首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A five-year study examined the responses of submerged aquatic vegetation (SAV), emergent vegetation, and largemouth bass (Micropterus salmoides) to variations in water level in a large lake in Florida, USA. SAV was assessed using a combined transect survey/spatial mapping approach, emergent vegetation was quantified with aerial photography and GIS, and bass were surveyed by electro-shocking. During the period leading up to this study (1995–1999), water levels were high in the lake, and the SAV was reduced in spatial extent and biomass, compared to its condition in the early 1990s. Spatial extent of emergent vegetation also was low, and largemouth bass surveys indicated low densities and failure to recruit young fish into the population. This was attributed to the lack of critical vegetative habitat. In spring 2000, the lake was lowered by discharging water from major outlets, and this was followed by a regional drought. Water levels dropped by 1m, and there was widespread development of Chara lawns in shoreline areas, with coincident increases in water clarity. There was some germination of vascular SAV, but Chara was the extreme dominant, such that structural complexity remained low. There was no substantive improvement in bass recruitment. During 2001, water levels declined further, and emergent plants germinated in exposed areas of the lake bottom. SAV was restricted to sites farther offshore, and continued to be dominated by Chara. There again was no bass response. In 2002, conditions changed when water levels increased to a moderate depth, flooding shoreline habitat to 0.5m. Vascular SAV increased in biomass and spatial extent, such that the community developed a high structural complexity. At the same time, emergent aquatic plants developed dense stands along the western shoreline. Largemouth bass had a strong recruitment of young fish for the first time in 5years. Recruitment continued to be successful in 2003, when spatial extent of SAV was somewhat reduced by higher water but total biomass and diversity remained high. These results demonstrate an important effect of inter-annual variation in water depth on the population dynamics of aquatic plants and fish in a subtropical lake.  相似文献   

2.
Grazing by the large caddisfly larva, Dicosmoecus gilvipes (Trichoptera; Limnephilidae), drastically reduced periphyton biomass in laboratory channels at a current velocity of 20 cm s–1. Reduction in biomass as chl a and AFDW ranged from 88 to 93% and 82 to 85%, respectively. On average, grazing rate increased with in-channel SRP (soluble reactive phosphorus) content from 6 to 10 µg 1–1. Grazing rates averaged 25.9–29.3 µg chl a m–2 d–1 and 10.8–12.2 µg chl a mg–1 d–1 based on area and grazer biomass, respectively, with most variability among treatments being due to the grazing effect. Grazing tended to shift the algal community increasingly to filamentous blue-green algae regardless of enrichment. After three weeks, Phormidium comprised over 61% of the community in grazed treatments but only 35% in ungrazed treatments. The stalked diatom Gomphonema comprised only 4% of the grazed community, but 11% in the three ungrazed channels with similar values for Scenedesmus. A model that includes grazing was calibrated to the data and produced a reasonable expectation of periphyton biomass over a range in SRP concentrations. While the model with constant grazer abundance predicts a gradually increasing grazed biomass as SRP increases, grazer production in natural streams may actually increase to accommodate the increased food production.  相似文献   

3.
The temporal distribution of chlorophyll a (chl a), suspended matter (SM), and vertical flux of chl a and organic carbon (OC) has been investigated at three sites along the north-eastern coast of the Gulf of Aqaba during the period from January 1991 through December 1992. Highly significant temporal and interannual variations were found in chl a, and in the vertical flux of chl a and OC. The SM and its OC content did not show any significant temporal or interannual variations. The recorded levels of the forementioned variables were generally low. The temporal distribution of chl a in the water column was polymodal in 1991 with peaks in March, June, August and December, and bimodal in 1992 with peaks in May–June, and October. Maximum values of SM and its OC content occurred in July of 1991 and September of 1992. The temporal variations in the vertical flux of total particles, chl a, and OC followed those of chl a in the water column. The bulk of the sediment material was of inorganic nature, derived from desert sand carried from Wadi Araba by the prevailing northerly winds, and dust of exported raw phosphate. The temporal changes described appear to be related to the temporal variations in water stability, horizontal advection, and winds.  相似文献   

4.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

5.
Holz  John C.  Hoagland  Kyle D.  Spawn  Rebecca L.  Popp  Arthur  Andersen  John L. 《Hydrobiologia》1997,346(1-3):183-192
The effects of reservoir aging on the phytoplankton community of amidwestern U.S. reservoir constructed in 1965 (Pawnee Reservoir) werestudied by comparing algal biovolume and species composition from April 1992through November 1992 to surveys conducted in 1968–73 and 1990. Meansummer total phosphorus, nitrate-nitrogen, Secchi disk depth, totalsuspended solids, chlorophyll a, and phytoplankton species composition datacharacterized Pawnee Reservoir during 1968–69 as a high nutrient,relatively clear water environment. Phytoplankton biomass was relativelylow, consisting mainly of cyanophytes and non-flagellated chlorophytes.During 1970–73, water clarity was poor, total suspended solids werehigh, and total phosphorus was lower, but was still greater than 100 µgl–1. The 1970–73 phytoplankton biomass was high and wasdominated by cyanophytes. Mean summer total phosphorus remained >100µg l–1, water clarity remained poor, but phytoplanktonbiomass decreased significantly during 1990–92. The dramatic drop inchlorophyll a and low mean volatile suspended solids indicated thatinorganic suspended sediments, rather than phytoplankton, accounted for themajority of the turbidity in 1990-92. In addition to lower phytoplanktonbiomass, community composition shifted away from buoyancy-regulatingcyanophytes toward flagellated chlorophytes. These data suggest that asreservoirs located in agricultural watersheds age, (1) inorganic suspendedsediments have a significant effect on the light environment as well asphytoplankton biomass and species composition, (2) the control ofphytoplankton biomass and species composition shifts away from nutrients tolight and suspended sediments, and (3) there is a 1–2 year lag in theresponse of phytoplankton biomass to maximum nutrient loading during thetrophic upsurge period. Thus, sedimentation has been shown to be a primarydeterminant of plankton and benthic macroinvertebrate community compositionas Pawnee Reservoir aged.  相似文献   

6.
Diurnal vertical distribution of rotifers was investigated in the Chara bed and the water immediately above it in the shallow region (ca. 1 m depth) of Budzyskie Lake (Wielkopolski National Park, Poland) in early September 1998. Eighty one rotifer species were identified – 71 among Chara and 59 in the open water. Significant differences in rotifer densities were observed in the Chara, with highest numbers during the day (2316 ind. l–1) and lowest numbers early morning (521 ind. l–1) and at dusk (610 ind. l–1). Above the Chara, the numbers of rotifers did not change significantly (615–956 ind. l–1). Littoral- or limnetic-forms differed in their diel vertical distribution between both zones. One group of littoral species was characterized by increased densities in the Chara in the daytime, while a second group increased in density during the night. The densities of limnetic species, which were much higher in open water, decreased in the morning or daytime in this zone. These differences in the diel behaviour of particular groups of rotifers may be dependent on microhabitat and may also be related to different kinds of predation, the exploitative competition for shared food resources between rotifers and crustaceans, as well as typical adaptation to littoral or limnetic life.  相似文献   

7.
A detailed investigation into light, temperature and flow regimes of the Vaal River was done for the first time. The Vaal River is ecologically and economically one of the most important rivers in South Africa. In a South African context, the Vaal River, with an average Secchi disk depth (Z sd) of 0.41 m and an average euphotic zone depth (Z eu) of 1.3 m, is a moderately turbid system. Red light (approx. 670 nm) penetrated Vaal River water to a greater degree than other components of the light spectrum. Water temperature in the Vaal River (min. = 10, max. = 27 °C at midday), closely followed seasonal changes in average atmospheric temperatures. The water-column shows little temperature stratification. The Vaal River is a highly regulated system with relatively high discharge rates at Balkfontein (average 112 m3 s–1), but relatively low current velocity (approx. 0.35 m s–1). Discharge was the most important variable to influence transparency of Vaal River water. Higher discharge resulted in higher total suspended solids (TSS) concentration and higher extinction coefficient (k) values as well as in higher turbidity and thus in lower Z eu and Z sd. From the mean TSS (141 mg l–1) it was calculated that the Vaal River (mean annual run-off of 3532 million m3) transported 498016 tonnes of suspended solids per annum.  相似文献   

8.
Phytoplankton pigment distributions during the spring isothermal periods of 1998 and 1999 and their association with episodic sediment resuspension were characterized in coastal waters of southern Lake Michigan. Total and phylogenetic group chl a concentrations (derived using chemical taxonomy matrix factorization of diagnostic carotenoids) corresponded with assemblage and group biovolumes estimated from microscopic enumeration (P≤ 0.001). Diatoms and cryptophytes dominated assemblages and together typically comprised greater than 85% of relative chl a. Total chl a concentrations and both fucoxanthin·chl a ? 1 and alloxanthin·chl a ? 1 ratios were similar across depths (P> 0.05), indicating uniform distributions of and photophysiological states for assemblages and diatoms and cryptophytes, respectively, throughout the mixed water column. Total chl a concentrations were not always spatially uniform from near‐shore to offshore waters, with the greatest variability reflecting the influence of tributary inflows upon coastal assemblages. Sediment resuspension strongly influenced water column particle density and light climate; however, total and group chl a concentrations did not correspond with coefficients of Kd and suspended particulate matter concentrations (P> 0.05). The correspondence of both light attenuation and suspended particulate matter concentration with relative diatom chl a (P≤ 0.001) indicated an apparent association between sediment resuspension and diatoms. This, and the negative association (P≤ 0.0001) between relative diatom and cryptophyte chl a, corresponded with the spatial dominance of diatom and cryptophyte chl a in near‐shore and offshore waters, respectively. The presence of viable chl a and fucoxanthin within the surficial sediment layer, established this layer as a potential source of meroplanktonic diatoms for near‐shore assemblages.  相似文献   

9.
Growth rates of the entire phytoplankton community of a brackish lagoon in northeastern Japan were estimated by measuring increasing chlorophyll a content in dialysis bags during the summer and early autumn of 1986. The chlorophyll a contents of lagoon water fluctuated between 20 and 200 mg m–3. At lower densities of phytoplankton (20–50 mg chl. a m–3), growth rates (the rate of increase of chlorophyll a) exceeded 1 turnover per day, while at higher densities (more than 50 mg chl. a m–3), the growth rate decreased rapidly. Tidal exchanges of chlorophyll a showed net exports of chlorophyll a from the lagoon to adjacent waters. The exchange rate of chlorophyll a was estimated to be 0.65 d–1. At about 140 mg m–3 of chlorophyll a concentration, the increase of chlorophyll in the lagoon water compensated for tidal export. Only a small proportion of primary production was consumed by zooplankton in the lagoon. There were also net exports of ammonium and phosphate from the lagoon. Nutrient flux from sediment exceeded the phytoplankton requirement and was the major source of the ammonium and phosphate exports from the lagoon. The low inorganic N/P atom supply ratio in the lagoon suggests that nitrogen is a major nutrient limiting phytoplankton growth.  相似文献   

10.
The karstic nature of the Yucatan Peninsula allows the formation of natural sink-holes from the dissolution of calcareous rock. These systems are almost the only epigean source of fresh water available in this region. In spite of their biological importance, little is known about the morphometric and limnologic characteristics of these karstic systems. We measured limnological variables in eight cenotes in central Quintana Roo during February–May, 2001. Zooplankton biomass and chlorophyll a were also measured in order to determine if the behavior of primary and secondary production was related to environmental parameters. Important short-term changes were observed in nutrients (NO3 , NO2 , PO4 3-), biomass, and chlorophyll a. The morphometrically conditioned productivity (MCP), which evaluates the cumulative effect of several morphometric variables on production (area, maximum length, shoreline development, perimeter), showed a negative correlation with respect to zooplankton biomass, as did also both pH and temperature. Conversely, NO3 and NO2 had a positive correlation with zooplankton biomass. No correlation was found for chlorophyll a. Significant differences in NO3 (F = 61.52, p<0.001), NO2 (F = 7.36, p<0.001), zooplankton biomass (F = 17.57, p<0.001), chlorophyll a (F = 62.19, p<0.001), and conductivity (F = 497.49, p<0.001) were found among the systems. These results indicate the existence of sharp differences between these karstic systems (oligotrophic, with smaller area, deep and less productive) and non-karstic ones, (eutrophic, larger area, shallow and more productive) but are similar to previous data from other karstic systems of Mexico and other parts of the world. However, understanding of these fragile tropical systems is in the initial phase. It is necessary to increase the intensity of these studies in order to allow a full explanation of their limnological behavior.  相似文献   

11.
The surface distribution of chlorophyll a (chl a) from size-fractionated phytoplankton and of particulate organic matter was studied along the Strait of Magellan during late austral summer (February 20th to March 2nd, 1991), in order to contribute an outline of the ecological characteristics of its pelagic compartment. Sampling of surface water was carried out at 2.5 mile intervals, yielding 152 sampling points for chl a and 104 for particulate organic carbon (POC). The Strait appeared as a system strongly controlled by land forcing. Its phytoplankton community was dominated by the picoplanktonic fraction along its entire length, with mean chl a concentrations of 0.74 and 1.17 g dm–3 for pico- and total phytoplankton, respectively. The microphytoplankton never exceeded 0.02 g dm–3. POC concentrations, with a maximum of 242.5 and a mean of 144.8 g dm–3, were mainly of autotrophic origin, as indicated by a mean POC:chl a ratio of 138.4.  相似文献   

12.
Tiina Nõges 《Hydrobiologia》1996,338(1-3):91-103
The material for pigment analysis was collected 1–3 times a year from Lake Peipsi-Pihkva in 1983, 1987, 1988, 1991 and 1992–1995. Concentrations of chlorophyll a, b and c (Chla, Chlb, Chlc), pheopigment (Pheo) and adenosine triphosphate (ATP) were measured biweekly in 1985–1986. The mean of all Chla values was 20.2 mg m–1 (median 13.3 mg m–1) indicating the eutrophic state of the lake. Average Chlb, Chlc, Pheo and carotenoid (Car) contents were 3.7 mg m–3, 4.1 mg m–3, 3.0 mg m–3 and 4.8 mg m–3, respectively. The average Chlb/Chla ratio was 22.9%, Chlc/Chla 23.4%, Pheo/Chla 38%, Car/Chla 37% and ATP/Chla 3%, the medians being 14.3, 13.6, 17.5, 39.4 and 1.9%, respectively. The proportion of Chla in phytoplankton biomass was 0.41%, median 0.32%. There were no significant differences in temperature, oxygen concentration, Chla, and ATP between the surface and bottom water; the lake was polymictic during the vegetation period. The Chla concentration had its first peak in May followed by a decrease in June and July. In late summer Chla increased again achieving its seasonal maximum in late autumn. The ATP concentration was the highest during spring and early summer, decreasing drastically in autumn together with the decline of primary production. ATP/Chla was the highest during the clear water period in June and early July, which coincided also with the high proportion of Chla in phytoplankton biomass. The highest Chla occurred in November (average 37.2 mg m–3) when Secchi transparency was the lowest (1.05 m). Concentrations of Chlb, Chlc and carotenoids were the highest in August, that of Pheo in June. Concentrations of Chla and other pigments were the lowest in the northern part of Lake Peipsi (mean 14.7 mg m–3, median 12.5 mg m–3) and the highest in the southern part of Lake Pihkva (mean 47.9 mg m–3, median 16.3 mg m–3). An increase of Chla and decrease of Secchi depth could be noticed in 1983–1988, while in 1988–1994 the tendency was opposite.  相似文献   

13.
Resuspension in a shallow eutrophic lake   总被引:18,自引:7,他引:11  
The frequency and the importance of wind-induced resuspension were studied in the shallow, eutrophic Lake Arresø, Denmark (41 km2, mean depth 3 m). During storm events in autumn 1988 lake water samples were collected every 2–8 hours by an automatic sampler at a mid-lake station. The concentration of suspended solids and Tot-P was found to increase markedly. During storms up to 2 cm of the superficial sediment was resuspended, and the concentration of resuspended solids in the water column rose to 140 mg l–1. The resuspended particles had a relatively high settling velocity and on average, a relatively short residence time in the water column of 7 hours.A model which describes the concentration of resuspended solids as a function of wind velocity and of settling velocity of the resuspended particles is presented. Using additional wind velocity data from a nearby meteorological station, the model has been used to calculate the frequency of resuspension events and concentration of resuspended solids for the period from May to November 1988.These calculations show that resuspension occurred about 50% of the time. Average flux of suspended solids from the sediment to the water was 300 g m–2 d–1 and during 50% of the time lake water concentration of suspended solids was more than 32 mg l–1. A relationship between concentration of suspended solids and Secchi-depth is presented. Because of resuspension, Secchi-depth in Lake Arresø is reduced to 0.5 m.Resuspension also had a marked effect on Tot-P concentration in the lake water, and P input to the lake water being totally dominated by resuspension events.  相似文献   

14.
H. T. Mun 《Plant and Soil》1988,112(1):143-149
Soil properties, primary production, nitrogen and phosphorus uptake in aMiscanthus sinensis community on serpentine gangue area were compared with that on nonserpentine area. Soil water content, soil pH and nitrogen content were quite different between the serpentine gangue area and nonserpentine area; but phosphorus content of the soil was similar between the two sites. The maximum above-ground net production in the serpentine gangue and nonserpentine areas was 4.5±0.2 kg m–2 yr–1 and 7.8±0.2 kg m–2 yr–1, respectively. The total maximum standing biomass in the serpentine gangue and nonserpentine areas was 8.5±0.8 kg m–2 and 11.9±0.4 kg m–2, respectively. Nitrogen uptake by plants in the nonserpentine area was 2.4 times greater than that in the serpentine gangue area. Phosphorus uptake by plants were similar for the two sites. The most probable reasons for the small biomass produced by theMiscanthus sinensis community in this serpentine gangue area are the low levels of nitrogen and water availability in the soil.  相似文献   

15.
The bioaccumulation of chromium from retan chrome liquor by Spirulina fusiformis was investigated under laboratory as well as field conditions. At the optimal conditions, metal ion uptake increased with initial metal ion concentration up to 300 mg/l. The effect on various physico-chemical parameters like total solids (TS), total dissolved solids (TDS), total suspended solids (TSS), chlorides, sulphates, phenols, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) and biochemical studies related to biomass, chlorophyll-a and protein were also carried out. The present study indicates that S. fusiformis is very effective in removal of chromium (93–99%) besides removing other toxicants from retan chrome liquor. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and FTIR studies indicate the interaction/complexation between Cr and alga. The mechanism involved in bioaccumulation of chromium is also discussed. The process when upgraded can be applied for detoxification of tannery effluents.  相似文献   

16.
Enclosures, open to the bottom sediments and to the atmosphere, containing about 17 m3 of lake water in the mesotrophic area of Lake Balaton, were used to elucidate the role of the benthivorous fish bream (Ambramis brama L.) in the lake during 1984–1986.Throughout the whole period water was less transparent in the enclosure containing fish, which strongly influenced the concentrations of suspended solids and chlorophyll a.Both phytoplankton biomass and production readily responded to nutrient increase in the enclosure with fish. In 1985 diatoms were replaced by cyanobacteria whereas in 1986, at a lower fish stocking, a shift in algal structure towards chlorophytes was observed.Egested organic substances and the resuspension of sediment particles by fish increased bacterial production.  相似文献   

17.
Hydrology is often the main determinant of water chemistry and structure of the aquatic communities in coastal lagoons, driven by the interaction of freshwater load from the catchment and marine intrusions. However, submerged aquatic vegetation (SAV) can have important local effects on both features, even during sporadically and short proliferations. A SAV summer proliferation was observed during 2003 in a coastal lagoon in Uruguay (Laguna de Rocha), increasing macrophyte cover and biomass in the less saline zones. SAV summer proliferations were first observed in summer 2001, with no records prior. The aim of this paper is to describe the ephemeral proliferation of SAV in this shallow brackish lagoon and to analyze its effects on the abiotic environment and on the zoobenthic community. Vegetated and unvegetated zones were sampled in the northern more limnic area (9.1 mS cm−1 ± 4.8) and the southern brackish area (20.9 mS cm−1 ± 5.2). Water and sediment chemistry were analyzed by standard methods and benthos and plants were collected with an Ekman grab. During SAV proliferation, suspended solids were five times lower inside macrophyte patches and water column total phosphorus and nitrogen were three and two times lower, respectively. Zoobenthos abundance and richness were higher in vegetated patches. However, no differences were found between sampling sites in the more brackish southern area and in the North after the SAV proliferation ended. This indicates that SAV can influence water chemistry and benthos structure above a biomass threshold of 100 g DW m−2. Although hydrology is the driving force regulating communities and water chemistry in these coastal lagoons, our results showed that SAV can also be an important local factor above a certain biomass threshold.  相似文献   

18.
Sedimentation of chlorophylls was studied during summer 1997 in Adventfjorden (Spitsbergen, Arctic). During the period of study, the water column was found to be well stratified by a freshened surface layer (salinity <31 PSS). A high load of suspended particulate matter from riverine discharge reduced the euphotic zone to an interval of 0.4–1.1m. Total particulate matter sedimentation rates were about twice as high in June as in July. The following chlorophylls were distinguished in the sedimented particles: chl a and its degradation products (allomer chl a, phaeophytin a, phaeophorbide a, chlorophyllide a), chl b and chl c 1+c 2. The quantitatively most important derivative of chl a was phaeophorbide a (31--41% of porphyrin a). Generally, the sedimentation rate of chlorophylls increased with depth. Linear relationships between concentrations of chl a and phaeophorbide a (r 2=0.92), as well as between concentrations of chl a and phaeophytin a (r 2=0.90) indicated a strong connection between phytoplankton abundance and zooplankton grazing. The significant correlation between chl a and chlorophyllide a concentrations (r 2=0.82) showed that most of the sinking chl a belonged primarily to diatoms, and low chlorophyllide a:chl a ratio (0.03) indicated that cellular senescence was not an important reason for the sinking of chl a. Moreover, very low chl b:chl a ratios (about 0.05 calculated for samples where chl b was detectable) suggest that contributions of green algae and/or higher plant detritus were negligible in sinking particles. The ratio of chl c 1+c 2:chl a was 0.85 indicating that chl c-containing algae were dominating.  相似文献   

19.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

20.
A column reactor, in which the bottom two-thirds were occupied by a sludge blanket and the upper one-third by submerged clay rings, was evaluated using slaughterhouse wastewater as substrate. The reactor was operated at 35°C at loading rates varying from 5 g to 45 g chemical oxygen demand (COD) 1–1 × day–1 at an influent concentration of 2450 mg COD 1–1. A maximum substrate removal rate of 32 g COD 1–1 × day–1, coupled with a methane production rate of 6.91 × 1–1 × day–1 (STP), was obtained. This removal rate is significantly higher than those previously reported. The rate of substrate utilization by the biomass was 1.22 g COD (g volatile suspended solids)–1 day–1. COD removal was over 96% with loading rates up to 25 g COD 1–1 × day–1, at higher loading rates performance decreased rapidly. It was found that the filter element of the reactor was highly efficient in retaining biomass, leading to a biomass accumulation yield coefficient of 0.029 g volatile suspended solids g–1 COD, higher than reported previously for either upflow anaerobic sludge-blanket reactors or anaerobic filters operating independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号