首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human platelets are devoid of 5-lipoxygenase activity but convert exogenous leukotriene A4 (LTA4) either by a specific LTC4 synthase to leukotriene C4 or via a 12-lipoxygenase mediated reaction to lipoxins. Unstimulated platelets mainly produced LTC4, whereas only minor amounts of lipoxins were formed. Platelet activation with thrombin, collagen or ionophore A23187 increased the conversion of LTA4 to lipoxins and decreased the leukotriene production. Maximal effects were observed after incubation with ionophore A23187, which induced synthesis of comparable amounts of lipoxins and cysteinyl leukotrienes (LTC4, LTD4 and LTE4). Chelation of intra- and extracellular calcium with quin-2 and EDTA reversed the ionophore A23187-induced stimulation of lipoxin synthesis from LTA4 and inhibited the formation of 12-hydroxyeicosatetraenoic acid (12-HETE) from endogenous substrate. However, calcium did not affect the 12-lipoxygenase activity in the 100 000 × g supernatant of sonicated platelet suspensions. Furthermore, the stimulatory effect on lipoxin formation induced by platelet agonists could be mimicked in intact platelets by the addition of low concentrations of arachidonic acid, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) or 13-hydroperoxyoctadecadienoic acid (13-HPODE). The results indicate that the elevated lipoxin synthesis during platelet activation is due to stimulated 12-lipoxygenase activity induced by endogenously formed 12-HPETE.  相似文献   

2.
The unstable epoxide leukotriene (LT) A(4) is a key intermediate in leukotriene biosynthesis, but may also be transformed to lipoxins via a second lipoxygenation at C-15. The capacity of various 12- and 15-lipoxygenases, including porcine leukocyte 12-lipoxygenase, a human recombinant platelet 12-lipoxygenase preparation, human platelet cytosolic fraction, rabbit reticulocyte 15-lipoxygenase, soybean 15-lipoxygenase and human eosinophil cytosolic fraction, to catalyze conversion of LTA(4) to lipoxins was investigated and standardized against the ability of the enzymes to transform arachidonic acid to 12- or 15-hydroxyeicosatetraenoic acids (HETE), respectively. The highest ratio between the capacity to produce lipoxins and HETE (LX/HETE ratio) was obtained for porcine leukocyte 12-lipoxygenase with an LX/HETE ratio of 0.3. In addition, the human platelet 100000xg supernatant 12-lipoxygenase preparation and the human platelet recombinant 12-lipoxygenase and human eosinophil 100000xg supernatant 15-lipoxygenase preparation possessed considerable capacity to produce lipoxins (ratio 0.07, 0.01 and 0.02 respectively). In contrast, lipoxin formation by the rabbit reticulocyte and soybean 15-lipoxygenases was much less pronounced (LX/HETE ratios <0.002). Kinetic studies of the human lipoxygenases revealed lower apparent K(m) for LTA(4) (9-27 microM), as compared to the other lipoxygenases tested (58-83 microM). The recombinant human 12-lipoxygenase demonstrated the lowest K(m) value for LTA(4) (9 microM) whereas the porcine leukocyte 12-lipoxygenase had the highest V(max). The profile of products was identical, irrespective of the lipoxygenase used. Thus, LXA(4) and 6S-LXA(4) together with the all-trans LXA(4) and LXB(4) isomers were isolated. Production of LXB(4) was not observed with any of the lipoxygenases. The lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate was considerably more efficient to inhibit conversion of LTA(4) to lipoxins, as compared to the inhibitory effect on 12-HETE formation from arachidonic acid (IC(50) 1 and 50 microM, respectively) in the human platelet cytosolic fraction.  相似文献   

3.
New series of lipoxins isolated from human eosinophils   总被引:1,自引:0,他引:1  
D Steinhilber  H J Roth 《FEBS letters》1989,255(1):143-148
Granulocytes from human eosinophilic donors were incubated with arachidonic acid or 15-hydroxyeicosatetraenoic acid (15-HETE) and stimulated with the ionophore A23187. The eicosanoids were extracted with reversed-phase cartridges and subjected to RP-HPLC analysis. When extracts from eosinophil-enriched populations were analysed and compared with extracts from human neutrophils, three additional peaks were detected which coeluted with 15-hydroxy-delta 13-trans-15H derivatives of leukotriene C4, D4 and E4 in different HPLC systems. The recorded absorbance spectra of the eluted compounds and the standards were identical and showed a maximum at 307 nm which is characteristic for a conjugated tetraene system with a bathochromic shift by the sulfur moiety in alpha-position to the tetraene system. The compound which coeluted with the 15-hydroxy-LTC4 standard was treated with gamma-glutamyltransferase and converted to the corresponding leukotriene D4 derivative. The results indicate that interaction between the 5- and 15-lipoxygenase pathways leads to the formation of a new series of arachidonic acid metabolites in human eosinophils. Since the biosynthetic route is similar to that of lipoxin A4 and lipoxin B4, we suggest the trivial names lipoxin C4, D4 and E4.  相似文献   

4.
The stereochemistry and double bond geometry of a novel series of leukocyte-derived arachidonic acid metabolites, the lipoxins, was determined by comparison to pure unambiguous synthetic standards. The lipoxins were found to be a mixture of four lipoxin A isomers and two lipoxin B isomers. In determining the biosynthesis of these compounds, they were shown to be formed via a tetraene epoxide. In addition, it was shown that all of the lipoxin isomers formed by the incubation of 15-hydroperoxyeicosatetraenoic acid with human leukocytes were also formed by nonenzymatic hydrolysis of this tetraene epoxide.  相似文献   

5.
Incubation of mixed human platelet/granulocyte suspensions with ionophore A23187 led to a platelet dependent formation of several lipoxin isomers from endogenous substrate. The major metabolite coeluted with authentic lipoxin A4 (5(S), 6(R), 15(S)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid) in several HPLC-systems and showed an identical UV-spectrum. Furthermore, a similar profile of lipoxins was formed in pure platelet suspensions incubated with exogenous leukotriene A4 (5(S) -5, 6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid). The conversion of exogenous leukotriene A4 to lipoxin A4 was markedly increased in the presence of ionophore A23187.  相似文献   

6.
Eicosanoid biosynthesis was examined with a human megakaryocytic cell line (Dami). Megakaryocytes incubated with [1-14C]arachidonic acid and either ionophore A23187 or thrombin generated both thromboxane and 12-hydroxyheptadecatrienoic acid (HHTrE). Exposure to phorbol myristate acetate (PMA) for 1 through 9 days induced differentiation and revealed an increase in the conversion of [1-14C]arachidonate to cyclooxygenase- and lipoxygenase (LO)-derived products. The LO-derived product was identified as 12S-HETE by its physical characteristics including GC/MS and chiral column SP-HPLC. PMA-treated Dami cells did not generate 5-HETE, leukotrienes or lipoxins from exogenous arachidonic acid while they did convert leukotriene A4 (LTA4) to lipoxin A4, lipoxin B4 and their respective all-trans isomers. In addition, COS-M6 cells transfected with a human 12-lipoxygenase cDNA and incubated with either arachidonic acid or LTA4 generated 12-HETE and lipoxins, respectively. The lipoxin profile generated by transfected COS-M6 cells incubated with LTA4 was similar to that generated by the PMA-treated Dami cells. Results indicate that human megakaryocytes can transform arachidonate and LTA4 to bioactive eicosanoids and that the 12-lipoxygenase appears upon further differentiation of these cells. In addition, they indicate that the 12-LO of human megakaryocytes and the 12-LO expressed by transfected COS cells can generate both lipoxins A4 and B4. Together they suggest that the human 12-LO can serve as a model of LX-synthetase activity with LTA4.  相似文献   

7.
Arachidonate 12-lipoxygenases of porcine and bovine leukocytes were different in substrate specificity and immunogenicity from the enzyme of bovine platelets (Arch. Biochem. Biophys. (1988) 266, 613). In order to extend the comparative studies on the two types of 12-lipoxygenase, we purified the enzyme from the cytosol of human platelets by immunoaffinity chromatography to a specific activity of about 0.3 mumol/min per mg protein at 37 degrees C. The purified enzyme was active with eicosapolyenoic acids and docosahexaenoic acid. Linoleic and linolenic acids were poor substrates in contrast to the high reactivity of the leukocyte enzymes with these octadecapolyenoic acids. The finding that the human platelet enzyme catalyzed 15-oxygenation of 5S-hydroxy-6,8,11,14-eicosatetraenoic acid, raised a question if lipoxins were produced by incubation of the enzyme with leukotriene A4. However, the leukotriene A4 was scarcely transformed to lipoxin isomers by 12-lipoxygenases of human and bovine platelets. In sharp contrast, the porcine and bovine leukocyte enzymes converted leukotriene A4 to various lipoxin isomers by the reaction rates of 3% and 2% of the arachidonate 12-oxygenation. Thus, 12-lipoxygenases of human and bovine platelets were catalytically distinct from the porcine and bovine leukocyte enzymes in terms of their reactivities not only with linoleic and linolenic acids, but also with leukotriene A4 as lipoxin precursor.  相似文献   

8.
Lipoxins A4 and B4 were obtained by using soybean lipoxygenase and blood cells as a source of enzymatic activity. The conditions facilitating lipoxin biosynthesis from arachidonic acid catalyzed by soybean 15-lipoxygenase were selected. A comparative analysis of lipoxin biosynthesis with the use of cell suspensions containing only granulocytes and of mixed suspensions (platelets + granulocytes and platelets + total fraction of blood leucocytes) was carried out.  相似文献   

9.
12-Lipoxygenase and cyclooxygenase 1 are the dominating enzymes that metabolize arachidonic acid in human platelets. In addition to the conversion of arachidonic acid to 12(S)-hydroxyeicosatetraenoic acid, 12-lipoxygenase can also utilize 5(S)-hydroxyeicosatetraenoic acid and 15(S)-hydroxyeicosatetraenoic acid to form 5(S), 12(S)-dihydroxyeicosatetraenoic acid and 14(R), 15(S)-dihydroxyeicosatetraenoic acid, respectively. Furthermore, 15(S)-hydroxyeicosatetraenoic acid works as an inhibitor for 12-lipoxygenase. In the present paper we have studied the influence of albumin on the in vitro metabolism of 5 - and 15 -hydroxyeicosatetraenoic acids, and 5,15 -dihydroxyeicosatetraenoic acid by the platelet 12-lipoxygenase. The presence of albumin reduced the formation of 5(S),12(S)- dihydroxyeicosatetraenoic acid from 5(S)-hydroxyeicosatetraenoic acid, however, it had no effect on the 12(S)-hydroxyeicosatetraenoic acid production from endogenous arachidonic acid. In contrast, when 15(S)-hydroxyeicosatetraenoic acid was incubated with activated platelets, the formation of 14(R), 15(S)- dihydroxyeicosatetraenoic acid was stimulated by the presence of albumin. Furthermore, albumin reduced the inhibitory action 15(S)-hydroxyeicosatetraenoic acid had on 12(S)-hydroxyeicosatetraenoic acid formation from endogenous arachidonic acid. However, addition of exogenous arachidonic acid (20 microm) to the incubations inverted the effects of albumin on the conversion of 15(S)-hydroxyeicosatetraenoic acid to 14(R),15(S)- dihydroxyeicosatetraenoic acid and the production of 12(S)-hydroxyeicosatetraenoic acid in these incubations. Based on the Scatchard equation, the estimates of the binding constants to albumin were 1.8 x 10(5) for 15 -HETE, 1.4 x 10(5) for 12-HETE, and 0.9 x 10(5) for 5 -HETE respectively. These results suggest an important role of albumin for the regulation of the availability of substrates for platelet 12-lipoxygenase.  相似文献   

10.
In vivo generation of 5-lipoxygenase products in frogs and toads   总被引:1,自引:0,他引:1  
Eicosanoid production by inflammatory cells which resulted from infection of the peritoneal cavity of Rana catesbeiana and Bufo americanus was studied after addition of exogenous arachidonic acid and for metabolites generated in vivo. From exogenous substrate, the cells of Rana catesbeiana produced substantial amounts of 5-hydroxyeicosatetraenoic acid, leukotriene B4, the non-enzymatic isomers of leukotriene B4 and leukotriene C4. From endogenous substrate, 5-hydroxyeicosatetraenoic acid and leukotriene B4 were produced. Cells from Bufo americanus produced leukotriene B4 and 5-hydroxyeicosatetraenoic acid, from both exogenous and endogenous substrate. These observations of in vivo eicosanoid production confirm the participation of 5-lipoxygenase activity in the inflammatory response to infection.  相似文献   

11.
To determine identities of mediators and mechanisms for their release from pulmonary airway epithelial cells, we examined the capacities of epithelial cells from human, dog and sheep airways to incorporate, release and oxygenate arachidonic acid. Purified cell suspensions were incubated with radiolabeled arachidonic acid and/or ionophore A23187; fatty acid esterification and hydrolysis were traced chromatographically, and oxygenated metabolites were identified using high-pressure liquid chromatography and mass-spectrometry. In each species, cellular uptake of 10 nM arachidonic acid was concentrated in the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine fractions, and subsequent incubation with 5 microM A23187 caused release of 10-12% of the radiolabeled pool selectively from phosphatidylcholine and phosphatidylinositol. By contrast, the products of arachidonic acid oxygenation were species-dependent and in the case of human cells were also novel: A23187-stimulated human epithelial cells converted arachidonic acid predominantly to 15-hydroxyeicosatetraenoic acid (15-HETE) and two distinct 8,15-diols in addition to prostaglandin (PG) E2 and PGF2 alpha. Cell incubation with exogenous arachidonic acid (2.0-300 microM) led to progressively larger amounts of 15-HETE and the dihydroxy, epoxyhydroxy and keto acids characteristic of arachidonate 15-lipoxygenase. Both dog and sheep cells converted exogenous or endogenous arachidonic acid to low levels of 5-lipoxygenase products, including leukotriene B4 without significant 15-lipoxygenase activity. In the cyclooxygenase series, sheep cells selectively released PGE2, while dog cells generated predominantly PGD2. The findings demonstrate that stereotyped esterification and phospholipase activities are expressed at uniform levels among airway epithelial cells from these species, but pathways for oxygenating arachidonic acid allow mediator diversity depending greatly on species and little on arachidonic acid presentation.  相似文献   

12.
The production of 5-lipoxygenase products from arachidonic acid was investigated in polymorphonuclear leukocytes (PMNL) isolated from non-diabetic and alloxan-induced diabetic rabbits: (i) production of 5-hydroxyeicosatetraenoic acid, leukotriene B4, and the two 6-trans-leukotriene B4 isomers were significantly decreased in the PMNL of diabetic rabbits when compared to non-diabetic rabbits; (ii) production of LTB4 and 5-HETE from diabetic PMNL required the addition of Ca2+ and A23187 to a greater degree than control incubations; and (iii) the availability of substrate in the PMNL of diabetics was not a limiting factor for 5-lipoxygenase product formation. Alternative pathways of arachidonic acid metabolism were also evaluated: the recovery of exogenous leukotriene B4 and 5-hydroxyeicosatetraenoic acid were identical using PMNL from control and diabetic rabbits and peptido-leukotrienes were not detected by radioimmunoassay. The data suggest that the activity of 5-lipoxygenase and the production of 5-hydroperoxyeicosatetraenoic acid in the diabetic PMNL may be limiting factors since the formation of leukotriene B4, leukotriene B4 isomers, and 5-hydroxyeicosatetraenoic acid are depressed in PMNL of diabetic rabbits. Alternative pathways do not account for the conversion of arachidonic acid to other products nor are the elimination pathways for LTB4 and 5-HETE different. Decreased formation of 5-hydroxyeicosatetraenoic acid and leukotriene B4 could predispose diabetic subjects to infection due to a decrease in mediators leading to the local accumulation of PMNL in the inflammatory response.  相似文献   

13.
Oxygenated derivates of arachidonic acid and eicosapentaenoic acid which contain conjugated tetraene structures and are non-cyclized C20 carboxylic acids were first isolated and characterized from human and porcine leukocytes (Serhan, C.N. et al, 1984, Biochem. Biophys. Res. Commun. 118, 943-949; Wong, P.Y.-K., et al, 1985, Biochem. Biophys. Res. Commun. 126, 765-775). The trivial names lipoxins and lipoxenes have been introduced for compounds belonging to each of these series. Here, we propose that tetraene-containing compounds derived from arachidonic acid be denoted as lipoxins (LX) of the four series (i.e. lipoxin A4 or LXA4 and lipoxin B4 or LXB4) and those derived from eicosapentaenoic be termed lipoxins of the five series (i.e. lipoxin A5 or LXA5 and lipoxin B5 or LXB5).  相似文献   

14.
The effects of an inhalation anesthetic, halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the formation of 5-lipoxygenase metabolites such as leukotriene B4, 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-isomers of leukotriene B4 and leukotriene C4 were studied in human leukocytes stimulated with calcium ionophore A23187. Halothane inhibited the formation of all these metabolites dose dependently and the formation was restored by removal of the drug. The anesthetic also reversibly inhibited the release of [3H]arachidonic acid from neutrophils with a half-inhibition concentration of less than 0.19 mM. The formation of 5-lipoxygenase metabolites was not inhibited by the anesthetic when leukocytes were stimulated with the ionophore in the presence of exogenous arachidonic acid. These observations indicate that the inhibitory effect of halothane on the formation of 5-lipoxygenase metabolites in leukocytes is mainly due to the inhibition of arachidonic acid release.  相似文献   

15.
Incubation of bovine polymorphonuclear leukocytes (PMNs) with arachidonic acid leads to the formation of four lipoxins. The same lipoxins are also formed upon incubation of bovine PMNs with 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5(S)-hydroperoxy, 15(S)-hydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid or 5(S),15(S)-dihydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid. A 5,6-epoxide as intermediate in lipoxin formation in the bovine PMN is highly improbable because the 5-hydroxy compounds are as good substrates as the 5-hydroperoxy compounds. Moreover, the two main lipoxins were found to coelute with the two lipoxins produced via a triple dioxygenation of arachidonic acid by soybean lipoxygenase-1. Hence the bovine PMN is the first cell for which evidence is presented that the formation of lipoxins proceeds mainly via triple dioxygenation and not via 15-hydroxy-leukotriene A4 as is proposed for human and porcine PMNs.  相似文献   

16.
The metabolites of inflammatory cells produced by massive infection of the peritoneal cavity of two related European species of frogs, Rana temporaria and Rana arvalis were examined for lipoxygenase-generated products of exogenous arachidonic acid. Cells of Rana temporaria produced large amounts of 5-hydroxyeicosatetraenoic acid and leukotriene B4. Cells from Rana arvalis produced only 15-hydroxyeicosatetraenoic acid. This is the first unequivocal demonstration of such enzyme activity in lower vertebrates. There was a trend towards increased mortality in the species without evidence of 5-lipoxygenase activity.  相似文献   

17.
Enhanced penetration by ethanol of exogenous arachidonic acid into human leukocyte preparations results in the production of large amounts of eicosanoids including 5-, 12- and 15-hydroxyeicosatetraenoic acids as well as the leukotrienes C4 delta 6-trans-leukotriene B4, 12-epi-delta 6-trans-leukotriene B4, leukotriene B4 and 5(S), 12(S)-dihydroxyeicosatetraenoic acid. The production of these compounds is affected by the concentrations of both ethanol and arachidonic acid independently in a complex manner with stimulation at lower concentrations and later relative inhibition. It was shown that the resulting leukotriene B4 exhibited the same specific activity as exogenous arachidonic acid when labelled substrate was used.  相似文献   

18.
Ten frogs (Xenopus laevis) were injected with mixed bacteria to produce a septic peritonitis. Peritoneal inflammatory cells of eight animals were studied for monohydroxyeicosanoid and leukotriene production from exogenous arachidonic acid. Large amounts of 12-hydroxyeicosatetraenoic acid were produced; smaller amounts of 5- and 15-hydroxyeicosatetraenoic and leukotriene B4 were produced. Identifications were confirmed by retention times on HPLC, ultraviolet spectroscopy on all products, and gas chromatograph/mass spectrometry in the case of 12-hydroxyeicosatetraenoic acid.  相似文献   

19.
This study was designed to evaluate the effects of different amounts of dietary vitamin E on platelet tocopherol levels and 12-lipoxygenase activity when exogenous arachidonic acid was used as substrate. Weanling male Sprague-Dawley rats were fed diets containing 0, 50, and 5000 ppm of D-alpha-tocopherol acetate for 4 months. Platelet tocopherol was increased with increasing concentrations of dietary vitamin E; however, the conversion of exogenously added arachidonate by platelet to 12-HETE (12-hydroxyeicosatetraenoic acid) and thromboxane B2 from these three dietary groups was essentially the same. This study provides direct evidence that platelet 12-lipoxygenase activity is independent of its vitamin E content when exogenously added arachidonate was used as substrate.  相似文献   

20.
Arachidonate 5-lipoxygenase purified from porcine leukocytes produced several more polar compounds from 5,15-dihydroperoxy-eicosatetraenoic acid added as such or generated from 15-hydroperoxy acid. These polar products with absorption maxima at 301-302 nm and shoulders at 289 nm and 316-317 nm were identified as 5S,6R,15S-11-cis-lipoxin A and its 6-epimer, all-trans-lipoxin A isomers, and all-trans-lipoxin B isomers. Most of these lipoxins were presumably degradation products of a 5,6-epoxy intermediate formed by the catalysis of leukotriene A synthase, an integral part of 5-lipoxygenase. The rate of the enzymatic lipoxin synthesis from 15-hydroperoxy acid was about 6% of arachidonate 5-oxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号