首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The hepatitis C virus (HCV) H strain polyprotein is cleaved to produce at least nine distinct products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. In this report, a series of C-terminal truncations and fusion with a human c-myc epitope tag allowed identification of a tenth HCV-encoded cleavage product, p7, which is located between the E2 and NS2 proteins. As determined by N-terminal sequence analysis, p7 begins with position 747 of the HCV H strain polyprotein. p7 is preceded by a hydrophobic sequence at the C terminus of E2 which may direct its translocation into the endoplasmic reticulum, allowing cleavage at the E2/p7 site by host signal peptidase. This hypothesis is supported by the observation that cleavage at the E2/p7 and p7/NS2 sites in cell-free translation studies was dependent upon the addition of microsomal membranes. However, unlike typical cotranslational signal peptidase cleavages, pulse-chase experiments indicate that cleavage at the E2/p7 site is incomplete, leading to the production of two E2-specific species, E2 and E2-p7. Possible roles of p7 and E2-p7 in the HCV life cycle are discussed.  相似文献   

2.
The NS2 protein of hepatitis C virus is a transmembrane polypeptide.   总被引:17,自引:9,他引:8       下载免费PDF全文
The NS2 protein of hepatitis C virus (HCV) is released from its polyprotein precursor by two proteolytic cleavages. The N terminus of this protein is separated from the E2/p7 polypeptide by a cleavage thought to be mediated by signal peptidase, whereas the NS2-3 junction located at the C terminus is processed by a viral protease. To characterize the biogenesis of NS2 encoded by the BK strain of HCV, we have defined the minimal region of the polyprotein required for efficient cleavage at the NS2-3 site and analyzed the interaction of the mature polypeptide with the membrane of the endoplasmic reticulum (ER). We have observed that although cleavage can occur in vitro in the absence of microsomal membranes, synthesis of the polyprotein precursor in the presence of membranes greatly increases processing at this site. Furthermore, we show that the membrane dependency for efficient in vitro processing varies among different HCV strains and that host proteins located on the ER membrane, and in particular the signal recognition particle receptor, are required to sustain efficient proteolysis. By means of sedimentation analysis, protease protection assay, and site-directed mutagenesis, we also demonstrate that the NS2 protein derived from processing at the NS2-3 site is a transmembrane polypeptide, with the C terminus translocated in the lumen of the ER and the N terminus located in the cytosol.  相似文献   

3.
Two hepatitis C virus glycoprotein E2 products with different C termini.   总被引:27,自引:16,他引:11       下载免费PDF全文
Processing of the boundary region between the putative structural and nonstructural regions of the hepatitis C virus precursor polyprotein was analyzed by in vitro translation using reticulocyte lysate in the presence of canine microsomal membranes. At this boundary in the precursor polyprotein, the most carboxy-terminal of the structural proteins, gp70 (E2), is proximal to the amino terminal of the nonstructural protein p21 (NS2). The presence of a novel microsomal membrane-dependent cleavage site was observed at the region upstream of the amino-terminal end of p21 (NS2) in the precursor polyprotein. The cleavage site was assigned to amino acid residues 746/747 in the hepatitis C virus precursor polyprotein. Inefficient cleavage of this site resulted in the production of two forms of E2 products with different sizes of peptide backbones. Translation and cleavage of various C-terminal deletion constructs established the significance of the C-terminal hydrophobic amino acid sequences of E2 products in membrane anchoring.  相似文献   

4.
We determined the partial amino (N)-terminal amino acid sequence of hepatitis C virus p21 (nonstructural protein 2 [NS2]). Cleavage at the p21 (NS2) N terminus depended on the presence of microsomal membranes. The amino-terminal position of p21 (NS2) was assigned to amino acid 810 of the hepatitis C virus strain IIJ precursor polyprotein. Mutation of the alanine residue at position P1 of the putative cleavage site inhibited membrane-dependent processing. This alteration in processing together with the fact that hydrophobic amino acid residues are clustered upstream of the putative cleavage site suggested the involvement of a signal peptidase(s) in the cleavage. Furthermore, mutation analysis of this possible cleavage site revealed the presence of another microsome membrane-dependent cleavage site upstream of the N terminus of p21 (NS2).  相似文献   

5.
Previous studies indicate that the processing of hepatitis C virus (HCV) E2-p7-NS2 precursor mediated by host signal peptidase is relatively inefficient, resulting in the accumulation of E2-p7-NS2 and E2-p7 precursors in addition to E2 in mammalian cells. In this study, we discovered that a significant inhibition of the processing at an E2-p7 junction site is detrimental for HCV production, whether it was caused by the mutations in p7 or by the strategic introduction of a mutation at a terminal residue of E2 to block the signal peptidase-mediated cleavage of this junction site. However, complete separation of E2 and p7 by inserting an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) between these two proteins also moderately inhibited virus production. These results indicate that optimal processing of the E2-p7 junction site is critical for efficient HCV production. We further demonstrated that disrupting E2-p7 processing inhibits both NS2 localization to the putative virus assembly sites near lipid droplets (LD) and NS2 interaction with NS3 and E2. However, the impact, if any, of the p7-NS2 processing efficiency on HCV production seems relatively minor. In conclusion, these results imply that effective release of E2 and p7 from the precursor E2-p7 promotes HCV production by enhancing NS2-associated virus assembly complex formation near LD.  相似文献   

6.
The proteolytic cleavages at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B junctions of hepatitis C virus (HCV) polyprotein are effected by the virus-encoded serine protease contained within NS3. Using transient expression in HeLa cells of cDNA fragments that code for regions of the HCV polyprotein, we studied whether viral functions other than NS3 are required for proteolytic processing at these sites. We found that, in addition to NS3, a C-terminal 33-amino-acid sequence of the NS4A protein is required for cleavage at the NS3-NS4A and NS4B-NS5A sites and that it accelerates the rate of cleavage at the NS5A-NS5B junction. In addition, we show that NS4A can activate the NS3 protease when supplied in trans. Our data suggest that HCV NS4A may be the functional analog of flavivirus NS2B and pestivirus p10 proteins.  相似文献   

7.
Processing of the hepatitis C virus polyprotein is accomplished by a series of cotranslational and posttranslational cleavages mediated by host cell signalases and two virally encoded proteinases. Of these the NS3 proteinase is essential for processing at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B junctions. Processing between NS3 and NS4A occurs in cis, implying an intramolecular reaction mechanism, whereas cleavage at the other sites can also be mediated in trans. Sequence analysis of the amino termini of mature cleavage products and comparisons of amino acid residues around the scissile bonds of various hepatitis C virus isolates identified amino acid residues which might contribute to substrate specificity and processing efficiency: an acidic amino acid at the P6 position, a Thr or Cys at the P1 position, and a Ser or Ala at the P1' position. To study the importance of these residues for NS3-mediated cleavage we have undertaken a mutational analysis using an NS3'-5B polyprotein expressed by recombinant vaccinia viruses in mammalian cells. For all NS3-dependent cleavage sites P1 substitutions had the most drastic effects on cleavage efficiency, showing that amino acid residues at this position are the most critical substrate determinants. Since less drastic effects were found for substitutions at the P1' position, these residues appear to be less important for proper cleavage. For all cleavage sites the P6 acidic residue was dispensable, suggesting that it is not essential for substrate recognition and subsequent cleavage. Analysis of a series of mutations at the NS3/4A site revealed great flexibility for substitutions compared with more stringent requirements at the trans cleavage sites. On the basis of these results we propose a model in which processing in cis is determined primarily by polyprotein folding, whereas cleavage in trans is governed not only by the structure of the polyprotein but also by specific interactions between the proteinase and the polyprotein substrate at or around the scissile bond.  相似文献   

8.
Processing of the hepatitis C virus polyprotein is mediated by host cell signalases and at least two virally encoded proteinases. Of these, the serine-type proteinase encompassing the amino-terminal one-third of NS3 is responsible for cleavage at the four sites carboxy terminal of NS3. The activity of this proteinase is modulated by NS4A, a 54-amino-acid polyprotein cleavage product essential for processing at the NS3/4A, NS4A/4B, and NS4B/5A sites and enhancing cleavage efficiency between NS5A and NS5B. Using the vaccinia virus-T7 hybrid system to express hepatitis C virus polypeptides in BHK-21 cells, we studied the role of NS4A in proteinase activation. We found that the NS3 proteinase and NS4A form a stable complex when expressed as a single polyprotein or as separate molecules. Results from deletion mapping show that the minimal NS4A domain required for proteinase activation is located in the center of NS4A between amino acids 1675 and 1686 of the polyprotein. Amino acid substitutions within this domain destabilizing the NS3-NS4A complex also impair trans cleavage at the NS4A-dependent sites. Similarly, deletion of amino-terminal NS3 sequences impairs complex formation as well as cleavage at the NS4B/5A site but not at the NS4A-independent NS5A/5B site. These results suggest that a stable NS3-NS4A interaction is important for cleavage at the NS4A-dependent sites and that amino-terminal NS3 sequences and the central NS4A domain are directly involved in complex formation.  相似文献   

9.
Processing of the hepatitis C virus (HCV) H strain polyprotein yields at least nine distinct cleavage products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. As described in this report, site-directed mutagenesis and transient expression analyses were used to study the role of a putative serine proteinase domain, located in the N-terminal one-third of the NS3 protein, in proteolytic processing of HCV polyproteins. All four cleavages which occur C terminal to the proteinase domain (3/4A, 4A/4B, 4B/5A, and 5A/5B) were abolished by substitution of alanine for either of two predicted residues (His-1083 and Ser-1165) in the proteinase catalytic triad. However, such substitutions have no observable effect on cleavages in the structural region or at the 2/3 site. Deletion analyses suggest that the structural and NS2 regions of the polyprotein are not required for the HCV NS3 proteinase activity. NS3 proteinase-dependent cleavage sites were localized by N-terminal sequence analysis of NS4A, NS4B, NS5A, and NS5B. Sequence comparison of the residues flanking these cleavage sites for all sequenced HCV strains reveals conserved residues which may play a role in determining HCV NS3 proteinase substrate specificity. These features include an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position.  相似文献   

10.
Although responsible for a major health problem worldwide, hepatitis C virus is difficult to study because of the absence of fully permissive cell cultures or experimental animal models other than the chimpanzee. GB virus B (GBV-B), a closely related hepatotropic virus that infects small New World primates and replicates efficiently in primary hepatocyte cultures, is an attractive surrogate model system. However, little is known about processing of the GBV-B polyprotein. Because an understanding of these events is critical to further development of model GBV-B systems, we characterized signal peptidase processing of the polyprotein segment containing the putative structural proteins. We identified the exact N termini of the mature GBV-B envelope proteins, E1 and E2, and the first nonstructural protein, NS2, by direct amino acid sequencing. Interestingly, these studies document the existence of a previously unrecognized 13-kDa protein (p13) located between E2 and NS2 within the polyprotein. We compared the sequence of the p13 protein to that of hepatitis C virus p7, a small membrane-spanning protein with a similar location in the polyprotein and recently identified ion channel activity. The C-terminal half of p13 shows clear homology with p7, suggesting a common function, but the substantially larger size of p13, with 4 rather than 2 predicted transmembrane segments, indicates a different structural organization and/or additional functions. The identification of p13 in the GBV-B polyprotein provides strong support for the hypothesis that ion channel-forming proteins are essential for the life cycle of flaviviruses, possibly playing a role in virion morphogenesis and/or virus entry into cells.  相似文献   

11.
The NS3 protein of hepatitis C virus (HCV) possesses protease activity responsible for the proteolytic cleavage of the viral polyprotein at the junctions of nonstructural proteins downstream of NS3. The NS3 protein was also found to be internally cleaved. In this study, we demonstrated that internal cleavages occurred on the NS3 protein of genotype 1b in the presence of NS4A, both in culture cells and with a mouse model system. No internal cleavage products were detected with the NS3 and NS4A proteins of genotype 2a. Three potential cleavage sites were detected in the NS3 protein (genotype 1b), with IPT(402)|S being the major one. The internal cleavage requires the polyprotein processing activity of NS3 protease, but when supplemented in trans, the internal cleavage efficiency is reduced. In addition, several mutations in NS4A disrupted the internal cleavage of NS3 but did not affect polyprotein processing, indicating that NS4A contributes differently to these two proteolytic activities. Furthermore, Ile-25, Val-26, and Ile-29 of the NS4A protein, important for the NS4A-dependent internal cleavages, were also shown to be critical for the transforming activity of NS3, but mutations at these critical residues resulted only in a slight increase of HCV replicating efficiency. The internal cleavage-associated enhancement of the transforming activity of NS3 was reduced when a T402A substitution at the major internal cleavage site was introduced. The multiple roles of NS4A in viral multiplication and pathogenesis make NS4A an ideal molecular target for HCV therapy.  相似文献   

12.
Most details of the processing of the hepatitis A virus (HAV) polyprotein are known. Unique among members of the family Picornaviridae, the primary cleavage of the HAV polyprotein is mediated by 3Cpro, the only proteinase known to be encoded by the virus, at the 2A/2B junction. All other cleavages of the polyprotein have been considered to be due to 3Cpro, although the precise location and mechanism responsible for the VP1/2A cleavage have been controversial. Here we present data that argue strongly against the involvement of the HAV 3Cpro proteinase in the maturation of VP1 from its VP1-2A precursor. Using a heterologous expression system based on recombinant vaccinia viruses directing the expression of full-length or truncated capsid protein precursors, we show that the C terminus of the mature VP1 capsid protein is located near residue 764 of the polyprotein. However, a proteolytically active HAV 3Cpro that was capable of directing both VP0/VP3 and VP3/VP1 cleavages in vaccinia virus-infected cells failed to process the VP1-2A precursor. Using site-directed mutagenesis of an infectious molecular clone of HAV, we modified potential VP1/2A cleavage sites that fit known 3Cpro recognition criteria and found that a substitution that ablates the presumed 3Cpro dipeptide recognition sequence at Glu764-Ser765 abolished neither infectivity nor normal VP1 maturation. Altered electrophoretic mobility of VP1 from a viable mutant virus with an Arg764 substitution indicated that this residue is present in VP1 and that the VP1/2A cleavage occurs downstream of this residue. These data indicate that maturation of the HAV VP1 capsid protein is not dependent on 3Cpro processing and may thus be uniquely dependent on a cellular proteinase.  相似文献   

13.
T J Chambers  A Grakoui    C M Rice 《Journal of virology》1991,65(11):6042-6050
The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural polyprotein in BHK cells. YF virus-specific polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites.  相似文献   

14.
The mechanism for efficient nucleocapsid (NC) uptake into flavivirus particles which form by budding through the membranes of the endoplasmic reticulum (ER) was investigated by using Murray Valley encephalitis virus as a model. Budding of flavivirus membranes is driven by the viral transmembrane proteins prM and E independently of NC interaction. We show that control of signalase cleavage of the multimembrane-spanning flavivirus polyprotein by the catalytic function of the viral protease is critical for efficient virus morphogenesis. In wild-type virus, signalase cleavage of prM remains inefficient until cleavage of capsid at the cytosolic side of the signal sequence separating the two proteins has occurred. This obligatory sequence of cleavages was uncoupled in a mutant virus with the consequence of greatly reduced incorporation of NC into budding membranes and augmented release of NC-free virus-like particles. Efficient signalase cleavage of prM in the mutant virus resulted in partial inhibition of cleavage of capsid by the viral NS2B-3 protease. Our results support a model for flavivirus morphogenesis involving temporal and spatial coordination of NC assembly and envelopment by regulated cleavages of an ER membrane-spanning capsid-prM intermediate.  相似文献   

15.
Recombinant vaccinia viruses were used to study the processing of hepatitis C virus (HCV) nonstructural polyprotein precursor. HCV-specific proteins and cleavage products were identified by size and by immunoprecipitation with region-specific antisera. A polyprotein beginning with 20 amino acids derived from the carboxy terminus of NS2 and ending with the NS5B stop codon (amino acids 1007 to 3011) was cleaved at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B sites, whereas a polyprotein in which the putative active site serine residue was replaced by an alanine remained unprocessed, demonstrating that the NS3-encoded serine-type proteinase is essential for cleavage at these sites. Processing of the NS3'-5B polyprotein was complex and occurred rapidly. Discrete polypeptide species corresponding to various processing intermediates were detected. With the exception of NS4AB-5A/NS5A, no clear precursor-product relationships were detected. Using double infection of cells with vaccinia virus recombinants expressing either a proteolytically inactive NS3'-5B polyprotein or an active NS3 proteinase, we found that cleavage at the NS4A/4B, NS4B/5A, and NS5A/5B sites could be mediated in trans. Absence of trans cleavage at the NS3/4A junction together with the finding that processing at this site was insensitive to dilution of the enzyme suggested that cleavage at this site is an intramolecular reaction. The trans-cleavage assay was also used to show that (i) the first 211 amino acids of NS3 were sufficient for processing at all trans sites and (ii) small deletions from the amino terminus of NS3 selectively affected cleavage at the NS4B/5A site, whereas more extensive deletions also decreased processing efficiencies at the other sites. Using a series of amino-terminally truncated substrate polyproteins in the trans-cleavage assay, we found that NS4A is essential for cleavage at the NS4B/5A site and that processing at this site could be restored by NS4A provided in cis (i.e., together with the substrate) or in trans (i.e., together with the proteinase). These results suggest that in addition to the NS3 proteinase, NS4A sequences play an important role in HCV polyprotein processing.  相似文献   

16.
The addition of N-linked oligosaccharides to Asn-X-(Ser/Thr) sites is catalyzed by the oligosaccharyltransferase, an enzyme closely associated with the translocon and generally thought to have access only to nascent chains as they emerge from the ribosome. However, the presence of the sequon does not automatically ensure core glycosylation because many proteins contain sequons that remain either nonglycosylated or glycosylated to a variable extent. In this study, hepatitis C virus (HCV) envelope protein E1 was used as a model to study the efficiency of N-glycosylation. HCV envelope proteins, E1 and E2, were released from a polyprotein precursor after cleavage by host signal peptidase(s). When expressed alone, E1 was not efficiently glycosylated. However, E1 glycosylation was improved when expressed as a polyprotein including full-length or truncated forms of E2. These data indicate that glycosylation of E1 is dependent on the presence of polypeptide sequences located downstream of E1 on HCV polyprotein.  相似文献   

17.
B Falgout  R Chanock    C J Lai 《Journal of virology》1989,63(5):1852-1860
Expression of dengue virus gene products involves specific proteolytic cleavages of a precursor polyprotein. To study the flanking sequences required for expression of the dengue virus nonstructural glycoprotein NS1, we constructed a series of recombinant vaccinia viruses that contain the coding sequence for NS1 in combination with various lengths of upstream and downstream sequences. The NS1 products expressed by these viruses in infected CV-1 cells were immune precipitated and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The data show that the 24-residue hydrophobic sequence preceding NS1 was necessary and sufficient for the production of glycosylated NS1 and that this sequence was cleaved from NS1 in the absence of most dengue virus proteins. This finding is consistent with previous proposals that this hydrophobic sequence serves as an N-terminal signal sequence that is cleaved by signal peptidase. The cleavage between the C terminus of NS1 and the downstream protein NS2a occurred when the complete NS2a was present. Recombinant viruses containing NS1 plus 15 or 49% of NS2a produced proteins larger than authentic NS1, indicating that the cleavage between NS1 and NS2a had not occurred. Failure of cleavage was not corrected by coinfection with a recombinant virus capable of cleavage. These results suggest that NS2a may be a cis-acting protease that cleaves itself from NS1, or NS2a may provide sequences for recognition by a specific cellular protease that cleaves at the NS1-NS2a junction.  相似文献   

18.
Hepatitis C virus (HCV) encodes a polyprotein consisting of core, envelope (E1, E2, p7), and nonstructural polypeptides (NS2, NS3, NS4A, NS4B, NS5A, NS5B). The serine protease (NS3/NS4A), helicase (NS3), and polymerase (NS5B) constitute valid targets for antiviral therapy. We engineered BH3 interacting domain death agonist (BID), an apoptosis-inducing molecule, to contain a specific cleavage site recognized by the NS3/NS4A protease. Cleavage of the BID precursor molecule by the viral protease activated downstream apoptotic molecules of the mitochondrial pathway and triggered cell death. We extended this concept to cells transfected with an infectious HCV genome, hepatocytes containing HCV replicons, a Sindbis virus model for HCV, and finally HCV-infected mice with chimeric human livers. Infected mice injected with an adenovirus vector expressing modified BID exhibited HCV-dependent apoptosis in the human liver xenograft and considerable declines in serum HCV titers.  相似文献   

19.
Feline calicivirus (FCV) nonstructural proteins are translated as part of a large polyprotein that undergoes autocatalytic processing by the virus-encoded 3C-like proteinase. In this study, we mapped three new cleavage sites (E(46)/A(47), E(331)/D(332), and E(685)/N(686)) recognized by the virus proteinase in the N-terminal part of the open reading frame 1 (ORF1) polyprotein to complete the processing map. Taken together with two sites we identified previously (E(960)/A(961) and E(1071)/S(1072)), the FCV ORF1 polyprotein contains five cleavage sites that define the borders of six proteins with calculated molecular masses of 5.6, 32, 38.9, 30.1, 12.7, and 75.7 kDa, which we designated p5.6, p32, p39 (NTPase), p30, p13 (VPg), and p76 (Pro-Pol), respectively. Mutagenesis of the E to A in each of these cleavage sites in an infectious FCV cDNA clone was lethal for the virus, indicating that these cleavages are essential in a productive virus infection. Mutagenesis of two cleavage sites (E(1345)/T(1346) and E(1419)/G(1420)) within the 75.7-kDa Pro-Pol protein previously mapped in bacterial expression studies was not lethal.  相似文献   

20.
Cleavage of the hepatitis C virus polyprotein between the non-structural NS2 and NS3 proteins is mediated by a poorly characterised auto-proteolytic activity that maps to the C terminus of NS2 and the N terminus of NS3, but is distinct from the NS3 protease activity responsible for downstream cleavages in the polyprotein. We have exploited the fact that the minimal precursor (residues 904-1206 of the HCV polyprotein) can be expressed as an insoluble protein in Escherichia coli and subsequently refolded into a form active for both auto-cleavage and NS3 protease activity, to further characterise the NS2/3 auto-cleavage activity. We show that both activities are zinc-dependent and show an absolute requirement for cysteine residues 1123, 1125 and 1171 within NS3. In contrast cysteine 922 (within NS2) is only required for NS2/3 auto-cleavage activity and histidine 1175 is only required for NS3 activity. Although the complete NS3 protease domain (including the C-terminal alpha-helix) is required for NS2/3 auto-cleavage, the activity of the NS3 protease is not essential. Lastly we show that the NS2/3 auto-cleavage activity is more sensitive to zinc chelation by 1,10-phenanthroline than the NS3 protease activity. This observation is consistent with different conformations of the precursor competent for either NS2/3 auto-cleavage or NS3 protease activity; these two conformations can be distinguished by their relative strength and geometry of zinc coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号