首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Inactivation of pig kidney dipeptidyl peptidase IV (EC 3.4.14.5) by photosensitization in the presence of methylene blue at pH 7.5 was observed to have pseudo-first-order kinetics. During the process, until over 95% inactivation was achieved, the histidine and tryptophan residues were decreased from 14.0 to 2.7 and 12.6 to 7.1, respectively, per 94,000-Da subunit, without any detectable changes in other photosensitive amino acids. Modification of four histidine residues per subunit using diethylpyrocarbonate resulted in only 30% inactivation of the enzyme, while N-bromosuccinimide almost completely inactivated the enzyme with the modification of only one tryptophan residue per subunit, as determined by absorption spectrophotometry at 280 nm. The protective action of the substrate and inhibitors such as Ala-Pro-Ala and Pro-Pro against the modification of tryptophan residues with N-bromosuccinimide was observed both fluorometrically and by measurement of activity. On the basis of these results it is suggested that one of the tryptophan residues in the enzyme subunit is essential for the functioning of the substrate binding site of pig kidney dipeptidyl peptidase IV.  相似文献   

2.
Summary Modification of liquefying -amylase by diethylpyrocarbonate or its photo-oxidation in the presence of rose bengal caused rapid loss of enzyme activity. The photo-oxidation followed pseudo-first-order kinetics giving maximal value at pH 8.0. The photo-oxidized enzyme showed a characteristic increase in absorbance at 250 nm which was directly proportional to the extent of inactivation. Diethylpyrocarbonate at low concentration at pH 6.0 and 30 ° C completely inactivated a-amylase. Inactivation followed pseudo-first-order kinetics. The reaction order with respect to inactivation by diethylpyrocarbonate was one, thus indicating modification of a single histidine per mole of the enzyme. Diethylpyrocarbonate-modified enzyme showed increased absorbance at 240 nm which was reversed completely upon treatment with NH2OH at 30 °C for 16 hr. Calculating the histidine residues being modified from the increase in absorbance at 240 nm showed that three residues were ethoxyformylated on treatment with diethylpyrocarbonate, of which only one was found at the active site. Substrate and competitive inhibitor protects the enzyme against both, photo-oxidation, and modification by diethylpyrocarbonate, confirming that histidine plays an essential role at the -amylase active site.  相似文献   

3.
Modification of glucose/xylose isomerase from Streptomyces sp. NCIM 2730 by diethylpyrocarbonate (DEPC) or its photo-oxidation in presence of rose bengal or methylene blue caused rapid loss in its activity. The inactivation of the enzyme was accompanied by an increase in the absorbance at 240 nm and was reversed by hydroxylamine. Glucose and xylose but not Mg++ and Co++ afforded significant protection to the enzyme from inactivation by DEPC. Inactivation followed pseudo-first-order kinetics and modification of a single histidine residue per mole of enzyme was indicated.  相似文献   

4.
W F Beyer  I Fridovich 《Biochemistry》1987,26(5):1251-1257
The iron-containing superoxide dismutase from Escherichia coli is inactivated by H2O2 to a limit of approximately 90%. When corrected for the H2O2-resistant portion, this inactivation was first order with respect to residual activity and exhibited a pseudo-first-order rate constant of 0.066 min-1 at 25 degrees C in 0.24 mM H2O2 at pH 7.8. The superoxide dismutase activity remaining after treatment with H2O2 differed from the activity of the native enzyme with respect to heat stability, inhibition by azide, and inactivation by light in the presence of rose bengal and by N-bromosuccinimide. The native and the H2O2-modified enzymes were indistinguishable by electrophoresis on polyacrylamide gels. Inactivation of the enzyme by H2O2 was accompanied by loss of tryptophan and some loss of iron, but there was no detectable loss of histidine or of other amino acids. H2O2 treatment caused changes in the optical spectrum of the enzyme. Inactivation of the enzyme by H2O2 depends upon the iron at the active site. Thus, the apoenzyme and the manganese-substituted enzyme were unaffected by H2O2. We conclude that reaction of H2O2 with the iron at the active site generates a potent oxidant capable of attacking tryptophan residues. A mechanism is proposed.  相似文献   

5.
A NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) from porcine kidney was purified to homogeneity by acid precipitation, blue agarose affinity chromatography, hydroxyapatite-ultrogel adsorption chromatography, DEAE-Sephadex ion-exchange chromatography and NAD(+)-agarose affinity chromatography. The specific activity of the homogeneous enzyme was 31.2 U/mg. The molecular mass of the native enzyme was estimated to be 55,000 Da, whereas that of SDS-treated enzyme was 29,000 Da indicating that the native enzyme was dimeric. Compared to human placental 15-OH-PGDH, porcine kidney enzyme gave a similar general amino acid residue distribution. Chemical modification of the enzyme with N-ethyl maleimide (3 microM), N-chlorosuccinimide (20 microM) or 2,4,6-trinitrobenzenesulfonic acid (2.5 microM) followed pseudo-first-order inactivation kinetics, and inactivation could be prevented by the presence of NAD+ (1 mM) but not of prostaglandin E1 (140 microM) indicating the involvement of cysteine, methionine and lysine residues in the coenzyme binding site. Inactivation by diethyl pyrocarbonate (1.25 mM) or phenylglyoxal (10 mM) also showed pseudo-first-order kinetics suggesting that histidine and arginine residues were catalytically or structurally important in the native enzyme. These studies provide new insights into the structure and function of 15-OH-PGDH.  相似文献   

6.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

7.
Chemical modification of amino acid residues with phenylglyoxal, diethylpyrocarbonate, and N-bromosuccinimide indicated that at least one residue each of arginine, histidine, and tryptophan were necessary for the activity of human liver serine hydroxymethyltransferase. Protection by substrates suggested that these residues might occur at the active site of the enzyme.  相似文献   

8.
R J Auchus  D F Covey 《Biochemistry》1986,25(23):7295-7300
14,15-Secoestra-1,3,5(10)-trien-15-yne-3,17 beta-diol (1) is a mechanism-based inactivator of human placental 17 beta,20 alpha-hydroxysteroid dehydrogenase (estradiol dehydrogenase, EC 1.1.1.62). Inactivation with alcohol 1 requires NAD-dependent enzymic oxidation and follows approximately pseudo-first-order kinetics with a limiting t1/2 of 82 min and a "Ki" of 2.0 microM at pH 9.2 and 25 degrees C. At saturating concentrations of NAD, the initial rate of inactivation is slower than in the presence of 5 microM NAD, suggesting that cofactor binding to free enzyme impedes the inactivation process. Glutathione completely protects the enzyme from inactivation at both cofactor concentrations. Inactivation with 45 microM tritiated alcohol 1 followed by dialysis and gel filtration demonstrates a covalent interaction and affords an estimated stoichiometry of 1.4 molecules of steroid per subunit (2.8 per dimer). Chemically prepared 3-hydroxy-14,15-secoestra-1,3,5(10)-trien-15-yn-17-one (2) rapidly inactivates estradiol dehydrogenase with biphasic kinetics. From the latter phase, a Ki of 2.8 microM and a limiting t1/2 of 12 min at pH 9.2 were determined. Estradiol, NADH, and NAD all retard this latter inactivation phase. We propose that enzymatically generated ketone 2 inactivates estradiol dehydrogenase after its release from and return to the active site of free enzyme.  相似文献   

9.
Enolase from carp (Cyprinus Carpio) muscle was modified by diethylpyrocarbonate, tetranitromethane, N-bromosuccinimide and 5,5'-dithiobis(2-nitrobenzoic acid). The extent and rate of modification and its effect on the enzyme activity were determined. Modification of histidine, tyrosine and tryptophan residues caused complete inactivation of the enzyme; Mg2+ as well as 2-phosphoglycerate markedly altered the rates of modification and inactivation. The above-mentioned amino acid residues seem to be essential for the functioning of muscle enolases. Modification of cysteine residues had no effect on the enolase activity.  相似文献   

10.
1. Esterase E-I from Bitis gabonica was inactivated with irreversible inhibitors which included studies with a water-soluble carbodiimide, an affinity labelling peptide and a mechanism-based inactivator. 2. The reaction with 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide was biphasic and the dominant part followed saturation kinetics. At pH 5.5 a rate constant of 0.4 min-1 for inactive enzyme formation was calculated and a dissociation constant (Ki) of 0.2 M for the enzyme-inhibitor complex. 3. Inactivation with D-Phe-Pro-Arg-chloromethyl ketone indicated a two-step mechanism, for which the reaction parameters at pH 8.0 were determined. The Ki value was 0.2 microM and the inactivation rate was 2.5 min-1. 4. With isatoic anhydride pseudo-first-order kinetics was observed. At pH 8.0 a rate constant of 0.9 min-1 and a Ki of 2.0 mM were obtained. The inactivation of the enzyme was found to be governed by a group in the enzyme showing a pK value of 7.3.  相似文献   

11.
Nonactivated papain was treated with N-bromosuccinimide at pH 4.75. The N-bromosuccinimide-modified enzyme was characterized by (1) the change in absorbance at 280 nm, (2) amino acid analysis, (3) separate chemical determinations of tryptophan and tyrosine (4) difference spectroscopy, and (5) an N-terminal residue determination. It is concluded that N-bromosuccinimide in sevenfold molar excess oxidizes one tryptophan and two to three tyrosine residues per molecule of nonactivated papain, without causing peptide chain cleavage. Kinetic studies with several substrates and competitive peptide inhibitors were performed at pH6 using the N-bromosuccinimide-modified papain. In addition, the kinetics of the modified enzyme with the substrate alpha-N-benzoyl-L-arginine ethl ester were studied in the region of pH 3.5-9.0. All substrates (and inhibitors) test, with the exception of alpha-N-benzyoyl-L-arginine p-nitroanilide, displayed approximately a two fold decrease in both kcat and Km (or Ki), relative to the native enzyme. It is concluded that the key tryptophan residue which is probably Trp-177.  相似文献   

12.
The NAD(+)-dependent D-lactate dehydrogenase was purified to apparent homogeneity from Lactobacillus bulgaricus and its complete amino acid sequence determined. Two gaps in the polypeptide chain (10 residues) were filled by the deduced amino acid sequence of the polymerase chain reaction amplified D-lactate dehydrogenase gene sequence. The enzyme is a dimer of identical subunits (specific activity 2800 +/- 100 units/min at 25 degrees C). Each subunit contains 332 amino acid residues; the calculated subunit M(r) being 36,831. Isoelectric focusing showed at least four protein bands between pH 4.0 and 4.7; the subunit M(r) of each subform is 36,000. The pH dependence of the kinetic parameters, Km, Vm, and kcat/Km, suggested an enzymic residue with a pKa value of about 7 to be involved in substrate binding as well as in the catalytic mechanism. Treatment of the enzyme with group-specific reagents 2,3-butanedione, diethylpyrocarbonate, tetranitromethane, or N-bromosuccinimide resulted in complete loss of enzyme activity. In each case, inactivation followed pseudo first-order kinetics. Inclusion of pyruvate and/or NADH reduced the inactivation rates manyfold, indicating the presence of arginine, histidine, tyrosine, and tryptophan residues at or near the active site. Spectral properties of chemically modified enzymes and analysis of kinetics of inactivation showed that the loss of enzyme activity was due to modification of a single arginine, histidine, tryptophan, or tyrosine residue. Peptide mapping in conjunction with peptide purification and amino acid sequence determination showed that Arg-235, His-303, Tyr-101, and Trp-19 were the sites of chemical modification. Arg-235 and His-303 are involved in the binding of 2-oxo acid substrate whereas other residues are involved in binding of the cofactor.  相似文献   

13.
In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.  相似文献   

14.
UDPglucose 4-epimerase from Kluyveromyces fragilis was completely inactivated by diethylpyrocarbonate following pseudo-first order reaction kinetics. The pH profile of diethylpyrocarbonate inhibition and reversal of inhibition by hydroxylamine suggested specific modification of histidyl residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of 1 essential histidine residue to be responsible for loss in catalytic activity of yeast epimerase. No major structural change in the quarternary structure was observed in the modified enzyme as shown by the identical elution pattern on a calibrated Sephacryl 200 column and association of coenzyme NAD to the apoenzyme. Failure of the substrates to afford any protection against diethylpyrocarbonate inactivation indicated the absence of the essential histidyl residue at the substrate binding region of the active site. Unlike the case of native enzyme, sodium borohydride failed to reduce the pyridine moiety of the coenzyme in the diethylpyrocarbonate-modified enzyme. This indicated the presence of the essential histidyl residue in close proximity to the coenzyme binding region of the active site. The abolition of energy transfer phenomenon between the tryptophan and coenzyme fluorophore on complete inactivation by diethylpyrocarbonate without any loss of protein or coenzyme fluorescence are also added evidences in this direction.  相似文献   

15.
用化学修饰法及其修饰动力学对米曲霉GX0011β-果糖基转移酶的活性中心结构进行了研究。结果表明:NBS、PMSF、EDC能显著抑制酶的活性,底物对这些抑制有明显的保护作用,且残留酶活与修饰剂的浓度相关,抑制均符合拟一级动力学规律,进一步动力学分析,初步认定该酶活性中心包括至少一个丝氨酸(或苏氨酸)、一个色氨酸和一个天冬氨酸(或谷氨酸)残基。pCMB、TNBS能显著抑制酶的活性,但底物对抑制无明显保护作用,推断半胱氨酸和赖氨酸残基可能与维系酶活性中心构象有关,但不是酶活性中心基团。DEPC、AA和NAI对酶的活性抑制作用不明显,排除了组氨酸、精氨酸和酪氨酸残基是该酶活性中心必需基团的可能。  相似文献   

16.
Both activities of rabbit lung lysolecithin:lysolecithin acyltransferase (EC 3.1.1.5), hydrolysis and transacylation, are inactivated by diethylpyrocarbonate. The reaction follows pseudo-first-order kinetics, and second-order rate constants of 1.17 mM-1min-1 for hydrolysis and 0.56 mM-1 min-1 for transacylation were obtained at pH 6.5 and 37 degrees C. The rate of inactivation is dependent on pH, showing the involvement of a group with a pK of 6.5. The difference spectra showed an increase in absorbance at 242 nm, indicating the modification of histidine residues. The activity lost by diethylpyrocarbonate modification can be partially recovered by hydroxylamine treatment. The statistical analysis of residual fractional activity versus the number of modified histidine residues leads to the conclusion that two histidine residues are essential for the hydrolytic activity, whereas transacylation activity depends on only one essential histidine. The substrate and substrate analogs protected the enzyme against inactivation by diethylpyrocarbonate, suggesting that the essential residues are located at or near the active site of the enzyme.  相似文献   

17.
Glyoxalase I ((R)-S-lactoylglutathione methylglyoxal-lyase (isomerizing), EC 4.4.1.5) from monkey intestinal mucosa was purified to homogeneity. The purified enzyme had a molecular weight of 48,000, composed of two apparently identical subunits. Active-site modification was carried out on the purified enzyme in presence and absence of S-hexylglutathione, a reversible competitive inhibitor of glyoxalase I. Modification by tetranitromethane and N-acetylimidazole caused inactivation of the enzyme. Inactivation by N-acetylimidazole was reversible with hydroxylamine treatment, suggesting the importance of tyrosine residues for the activity of the enzyme. The enzyme was inactivated by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, 2,4,6-trinitrobenzenesulphonic acid, pyridoxal phosphate and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, indicating the importance of tryptophan, lysine and glutamic acid/aspartic acid residues for the activity of the enzyme. The enzyme was inactivated by diethyl pyrocarbonate and the activity was not restored by hydroxylamine treatment, suggesting that histidine residues may not be important for activity. Modification by N-ethylmaleimide and p-hydroxymercuribenzoate did not affect its activity, indicating that sulphydryl groups may not be important for activity. These studies indicated that the amino acids present in the active site of glyoxalase I from intestinal mucosa which may be important for activity are tyrosine, tryptophan, lysine and glutamic acid/aspartic acid residues.  相似文献   

18.
The chemical modification of purified ampicillin acylase by N-bromosuccinimide and diethylpyrocarbonate resulted in time-dependent inactivation of the enzyme. Both substrates, ampicillin and 6-aminopenicillanic acid, protected the enzyme against inactivation, suggesting that the modification occurred near or at the active site. Amino acid analyses and other data indicated that two histidyl residues per subunit molecule were essential for catalytic activity.  相似文献   

19.
The role of tryptophan, methionine, and histidine residues in mitochondrial aspartate aminotransferase from beef kidney has been established by using N-bromosuccinimide, 2-hydroxy-5-nitrobenzylbromide, and tetraiodofluoresceine as specific chemical modifiers of the amino acid residues of the enzyme. Since N-bromosuccinimide promotes extensive inactivation of the enzyme and the chemical modification of 1.65 tryptophan and 3 methionine residues per enzymes protomer, 2-hydroxy-5-nitrobenzylbromide modifies once more 1.65 tryptophan residues per enzyme protomer but induces only 10% inactivation of the enzyme. Tetraiodofluoresceine exerts a 40% inactivation of the enzyme which is due to the chemical modification of 5.8 histidine res in  相似文献   

20.
The reaction between formate dehydrogenase from Bacterium sp. 1 and diethylpyrocarbonate results in the enzyme inactivation. 4 histidine residues can be blocked per subunit by this reagent. The enzyme activity correlates with the disappearance of free histidines. The process of enzyme inactivation is biphasic and obeys pseudo-first-order kinetics. NAD and NADH slow down the rate of inactivation, but do not protect histidine residues against modification. Formate does not protect the enzyme. The modification of 80% of histidines increases the Km value for both substrates 3-fold. The general conformation of enzyme in the course of modification is preserved. The modification of histidines markedly decreases the reactivity of an essential SH-group of formate dehydrogenase against the Ellman reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号