首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous modeling studies have identified the vaccination coverage level necessary for preventing influenza epidemics, but have not shown whether this critical coverage can be reached. Here we use computational modeling to determine, for the first time, whether the critical coverage for influenza can be achieved by voluntary vaccination. We construct a novel individual-level model of human cognition and behavior; individuals are characterized by two biological attributes (memory and adaptability) that they use when making vaccination decisions. We couple this model with a population-level model of influenza that includes vaccination dynamics. The coupled models allow individual-level decisions to influence influenza epidemiology and, conversely, influenza epidemiology to influence individual-level decisions. By including the effects of adaptive decision-making within an epidemic model, we can reproduce two essential characteristics of influenza epidemiology: annual variation in epidemic severity and sporadic occurrence of severe epidemics. We suggest that individual-level adaptive decision-making may be an important (previously overlooked) causal factor in driving influenza epidemiology. We find that severe epidemics cannot be prevented unless vaccination programs offer incentives. Frequency of severe epidemics could be reduced if programs provide, as an incentive to be vaccinated, several years of free vaccines to individuals who pay for one year of vaccination. Magnitude of epidemic amelioration will be determined by the number of years of free vaccination, an individuals' adaptability in decision-making, and their memory. This type of incentive program could control epidemics if individuals are very adaptable and have long-term memories. However, incentive-based programs that provide free vaccination for families could increase the frequency of severe epidemics. We conclude that incentive-based vaccination programs are necessary to control influenza, but some may be detrimental. Surprisingly, we find that individuals' memories and flexibility in adaptive decision-making can be extremely important factors in determining the success of influenza vaccination programs. Finally, we discuss the implication of our results for controlling pandemics.  相似文献   

2.
Theoretical models of infection spread on networks predict that targeting vaccination at individuals with a very large number of contacts (superspreaders) can reduce infection incidence by a significant margin. These models generally assume that superspreaders will always agree to be vaccinated. Hence, they cannot capture unintended consequences such as policy resistance, where the behavioral response induced by a new vaccine policy tends to reduce the expected benefits of the policy. Here, we couple a model of influenza transmission on an empirically-based contact network with a psychologically structured model of influenza vaccinating behavior, where individual vaccinating decisions depend on social learning and past experiences of perceived infections, vaccine complications and vaccine failures. We find that policy resistance almost completely undermines the effectiveness of superspreader strategies: the most commonly explored approaches that target a randomly chosen neighbor of an individual, or that preferentially choose neighbors with many contacts, provide at best a relative improvement over their non-targeted counterpart as compared to when behavioral feedbacks are ignored. Increased vaccine coverage in super spreaders is offset by decreased coverage in non-superspreaders, and superspreaders also have a higher rate of perceived vaccine failures on account of being infected more often. Including incentives for vaccination provides modest improvements in outcomes. We conclude that the design of influenza vaccine strategies involving widespread incentive use and/or targeting of superspreaders should account for policy resistance, and mitigate it whenever possible.  相似文献   

3.
《PloS one》2016,11(3)
IntroductionDetermining the optimal time to vaccinate is important for influenza vaccination programmes. Here, we assessed the temporal characteristics of influenza epidemics in the Northern and Southern hemispheres and in the tropics, and discuss their implications for vaccination programmes.MethodsThis was a retrospective analysis of surveillance data between 2000 and 2014 from the Global Influenza B Study database. The seasonal peak of influenza was defined as the week with the most reported cases (overall, A, and B) in the season. The duration of seasonal activity was assessed using the maximum proportion of influenza cases during three consecutive months and the minimum number of months with ≥80% of cases in the season. We also assessed whether co-circulation of A and B virus types affected the duration of influenza epidemics.Results212 influenza seasons and 571,907 cases were included from 30 countries. In tropical countries, the seasonal influenza activity lasted longer and the peaks of influenza A and B coincided less frequently than in temperate countries. Temporal characteristics of influenza epidemics were heterogeneous in the tropics, with distinct seasonal epidemics observed only in some countries. Seasons with co-circulation of influenza A and B were longer than influenza A seasons, especially in the tropics.DiscussionOur findings show that influenza seasonality is less well defined in the tropics than in temperate regions. This has important implications for vaccination programmes in these countries. High-quality influenza surveillance systems are needed in the tropics to enable decisions about when to vaccinate.  相似文献   

4.

Background

Theoretical studies predict that it is not possible to eradicate a disease under voluntary vaccination because of the emergence of non-vaccinating “free-riders” when vaccination coverage increases. A central tenet of this approach is that human behaviour follows an economic model of rational choice. Yet, empirical studies reveal that vaccination decisions do not necessarily maximize individual self-interest. Here we investigate the dynamics of vaccination coverage using an approach that dispenses with payoff maximization and assumes that risk perception results from the interaction between epidemiology and cognitive biases.

Methods

We consider a behaviour-incidence model in which individuals perceive actual epidemiological risks as a function of their opinion of vaccination. As a result of confirmation bias, sceptical individuals (negative opinion) overestimate infection cost while pro-vaccines individuals (positive opinion) overestimate vaccination cost. We considered a feedback between individuals and their environment as individuals could change their opinion, and thus the way they perceive risks, as a function of both the epidemiology and the most common opinion in the population.

Results

For all parameter values investigated, the infection is never eradicated under voluntary vaccination. For moderately contagious diseases, oscillations in vaccination coverage emerge because individuals process epidemiological information differently depending on their opinion. Conformism does not generate oscillations but slows down the cultural response to epidemiological change.

Conclusion

Failure to eradicate vaccine preventable disease emerges from the model because of cognitive biases that maintain heterogeneity in how people perceive risks. Thus, assumptions of economic rationality and payoff maximization are not mandatory for predicting commonly observed dynamics of vaccination coverage. This model shows that alternative notions of rationality, such as that of ecological rationality whereby individuals use simple cognitive heuristics, offer promising new avenues for modelling vaccination behaviour.  相似文献   

5.
The effectiveness of seasonal influenza vaccination programs depends on individual-level compliance. Perceptions about risks associated with infection and vaccination can strongly influence vaccination decisions and thus the ultimate course of an epidemic. Here we investigate the interplay between contact patterns, influenza-related behavior, and disease dynamics by incorporating game theory into network models. When individuals make decisions based on past epidemics, we find that individuals with many contacts vaccinate, whereas individuals with few contacts do not. However, the threshold number of contacts above which to vaccinate is highly dependent on the overall network structure of the population and has the potential to oscillate more wildly than has been observed empirically. When we increase the number of prior seasons that individuals recall when making vaccination decisions, behavior and thus disease dynamics become less variable. For some networks, we also find that higher flu transmission rates may, counterintuitively, lead to lower (vaccine-mediated) disease prevalence. Our work demonstrates that rich and complex dynamics can result from the interaction between infectious diseases, human contact patterns, and behavior.  相似文献   

6.
The impact of imitation on vaccination behavior in social contact networks   总被引:1,自引:0,他引:1  
Previous game-theoretic studies of vaccination behavior typically have often assumed that populations are homogeneously mixed and that individuals are fully rational. In reality, there is heterogeneity in the number of contacts per individual, and individuals tend to imitate others who appear to have adopted successful strategies. Here, we use network-based mathematical models to study the effects of both imitation behavior and contact heterogeneity on vaccination coverage and disease dynamics. We integrate contact network epidemiological models with a framework for decision-making, within which individuals make their decisions either based purely on payoff maximization or by imitating the vaccination behavior of a social contact. Simulations suggest that when the cost of vaccination is high imitation behavior may decrease vaccination coverage. However, when the cost of vaccination is small relative to that of infection, imitation behavior increases vaccination coverage, but, surprisingly, also increases the magnitude of epidemics through the clustering of non-vaccinators within the network. Thus, imitation behavior may impede the eradication of infectious diseases. Calculations that ignore behavioral clustering caused by imitation may significantly underestimate the levels of vaccination coverage required to attain herd immunity.  相似文献   

7.
In modeling individuals vaccination decision making, existing studies have typically used the payoff-based (e.g., game-theoretical) approaches that evaluate the risks and benefits of vaccination. In reality, whether an individual takes vaccine or not is also influenced by the decisions of others, i.e., due to the impact of social influence. In this regard, we present a dual-perspective view on individuals decision making that incorporates both the cost analysis of vaccination and the impact of social influence. In doing so, we consider a group of individuals making their vaccination decisions by both minimizing the associated costs and evaluating the decisions of others. We apply social impact theory (SIT) to characterize the impact of social influence with respect to individuals interaction relationships. By doing so, we propose a novel modeling framework that integrates an extended SIT-based characterization of social influence with a game-theoretical analysis of cost minimization. We consider the scenario of voluntary vaccination against an influenza-like disease through a series of simulations. We investigate the steady state of individuals’ decision making, and thus, assess the impact of social influence by evaluating the coverage of vaccination for infectious diseases control. Our simulation results suggest that individuals high conformity to social influence will increase the vaccination coverage if the cost of vaccination is low, and conversely, will decrease it if the cost is high. Interestingly, if individuals are social followers, the resulting vaccination coverage would converge to a certain level, depending on individuals’ initial level of vaccination willingness rather than the associated costs. We conclude that social influence will have an impact on the control of an infectious disease as they can affect the vaccination coverage. In this respect, our work can provide a means for modeling the impact of social influence as well as for estimating the effectiveness of a voluntary vaccination program.  相似文献   

8.
J W Frank  M Henderson  L McMurray 《CMAJ》1985,132(4):371-375
In the autumn of 1982 routine annual influenza vaccination was offered, by reminder letters and follow-up telephone calls, to 273 independent elderly individuals registered at a community health clinic in Hamilton, Ont. The demographic and geographic characteristics and the health beliefs of those who either accepted or did not accept the vaccine were compared. Among those who received reminder letters there were no significant differences in the rates of vaccine acceptance according to age, sex, household composition or ease of access to the clinic. The patients who reported having previously experienced side effects from the vaccine and perceived a lack of efficacy of the vaccine were more likely not to accept it this time. Both a lack of effort by health care providers (to promote vaccination) and patient behaviour appeared to contribute to pre-existing low levels of influenza vaccination coverage. Although physicians'' efforts to inform patients about the vaccination clinics resulted in a tripling of the overall rate of acceptance of the vaccine, there remained a "hard core" of almost half the patients who were unwilling to receive the vaccine, apparently because they perceived its risks to outweigh its benefits.  相似文献   

9.
The dynamics of an epidemic model with voluntary vaccinations are studied. Individual vaccination decisions are modelled using an economic/game-theoretic approach: agents in the model decide whether to vaccinate or not by weighing the cost and benefit of vaccination and choose the action that maximizes their net benefit. It is shown that, when vaccine efficacy is low, there are parameter values for which multiple steady-state equilibria and periodic equilibria coexist. When multiplicity of steady states is obtained, which one the population reaches in some cases depends entirely on agents' expectations concerning the future course of an epidemic and not on the initial conditions of the model. (?)Comments and suggestions from anonymous referees of the journal are gratefully acknowledged. This paper is dedicated to the loving memory of Lucy Hauser.  相似文献   

10.
In 2009, influenza A H1N1 caused the first pandemic of the 21st century. Although a vaccine against this influenza subtype was offered before or at the onset of the second epidemic wave that caused most of the fatal cases in Europe, vaccination rates for that season were lower than expected. We propose that the contradiction between high risk of infection and low use of available prevention measures represents a pandemic public health paradox. This research aims for a better understanding of this paradox by exploring the time-dependent interplay among changing influenza epidemiology, media attention, pandemic control measures, risk perception and public health behavior among five European countries (Czech Republic, Denmark, Germany, Spain and the UK). Findings suggest that asynchronicity between media curves and epidemiological curves may potentially explain the pandemic public health paradox; media attention for influenza A H1N1 in Europe declined long before the epidemic reached its peak, and public risk perceptions and behaviors may have followed media logic, rather than epidemiological logic.  相似文献   

11.
Seasonal influenza epidemics cause consistent, considerable, widespread loss annually in terms of economic burden, morbidity, and mortality. With access to accurate and reliable forecasts of a current or upcoming influenza epidemic’s behavior, policy makers can design and implement more effective countermeasures. This past year, the Centers for Disease Control and Prevention hosted the “Predict the Influenza Season Challenge”, with the task of predicting key epidemiological measures for the 2013–2014 U.S. influenza season with the help of digital surveillance data. We developed a framework for in-season forecasts of epidemics using a semiparametric Empirical Bayes framework, and applied it to predict the weekly percentage of outpatient doctors visits for influenza-like illness, and the season onset, duration, peak time, and peak height, with and without using Google Flu Trends data. Previous work on epidemic modeling has focused on developing mechanistic models of disease behavior and applying time series tools to explain historical data. However, tailoring these models to certain types of surveillance data can be challenging, and overly complex models with many parameters can compromise forecasting ability. Our approach instead produces possibilities for the epidemic curve of the season of interest using modified versions of data from previous seasons, allowing for reasonable variations in the timing, pace, and intensity of the seasonal epidemics, as well as noise in observations. Since the framework does not make strict domain-specific assumptions, it can easily be applied to some other diseases with seasonal epidemics. This method produces a complete posterior distribution over epidemic curves, rather than, for example, solely point predictions of forecasting targets. We report prospective influenza-like-illness forecasts made for the 2013–2014 U.S. influenza season, and compare the framework’s cross-validated prediction error on historical data to that of a variety of simpler baseline predictors.  相似文献   

12.
Enhanced influenza surveillance was implemented to analyze transmission dynamics particularly driving force of influenza transmission in a community during 2011/12 and 2012/13 seasons in Odate City, Japan. In these two consecutive seasons, influenza A(H3N2) was the predominant influenza A subtype. Suspected influenza cases were tested by commercial rapid test kits. Demographic and epidemiological information of influenza positive cases were recorded using a standardized questionnaire, which included age or age group, date of visit, date of fever onset, and the result of rapid test kit. Epidemiological parameters including epidemic midpoint (EM) and growth rate (GR) were analyzed. In 2012/13 season, numbers of influenza A positive cases were significantly lower among preschool (212 cases) and primary school (224 cases) children than in 2011/12 season (461 and 538 cases, respectively). Simultaneously, total influenza A cases were also reduced from 2,092 in 2011/12 season to 1,846 in 2012/13 season. The EMs in preschool and primary school children were earlier than EMs for adult and all age group in both 2011/12 and 2012/13 seasons. The GR in 2012/13 season was significantly lower than that in 2011/12 season (0.11 and 0.18, respectively, p = 0.003). Multiple linear regression analysis by school districts revealed that GRs in both seasons were significantly correlated with the incidence of school age children. Our findings suggest that preschool and primary school children played an important role as a driving force of epidemics in the community in both 2011/12 and 2012/13 seasons. The reduction of total influenza A cases in 2012/13 season can be explained by decreased susceptible population in these age groups due to immunity acquired by infections in 2011/12 season. Further investigations are needed to investigate the effect of pre-existing immunity on influenza transmission in the community.  相似文献   

13.

Background

Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread.

Methods and Findings

We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic.

Conclusions

Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive ability.  相似文献   

14.
Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: “cold-dry” and “humid-rainy”. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11–12 g/kg and 18–21°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates.  相似文献   

15.
Mao L 《PloS one》2011,6(10):e24706
Control strategies enforced by health agencies are a major type of practice to contain influenza outbreaks. Another type of practice is the voluntary preventive behavior of individuals, such as receiving vaccination, taking antiviral drugs, and wearing face masks. These two types of practices take effects concurrently in influenza containment, but little attention has been paid to their combined effectiveness. This article estimates this combined effectiveness using established simulation models in the urbanized area of Buffalo, NY, USA. Three control strategies are investigated, including: Targeted Antiviral Prophylaxis (TAP), workplace/school closure, community travel restriction, as well as the combination of the three. All control strategies are simulated with and without regard to individual preventive behavior, and the resulting effectiveness are compared. The simulation outcomes suggest that weaker control strategies could suffice to contain influenza epidemics, because individuals voluntarily adopt preventive behavior, rendering these weaker strategies more effective than would otherwise have been expected. The preventive behavior of individuals could save medical resources for control strategies and avoid unnecessary socio-economic interruptions. This research adds a human behavioral dimension into the simulation of control strategies and offers new insights into disease containment. Health policy makers are recommended to review current control strategies and comprehend preventive behavior patterns of local populations before making decisions on influenza containment.  相似文献   

16.
A clinical, epidemiological and virological investigation was conducted on patients in two general practices in Cambridge, England, during an influenza epidemic between February and April 1963. The epidemiological pattern differed from that of the 1957-58 Asian influenza epidemic in that the overall incidence was considerably lower (3.2%) and that the highest attack rates were not in school children but in pre-school children (71.5 per 1000 persons).Virological investigation confirmed the diagnosis of Influenza A2 infection in 56 of 63 patients (89%). Isolations were made in 29 of 51 specimens tested. Serological studies revealed that the complement fixation test was more reliable than hemagglutination - inhibition or neutralization tests. Clinical features resembled those reported in previous epidemics, cough, headache and limb pains being prominent features.  相似文献   

17.
Influenza epidemics arise through the accumulation of viral genetic changes. The emergence of new virus strains coincides with a higher level of influenza-like illness (ILI), which is seen as a peak of a normal season. Monitoring the spread of an epidemic influenza in populations is a difficult and important task. Twitter is a free social networking service whose messages can improve the accuracy of forecasting models by providing early warnings of influenza outbreaks. In this study, we have examined the use of information embedded in the Hangeul Twitter stream to detect rapidly evolving public awareness or concern with respect to influenza transmission and developed regression models that can track levels of actual disease activity and predict influenza epidemics in the real world. Our prediction model using a delay mode provides not only a real-time assessment of the current influenza epidemic activity but also a significant improvement in prediction performance at the initial phase of ILI peak when prediction is of most importance.  相似文献   

18.
Theoretical models of disease dynamics on networks can aid our understanding of how infectious diseases spread through a population. Models that incorporate decision-making mechanisms can furthermore capture how behaviour-driven aspects of transmission such as vaccination choices and the use of non-pharmaceutical interventions (NPIs) interact with disease dynamics. However, these two interventions are usually modelled separately. Here, we construct a simulation model of influenza transmission through a contact network, where individuals can choose whether to become vaccinated and/or practice NPIs. These decisions are based on previous experience with the disease, the current state of infection amongst one''s contacts, and the personal and social impacts of the choices they make. We find that the interventions interfere with one another: because of negative feedback between intervention uptake and infection prevalence, it is difficult to simultaneously increase uptake of all interventions by changing utilities or perceived risks. However, on account of vaccine efficacy being higher than NPI efficacy, measures to expand NPI practice have only a small net impact on influenza incidence due to strongly mitigating feedback from vaccinating behaviour, whereas expanding vaccine uptake causes a significant net reduction in influenza incidence, despite the reduction of NPI practice in response. As a result, measures that support expansion of only vaccination (such as reducing vaccine cost), or measures that simultaneously support vaccination and NPIs (such as emphasizing harms of influenza infection, or satisfaction from preventing infection in others through both interventions) can significantly reduce influenza incidence, whereas measures that only support expansion of NPI practice (such as making hand sanitizers more available) have little net impact on influenza incidence. (However, measures that improve NPI efficacy may fare better.) We conclude that the impact of interference on programs relying on multiple interventions should be more carefully studied, for both influenza and other infectious diseases.  相似文献   

19.
Wu B  Fu F  Wang L 《PloS one》2011,6(6):e20577
Achieving widespread population immunity by voluntary vaccination poses a major challenge for public health administration and practice. The situation is complicated even more by imperfect vaccines. How the vaccine efficacy affects individuals' vaccination behavior has yet to be fully answered. To address this issue, we combine a simple yet effective game theoretic model of vaccination behavior with an epidemiological process. Our analysis shows that, in a population of self-interested individuals, there exists an overshooting of vaccine uptake levels as the effectiveness of vaccination increases. Moreover, when the basic reproductive number, R0, exceeds a certain threshold, all individuals opt for vaccination for an intermediate region of vaccine efficacy. We further show that increasing effectiveness of vaccination always increases the number of effectively vaccinated individuals and therefore attenuates the epidemic strain. The results suggest that 'number is traded for efficiency': although increases in vaccination effectiveness lead to uptake drops due to free-riding effects, the impact of the epidemic can be better mitigated.  相似文献   

20.
The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics   总被引:1,自引:0,他引:1  
Poletti P  Ajelli M  Merler S 《PloS one》2011,6(2):e16460

Background

The 2009 H1N1 pandemic influenza dynamics in Italy was characterized by a notable pattern: as it emerged from the analysis of influenza-like illness data, after an initial period (September–mid-October 2009) characterized by a slow exponential increase in the weekly incidence, a sudden and sharp increase of the growth rate was observed by mid-October. The aim here is to understand whether spontaneous behavioral changes in the population could be responsible for such a pattern of epidemic spread.

Methodology/Principal Findings

In order to face this issue, a mathematical model of influenza transmission, accounting for spontaneous behavioral changes driven by cost/benefit considerations on the perceived risk of infection, is proposed and validated against empirical epidemiological data. The performed investigation revealed that an initial overestimation of the risk of infection in the general population, possibly induced by the high concern for the emergence of a new influenza pandemic, results in a pattern of spread compliant with the observed one. This finding is also supported by the analysis of antiviral drugs purchase over the epidemic period. Moreover, by assuming a generation time of 2.5 days, the initially diffuse misperception of the risk of infection led to a relatively low value of the reproductive number , which increased to in the subsequent phase of the pandemic.

Conclusions/Significance

This study highlights that spontaneous behavioral changes in the population, not accounted by the large majority of influenza transmission models, can not be neglected to correctly inform public health decisions. In fact, individual choices can drastically affect the epidemic spread, by altering timing, dynamics and overall number of cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号