CD8+ and CD4+ T cells. We estimate P nucleotide distributions in a cross section of healthy adults and different T cell subtypes. We show that P nucleotide frequency in all T cell subtypes ranges from 1% to 2%, and that the distribution is highly biased with respect to the coding end of the gene segment. Classification of observed palindromic sequences into P nucleotides using a maximum conditional probability model shows that single base P nucleotides are very rare in VDJ recombination; P nucleotides are primarily two bases long. To explore the role of P nucleotides in thymic selection, we compare P nucleotides in productive and non-productive sequences of CD8+ naïve T cells. The naïve CD8+ T cell clones with P nucleotides are more highly expanded.  相似文献   

4.
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.  相似文献   

5.
Teleost fish express highly diverse naive TCRβ (TRB) repertoires and mount strong public and private clonal responses upon infection with pathogens. Fish T cells express typical markers such as CD8, CD4-1 and CD4-2, CD3, CD28 and CTLA4. Fish CD8+ T cells have been shown to be responsible for antigen-specific cell-mediated cytotoxicity in in vitro systems using histo-compatible effector and target cells. We compare here the complexity of TRB repertoires between FACS sorted CD8+ and CD8 T cells from spleen and pronephros of rainbow trout. In contrast to human, while the TRB repertoire is highly diverse and polyclonal in CD8+ T cells of naïve fish, it appeared very different in CD8 lymphocytes with irregular CDR3 length distributions suggesting a dominance of activated clones already in naïve fish or the presence of non conventional T cells. After infection with a systemic virus, CD8+ T cells mount a typical response with significant skewing of CDR3 length profiles. The infection also induces significant modifications of the TRB repertoire expressed by the CD8 fraction, but for a different set of V/J combinations. In this fraction, the antiviral response results in an increase of the peak diversity of spectratypes. This unusual observation reflects the presence of a number of T cell expansions that rise the relative importance of minor peaks of the highly skewed distributions observed in unchallenged animals. These results suggest that the diversity of TRB expressed by CD8+ and CD8 αβ T cells may be subjected to different regulatory patterns in fish and in mammals.  相似文献   

6.
Both CD28 and NKG2D can function as co-stimulatory receptors in human CD8+ T cells. However, their independent functional contributions in distinct CD8+ T cell subsets are not well understood. In this study, CD8+ T cells in human peripheral blood- and lung-derived lymphocytes were analyzed for CD28 and NKG2D expression and function. We found a higher level of CD28 expression in PBMC-derived naïve (CD45RA+CD27+) and memory (CD45RACD27+) CD8+ T cells (CD28Hi), while its expression was significantly lower in effector (CD45RA+CD27) CD8+ T cells (CD28Lo). Irrespective of the differences in the CD28 levels, NKG2D expression was comparable in all three CD8+ T cell subsets. CD28 and NKG2D expressions followed similar patterns in human lung-resident GILGFVFTL/HLA-A2-pentamer positive CD8+ T cells. Co-stimulation of CD28Lo effector T cells via NKG2D significantly increased IFN-γ and TNF-α levels. On the contrary, irrespective of its comparable levels, NKG2D-mediated co-stimulation failed to augment IFN-γ and TNF-α production in CD28Hi naïve/memory T cells. Additionally, CD28-mediated co-stimulation was obligatory for IL-2 generation and thereby its production was limited only to the CD28Hi naïve/memory subsets. MICA, a ligand for NKG2D was abundantly expressed in the tracheal epithelial cells, validating the use of NKG2D as the major co-stimulatory receptor by tissue-resident CD8+ effector T cells. Based on these findings, we conclude that NKG2D may provide an expanded level of co-stimulation to tissue-residing effector CD8+ T cells. Thus, incorporation of co-stimulation via NKG2D in addition to CD28 is essential to activate tumor or tissue-infiltrating effector CD8+ T cells. However, boosting a recall immune response via memory CD8+ T cells or vaccination to stimulate naïve CD8+ T cells would require CD28-mediated co-stimulation.  相似文献   

7.
8.
We found that resveratrol enhances interferon (IFN)-γ-induced tryptophanyl-tRNA-synthetase (TTS) expression in bone marrow-derived dendritic cells (BMDCs). Resveratrol-induced TTS expression is associated with glycogen synthase kinase-3β (GSK-3β) activity. In addition, we found that resveratrol regulates naïve CD8+ T-cell polarization by modulating GSK-3β activity in IFN-γ-stimulated BMDCs, and that resveratol induces upregulation of TTS in CD8+ T-cells in the in vivo tumor environment. Taken together, resveratrol upregulates IFN-γ-induced TTS expression in a GSK-3β-dependent manner, and this TTS modulation is crucial for DC-mediated T-cell modulation. [BMB Reports 2015; 48(5): 283-288]  相似文献   

9.
Following thymic output, αβ+CD4+ T cells become activated in the periphery when they encounter peptide–major histocompatibility complex. A combination of cytokine and co-stimulatory signals instructs the differentiation of T cells into various lineages and subsequent expansion and contraction during an appropriate and protective immune response. Our understanding of the events leading to T-cell lineage commitment has been dominated by a single fate model describing the commitment of T cells to one of several helper (TH), follicular helper (TFH) or regulatory (TREG) phenotypes. Although a single lineage-committed and dedicated T cell may best execute a single function, the view of a single fate for T cells has recently been challenged. A relatively new paradigm in αβ+CD4+ T-cell biology indicates that T cells are much more flexible than previously appreciated, with the ability to change between helper phenotypes, between helper and follicular helper, or, most extremely, between helper and regulatory functions. In this review, we comprehensively summarize the recent literature identifying when TH or TREG cell plasticity occurs, provide potential mechanisms of plasticity and ask if T-cell plasticity is beneficial or detrimental to immunity.  相似文献   

10.
Memory formation is a hallmark of T cell-mediated immunity, but how differentiation into either short-lived effector cells (SLECs, CD127KLRG1+) or memory precursors cells (MPECs, CD127+KLRG1) and subsequent regulation of long-term memory is adjusted is incompletely understood. Here, we show that loss of the nuclear orphan receptor NR2F6 in germ-line Nr2f6-deficient mice enhances antigen-specific CD8+ memory formation up to 70 days after bacterial infection with Listeria monocytogenes (LmOVA) and boosts inflammatory IFN-γ, TNFα, and IL-2 cytokine recall responses. Adoptive transfer experiments using Nr2f6−/− OT-I T-cells showed that the augmented memory formation is CD8+ T-cell intrinsic. Although the relative difference between the Nr2f6+/+ and Nr2f6−/− OT-I memory compartment declines over time, Nr2f6-deficient OT-I memory T cells mount significantly enhanced IFN-γ responses upon reinfection with increased clonal expansion and improved host antigen-specific CD8+ T-cell responses. Following a secondary adoptive transfer into naïve congenic mice, Nr2f6-deficient OT-I memory T cells are superior in clearing LmOVA infection. Finally, we show that the commitment to enhanced memory within Nr2f6-deficient OT-I T cells is established in the early phases of the antibacterial immune response and is IFN-γ mediated. IFN-γ blocking normalized MPEC formation of Nr2f6-deficient OT-I T cells. Thus, deletion or pharmacological inhibition of NR2F6 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing early IFN-γ production and consequently the functionality of memory CD8+ T cells in vivo.Subject terms: Interferons, Bacterial infection  相似文献   

11.
12.
The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV) to activate immunologically naïve HBV-specific CD8+ T cell receptor (TCR) transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1) expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8+ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40) inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs) strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8+ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8+ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8+ T cell exhaustion can be rescued by CD40-mediated mDC-activation.  相似文献   

13.
14.
15.
A productive CD8+ T-cell response to a viral infection requires rapid division and proliferation of virus-specific CD8+ T cells. Tetramer-based enrichment assays have recently given estimates of the numbers of peptide-major histocompatibility complex-specific CD8+ T cells in naïve mice, but precursor frequencies for entire viruses have been examined only by using in vitro limiting-dilution assays (LDAs). To examine CD8+ T-cell precursor frequencies for whole viruses, we developed an in vivo LDA and found frequencies of naïve CD8+ T-cell precursors of 1 in 1,444 for vaccinia virus (VV) (∼13,850 VV-specific CD8+ T cells per mouse) and 1 in 2,958 for lymphocytic choriomeningitis virus (LCMV) (∼6,761 LCMV-specific CD8+ T cells per mouse) in C57BL/6J mice. In mice immune to VV, the number of VV-specific precursors, not surprisingly, dramatically increased to 1 in 13 (∼1,538,462 VV-specific CD8+ T cells per mouse), consistent with estimates of VV-specific memory T cells. In contrast, precursor numbers for LCMV did not increase in VV-immune mice (1 in 4,562, with ∼4,384 LCMV-specific CD8+ T cells per VV-immune mouse). Using H-2Db-restricted LCMV GP33-specific P14-transgenic T cells, we found that, after donor T-cell take was accounted for, approximately every T cell transferred underwent a full proliferative expansion in response to LCMV infection. This high efficiency was also seen with memory populations, suggesting that most antigen-specific T cells will proliferate extensively at a limiting dilution in response to infections. These results show that frequencies of naïve and memory CD8+ T cell precursors for whole viruses can be remarkably high.The immune response to a viral infection often involves the rapid proliferation of CD8+ effector T cells that recognize virus-infected targets expressing 8- to 11-amino-acid-long peptides on class I major histocompatibility complex (MHC) molecules. This recognition is mediated by membrane-bound T-cell receptors (TCRs) that are generated through largely random DNA recombination events of the many TCRα and -β genes, encoding polypeptide chains that heterodimerize to form the recognition structure of T cells. The recombination of the segments also involves addition or deletion of nucleotides during the joining process, causing even greater diversity, and these processes allow for a very broad range of T-cell specificities, with a calculated theoretical diversity of ∼1015 TCRs in the mouse (7). By use of PCR, CDR3 spectratyping, and sequencing techniques, it was estimated that there are approximately 2 × 106 distinct TCR specificities in a mouse spleen (1, 5). This is far below the theoretical level of T-cell diversity, but considering estimates of T-cell degeneracy that propose that a single TCR can recognize up to 106 peptide-MHC (pMHC) complexes (17, 36), it is likely that the functional diversity is much greater than the number of individual TCRs.It has been of interest to calculate the number of T cells that would either recognize or respond to a pathogen or to a specific pMHC complex. Early estimates of numbers of CD8+ T cells that are specific to a single virus, i.e., precursor frequencies, took advantage of an in vitro limiting-dilution assay (LDA) and calculated CD8+ T-cell virus-specific precursor frequencies to be on the order of 1 in 100,000 in naïve mice and predicted that these cells needed to undergo about 15 divisions to reach the higher precursor frequencies found at day 8 postinfection (29, 30). The efficiency of such assays, however, is relatively poor. Later studies estimated the number of pMHC-specific CD8+ T cells in a naïve mouse by CDR3 sequencing. H-2Kd-restricted T cells specific to HLA residues 170 to 179 (HLA 170-179) were sorted by tetramer from human tumor-immunized mice, and their Vβ CDR3 regions were sequenced. After a plateau suggesting that the majority of the different TCRs had been sequenced was reached, exhaustive sequencing was then used to identify the frequencies of these sequences in naïve mice. These studies found that there were about 600 CD8+ T cells specific for that pMHC complex in naïve mice (4). A second strategy used an in vivo competition assay with H-2Db-restricted lymphocytic choriomeningitis virus (LCMV) GP33-specific P14-transgenic T cells to estimate the number of GP33-specific CD8 T cells in naïve mice and calculated the number to be between 100 to 200 cells per mouse (2).Others estimated numbers of pMHC-specific T cells by sequencing the CDR3β regions of antigen-specific T cells that had expanded during an acute infection. By calculating a measure of CDR3 diversity and then assuming a logarithmic distribution of diversity, they extrapolated the number of T-cell clones that responded to an acute infection. With this technique, 300 to 500 H-2Db-restricted mouse hepatitis virus (MHV)-encoded S510 clonotypes were calculated to be in the central nervous systems of acutely infected mice, with ∼100 to 900 clonotypes calculated to be in chronically infected mice (24). Later studies used a gamma interferon (IFN-γ) capture assay instead of tetramer sorting and estimated 1,100 to 1,500 H-2Db-restricted S510-specific clonotypes and 600 to 900 clonotypes of the subdominant H-2Kb-restricted MHV S598 peptide-specific T cells in the spleens of acutely infected mice (25). Those studies also estimated that there were 1,000 to 1,200 different H-2Db-restricted GP33-specific clonotypes that could respond to an LCMV infection.More-recent studies have taken advantage of magnetic tetramer binding enrichment and double tetramer staining of cells from the spleen and lymph nodes of naïve mice to determine pMHC precursor frequencies, with the assumption that most CD8+ T cells in a naïve mouse reside in lymphoid organs and will react with tetramers. This technique was first described by Moon et al. for CD4+ T cells, and it detected ∼190 I-Ab 2W1S 52-68-specific T cells, ∼20 I-Ab Salmonella enterica serovar Typhimurium FLiC 427-441-specific T cells, and ∼16 I-Ab chicken ovalbumin (OVA) 323-339-specific T cells per mouse (19). This same technique was then used to determine numbers of pMHC-specific CD8+ T cells for epitopes derived from a variety of viruses and found 15 to 1,070 pMHC-specific CD8+ T cells per mouse, depending on the specificity of the pMHC tetramer (10, 15, 23). Determinations of CD8+ T-cell precursor frequencies in humans are currently not experimentally attainable, but exhaustive sequencing of an HLA-A2.1-restricted influenza A virus (IAV) M1 58-66-specific T-cell response has suggested that there are at least 141 different clonotypes that can grow out in response to an in vitro stimulation with peptide, providing a minimum number of T cells that can respond to this pMHC complex in humans (22).Most of the assays estimate the number of T cells specific to single peptides in individual mice. These assays, therefore, do not determine the numbers of CD8+ T cells that can proliferate in response to an entire virus, especially if the virus is known to have many epitopes or if epitopes for the virus have not been described. By examining the average number of pMHC-specific CD8+ T cells in a naïve mouse and comparing this to the number of pMHC-specific CD8+ T cells that are in a mouse at the peak of the T-cell response, it can be calculated that CD8+ T cells divide approximately 12 to 14 times after virus infection (23). Considering that the progeny of one precursor after only 12 divisions can result in just over 4,000 cells, and since recent experiments using H-2Kb-restricted chicken OVA 257-264-specific OT-1-transgenic T cells have confirmed that the progeny from a single cell can be detected in a mouse after infection (31), an in vivo LDA was set up to take advantage of the extensive division and proliferation of virus-specific CD8+ T cells in order to determine virus-specific CD8+ T-cell precursor frequencies.Here, we show that by transferring limiting amounts of carboxyfluorescein succinimidyl ester (CFSE)-labeled Thy1.1+ Ly5.2+ heterogeneous CD8+ T cells into Thy1.2+ Ly5.1+ hosts, we are able to calculate CD8+ T-cell precursor frequencies for whole viruses. Our calculations are based on finding the number of donor CD8+ T cells that results in low-level-CFSE (CFSElo) (i.e., proliferated) donor CD8 T cells in 50% of the hosts. Using probit or Reed and Muench 50% endpoint calculations (3, 26), we are able to calculate CD8+ T-cell precursor frequencies. We show here that frequencies of naïve CD8+ T-cell precursors for whole viruses are quite high and that our in vivo LDA calculates whole-virus precursor frequencies in line with determinations using other methods with naïve and immune mice.  相似文献   

16.
The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body’s internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.  相似文献   

17.
Accumulating evidence suggests a contribution of T cell-derived IL-17, IL-21 and IL-22 cytokines in skin immune homeostasis as well as inflammatory disorders. Here, we analyzed whether the cytokine-producing T lymphocytes could be induced by the different subsets of human skin dendritic cells (DCs), i.e., epidermal Langerhans cells (LCs), dermal CD1c+CD14 and CD14+ DCs (DDCs). DCs were purified following a 2-day migration from separated epidermal and dermal sheets and co-cultured with allogeneic T cells before cytokine secretion was explored. Results showed that no skin DCs could induce substantial IL-17 production by naïve CD4+ or CD8+T lymphocytes whereas all of them could induce IL-17 production by memory T cells. In contrast, LCs and CD1c+CD14DDCs were able to differentiate naïve CD4+T lymphocytes into IL-22 and IL-21-secreting cells, LCs being the most efficient in this process. Intracellular cytokine staining showed that the majority of IL-21 or IL-22 secreting CD4+T lymphocytes did not co-synthesized IFN-γ, IL-4 or IL-17. IL-21 and IL-22 production were dependent on the B7/CD28 co-stimulatory pathway and ICOS-L expression on skin LCs significantly reduced IL-21 level. Finally, we found that TGF-β strongly down-regulates both IL-21 and IL-22 secretion by allogeneic CD4+ T cells. These results add new knowledge on the functional specialization of human skin DCs and might suggest new targets in the treatment of inflammatory skin disorders.  相似文献   

18.
CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential.  相似文献   

19.

Background

The importance of CD4+ and CD8+ T cells in protection against tuberculosis (TB) is well known, however, the association between changes to the T cell repertoire and disease presentation has never been analyzed. Characterization of T-cells in TB patients in previous study only analyzed the TCR β chain and omitted analysis of the Vα family even though α chain also contribute to antigen recognition. Furthermore, limited information is available regarding the heterogeneity compartment and overall function of the T cells in TB patients as well as the common TCR structural features of Mtb antigen specific T cells among the vast numbers of TB patients.

Methodology/Principal Findings

CDR3 spectratypes of CD4+ and CD8+ T cells were analyzed from 86 patients with TB exhibiting differing degrees of disease severity, and CDR3 spectratype complexity scoring system was used to characterize TCR repertoire diversity. TB patients with history of other chronic disease and other bacterial or viral infections were excluded for the study to decrease the likely contribution of TCRs specific to non-TB antigens as far as possible. Each patient was age-matched with a healthy donor group to control for age variability. Results showed that healthy controls had a normally diversified TCR repertoire while TB patients represented with restricted TCR repertoire. Patients with mild disease had the highest diversity of TCR repertoire while severely infected patients had the lowest, which suggest TCR repertoire diversity inversely correlates with disease severity. In addition, TB patients showed preferred usage of certain TCR types and have a bias in the usage of variable (V) and joining (J) gene segments and N nucleotide insertions.

Conclusions/Significance

Results from this study promote a better knowledge about the public characteristics of T cells among TB patients and provides new insight into the TCR repertoire associated with clinic presentation in TB patients.  相似文献   

20.
The thymus, the primary organ for the generation of αβ T cells and backbone of the adaptive immune system in vertebrates, has long been considered as the only source of αβT cells. Yet, thymic involution begins early in life leading to a drastically reduced output of naïve αβT cells into the periphery. Nevertheless, even centenarians can build immunity against newly acquired pathogens. Recent research suggests extrathymic αβT cell development, however our understanding of pathways that may compensate for thymic loss of function are still rudimental. γδ T cells are innate lymphocytes that constitute the main T-cell subset in the tissues. We recently ascribed a so far unappreciated outstanding function to a γδ T cell subset by showing that the scarce entity of CD4+ Vδ1+γδ T cells can transdifferentiate into αβT cells in inflammatory conditions. Here, we provide the protocol for the isolation of this progenitor from peripheral blood and its subsequent cultivation. Vδ1 cells are positively enriched from PBMCs of healthy human donors using magnetic beads, followed by a second step wherein we target the scarce fraction of CD4+ cells with a further magnetic labeling technique. The magnetic force of the second labeling exceeds the one of the first magnetic label, and thus allows the efficient, quantitative and specific positive isolation of the population of interest. We then introduce the technique and culture condition required for cloning and efficiently expanding the cells and for identification of the generated clones by FACS analysis. Thus, we provide a detailed protocol for the purification, culture and ex vivo expansion of CD4+ Vδ1+γδ T cells. This knowledge is prerequisite for studies that relate to this αβT cell progenitor`s biology and for those who aim to identify the molecular triggers that are involved in its transdifferentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号