首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole body cryotherapy (WBC) is a treatment often used by athletes as part of biological renewal. Despite the large interest in this form therapy there is still a lack of information on the effects of WBC on the concentration of fatty acids in erythrocyte membranes. Our study aimed at comparing the fatty acids (FA) composition of erythrocyte membranes of athletes after one session and after a series of sessions of whole body cryostimulation. In our study small changes in the level of total cholesterol (decrease) were observed 24 h after a single session. After the twelfth session of whole body cryostimulation, the level of saturated fatty acids (SFA), mainly palmitic acid (C16:0) and n-3 fatty acid eicosapentaenoic (EPA, C20:5n-3) increased almost two-times fold in the red blood cell membranes. The level of n-6 polyunsaturated fatty acids (PUFA n-6), mainly gamma-linolenic acid (C18:3n-6) as well as trans fatty acids (elaidic acid) decreased in the erythrocyte membranes from men after a series of session in a cryochamber, when compared to the control sample. The n-3/n-6 FA ratio in the erythrocyte membranes was higher after twelfth session in a cryochamber in comparison to the control sample.The data obtained during our study will be important for further research regarding the biochemistry of lipids in men after sessions of whole body cryostimulation.  相似文献   

2.
Feeding rats a hyperlipidic diet in which animals were offered daily a variety of high-energy food resulted in a significant increase of serum free fatty acids and a decrease of phospholipids with respect to controls. On the contrary, there were no significant differences in erythrocyte membrane total lipid composition between the two groups. Erythrocyte membranes showed a significant decrease in saturated fatty acid content and a significant increase in (n-6) polyunsaturated fatty acid content; (n-3) polyunsaturated fatty acids significantly decreased. Membrane fluidity, investigated by fluorescence polarization of diphenylhexatriene, significantly increased in the erythrocyte membranes of the experimental group. These results seem compatible with the decreased saturated/unsaturated fatty acid ratio. A significant decrease of (Na+-K+)ATPase activity occurred in erythrocyte membranes of the experimental group rats with respect to the controls.  相似文献   

3.
Ultraprofound hypothermia (< 5 degrees C) induces changes to cell membranes such as liquid-to-gel lipid transitions and oxidative stress that have a negative effect on membrane function and cell survival. We hypothesized that fatty acid substitution of endothelial cell lipids and alterations in their unsaturation would modify cell survival at 0 degrees C, a temperature commonly used during storage and transportation of isolated cells or tissues and organs used in transplantation. Confluent bovine aortic endothelial cells were treated with 18-carbon fatty acids (C18:0, C18:1n-9, C18:2n-6, or C18:3n-3), C20:5n-3 or C22:6n-3 (DHA), and then stored at 0 degrees C without fatty acid supplements. Storage of control cells caused the release of lactate dehydrogenase (LDH) and a threefold increase in lipid peroxidation (LPO) when compared to control cells not exposed to cold. Pre-treating cells with C18:0 decreased the unsaturation of cell lipids and reduced LDH release at 0 degrees C by 50%, but all mono- or poly-unsaturated fatty acids increased injury in a concentration-dependent manner and as the extent of fatty acid unsaturation increased. DHA-treatment increased cell fatty acid unsaturation and caused maximal injury at 0 degrees C, which was prevented by lipophilic antioxidants BHT or vitamin E, the iron chelator deferoxamine, and to a lesser extent by vitamin C. Furthermore, the cold-induced increase in LPO was reduced by C18:0, vitamin E, or DFO but enhanced by DHA. In conclusion, the findings implicate iron catalyzed free radicals and LPO as a predominant mechanism of endothelial cell injury at 0 degrees C, which may be reduced by increasing lipid saturation or treating cells with antioxidants.  相似文献   

4.
Rhesus monkeys given pre- and postnatal diets deficient in n-3 essential fatty acids develop low levels of docosahexaenoic acid (22:6 n-3, DHA) in the cerebral cortex and retina and impaired visual function. This highly polyunsaturated fatty acid is an important component of retinal photoreceptors and brain synaptic membranes. To study the turnover of polyunsaturated fatty acids in the brain and the reversibility of n-3 fatty acid deficiency, we fed five deficient juvenile rhesus monkeys a fish oil diet rich in DHA and other n-3 fatty acids for up to 129 weeks. The results of serial biopsy samples of the cerebral cortex indicated that the changes of brain fatty acid composition began as early as 1 week after fish oil feeding and stabilized at 12 weeks. The DHA content of the phosphatidylethanolamine of the frontal cortex increased progressively from 3.9 +/- 1.2 to 28.4 +/- 1.7 percent of total fatty acids. The n-6 fatty acid, 22:5, abnormally high in the cerebral cortex of n-3 deficient monkeys, decreased reciprocally from 16.2 +/- 3.1 to 1.6 +/- 0.4%. The half-life (t 1/2) of DHA in brain phosphatidylethanolamine was estimated to be 21 days. The fatty acids of other phospholipids in the brain (phosphatidylcholine, -serine, and -inositol) showed similar changes. The DHA content of plasma and erythrocyte phospholipids also increased greatly, with estimated half-lives of 29 and 21 days, respectively. We conclude that monkey cerebral cortex with an abnormal fatty acid composition produced by dietary n-3 fatty acid deficiency has a remarkable capacity to change its fatty acid content after dietary fish oil, both to increase 22:6 n-3 and to decrease 22:5 n-6 fatty acids. The biochemical evidence of n-3 fatty acid deficiency was completely corrected. These data imply a greater lability of the fatty acids of the phospholipids of the cerebral cortex than has been hitherto appreciated.  相似文献   

5.
Seasonal changes in the fatty acid composition of neutral and polar lipids were measured in the ovary, liver, white muscle, and adipopancreatic tissue of northern pike. The role of environmental and physiological factors underlying these changes was evaluated. From late summer (August–September) to winter (January–March), the weight percentage of n-3 polyunsaturated fatty acids (especially 22:6n3) declined significantly in the neutral lipids of all somatic tissues examined. However, large quantities of n-3 polyunsaturated fatty acids accumulated in the recrude cing ovaries during fall and the weight percentage of n-3 polyunsaturated fatty acids in ovary polar lipids also increased significantly. Additionally, the n-3 polyunsaturated fatty acid content of somatic polar lipids increased significantly during fall due to increases in the total polar lipid content of the somatic tissues. This suggests that during fall n-3 polyunsaturated fatty acid are diverted away from somatic neutral lipids and thereby conserved for use in ovary construction and for incorporation into tissue polar lipids. The percentage of n-3 polyunsaturated fatty acid in ovary neutral lipids also declined during fall and early winter, perhaps as an adaptation to conserve these fatty acids for storage in oocyte polar lipids and later incorporation into cellular membranes of the developing embryo. Reductions in the n-3 polyunsaturated fatty acids content of somatic and ovarian neutral lipids during fall were compensated for specifically by increases in the percentage of monounsaturated fatty acids rather than saturated fatty acids. This suggests that the ratio of saturated to unsaturated fatty acids in pike neutral lipid, is regulated physiologically, and hence may influence the physiological functioning of these lipids. During fall and early winter the percentage of saturated fatty acids declined significantly in the polar lipids of all tissues examined. This change was consistent with the known effects of cold acclimation on the fatty acid composition of cellular membranes. As the ovaries were recrudescing from September to January, liver polar lipids exhibited significant decreases in the percentage of total polyunsaturated fatty acids and n-3 polyunsaturated fatty acids and increases in monounsaturated fatty acids, and acquired a fatty acid composition very similar to that of ovary polar lipids. Therefore, seasonal changes in the percentage of polyunsaturated and monounsaturated fatty acids in liver polar lipids probably reflect the liver's role in vitellogenesis rather than the effects of temperature on membrane fatty acid composition. At all times of year, the fatty acid compositions of white muscle and adipopancreatic tissue neutral lipids were very similar, which may indicate a close metabolic relationship between these lipid compartments.Abbreviations AP adipopancreatic - BHT butylated hydroxytoluene - CI confidence interval - EFA essential fatty acids - MUFA monounsaturated fatty acids - NL neutral lipids - PL polar lipids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids  相似文献   

6.
Abstract: In a previous work, we calculated the dietary α-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in α-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, ˜60 mg of (n-3) fatty acids/100 g of diet, i.e., ˜130 mg/1,000 kcal] rather than α-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., ˜440 mg/1,000 kcal].  相似文献   

7.
Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.  相似文献   

8.
A labyrinthulid strain, L59, was isolated from a leaf floating on seawater collected at the coastal area of Hokkaido Prefecture, Japan. Strain L59 contained only n-6 docosapentaenoic acid ( n-6 DPA) among all the long-chain polyunsaturated fatty acids. The proportion of n-6 DPA in the total fatty acids was 48.1% and the total fatty acids content in the cell dry weight was 26.6%. Many oil bodies were observed in the cell, mostly in the vicinity of cell membranes. The strain had spindle-shaped cell bodies and all cells were surrounded by ectoplasmic net elements. It was also clearly classified in the labyrinthulid group by phylogenetic analysis. In the optimum culture condition, using soybean oil and peptone as carbon and nitrogen sources, 0.53 g of n-6 DPA/l was produced at 20 degrees C in 7 days.  相似文献   

9.
We compared the compositions of fatty acids including n-3, n-6 polyunsaturated fatty acids, trans- and cis-monounsaturated fatty acids, and saturated fatty acids in the red blood cell membranes of 40 children with autism (20 with early onset autism and 20 with developmental regression) and age-matched, 20 typically developing controls and 20 subjects with non-autistic developmental disabilities. The main findings include increased levels of eicosenoic acid (20:1n9) and erucic acid (22:1n9) in autistic subjects with developmental regression when compared with typically developing controls. In addition, an increase in 20:2n6 and a decrease in 16:1n7t were observed in children with clinical regression compared to those with early onset autism. Our results do not provide strong evidence for the hypothesis that abnormal fatty acid metabolism plays a role in the pathogenesis of autism spectrum disorder, although they suggest some metabolic or dietary abnormalities in the regressive form of autism.  相似文献   

10.
PURPOSE OF REVIEW: There has been much debate over the practical utility of the dietary ratio of n-6 to n-3 polyunsaturated fatty acids in optimizing the benefits of n-3 fatty acids (C18-C22) on cardiovascular health. This review examines the supporting evidence from the OPTILIP study within the context of the emerging consensus on the value of this dietary metric. RECENT FINDINGS: The question of whether the ratio of n-6/n-3 polyunsaturated fatty acids or total amounts of dietary polyunsaturated fatty acids is of more importance to cardiovascular health has been addressed recently in a randomly controlled trial (OPTILIP) and in a stable isotope tracer study. These two studies were independently unanimous in concluding that the ratio of n-6/n-3 polyunsaturated fatty acids is of no value in modifying cardiovascular disease risk. The latter study also showed that the absolute amounts of dietary linoleic acid and alpha-linolenic acid are of relevance to the efficiency of conversion of alpha-linolenic acid to eicosapentaenoic acid and docosahexaenoic acid. SUMMARY: This review should help to settle any outstanding controversy over the dietary ratio of n-6/n-3 polyunsaturated fatty acids. It reinforces current recommendations to increase the consumption of preformed eicosapentaenoic acid/docosahexaenoic acid in fish, and supports dietary measures to increase and decrease intakes alpha-linolenic acid and linoleic acid, respectively, to promote the endogenous synthesis of these longer chain n-3 polyunsaturated fatty acids.  相似文献   

11.
Adriamycin transport and sensitivity in fatty acid-modified leukemia cells   总被引:5,自引:0,他引:5  
The membrane phospholipids of L1210 murine leukemia cells were modified by supplementing the growth medium with micromolar concentrations of polyunsaturated or monounsaturated fatty acids. This procedure results in enrichment of cellular phospholipids by the supplemented fatty acid. Enrichment with polyunsaturated fatty acids resulted in a marked increase in sensitivity to adriamycin as compared to enrichment with monounsaturated fatty acids. The increased cytotoxicity was directly proportional to the extent of unsaturation of the inserted fatty acid, but there was no difference in cells enriched with n-3 compared with n-6 family fatty acids. To explore the mechanism of this observation, we examined whether augmented uptake of the drug might explain the increased cytotoxicity. The uptake of [14C]adriamycin, which was approximately linear at later time points, was only partially temperature dependent and never reached a steady state. Initial uptake at time points prior to 60 s could not be measured due to high and variable rapid membrane adsorption. Cellular accumulation of drug was greater in the docosahexaenoate 22:6-enriched L1210 cells as compared to oleate 18:1-enriched cells and was about 32% greater after 20 min. When L1210 cells were enriched with six fatty acids of variable degrees of unsaturation, the accumulation of adriamycin was directly correlated with the average number of double bonds in the fatty acids contained in cellular phospholipids. There was no difference in efflux of drug from cells pre-loaded with adriamycin. We conclude that the greater accumulation of adriamycin by the polyunsaturated fatty acid-enriched L1210 cells likely explains the increased sensitivity of these cells to adriamycin compared to 18:1-enriched cells.  相似文献   

12.
Essential polyunsaturated fatty acids (PUFA) cannot be synthesised in the body and must be ingested by food. A balanced intake of both n-6 and n-3 PUFA is essential for good health. PUFA are the basic constituents of phospholipid membranes and determine cellular membrane fluidity and modulate enzyme activities, carriers and membrane receptors. They are also precursors of active metabolites known collectively as eicosanoids (prostaglandins, prostacyclins, thromboxanes and leukotrienes) which regulate our cellular functions. Studies indicate that n-3 PUFA have anti-inflammatory, antithrombotic, antiarrhythmic actions and immuno-modulating properties. Erythrocyte fatty acid status is a reflection of dietary fat intake. It also explores PUFA metabolism and gives information about the integration of these fatty acids into cellular membranes. Thus, erythrocyte fatty acid analysis can detect PUFA insufficiencies and imbalances from the diet, but also metabolic abnormalities and lipid peroxidation. It can be helpful in the prevention and the control of chronic diseases in which PUFA alterations have been observed as coronary heart diseases, hypertension, cancer, diabetes, inflammatory and auto-immune disorders, atopic eczema, Alzheimer dementia, major depression, schizophrenia, multiple sclerosis, etc.  相似文献   

13.
CD36, a multifunctional adhesion receptor e.g. for thrombospondin and collagen, as well as a scavenger receptor for oxidized low density lipoprotein, is expressed e.g. on platelets and monocytes. By this dual role it might be involved in early steps of atherosclerosis like the recruitment of monocytes and formation of foam cells. We therefore studied the effects of n-3 fatty acids on CD36 expression in human monocytic cells. Incorporation of eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) into cellular phospholipids resulted in a significant reduction of CD36 expression at the mRNA and protein level, whereas arachidonic acid (AA, C20: 4n-6) and linoleic acid (LA, C18:2n-6) tended to increase CD36 expression compared to the control. This specific down-regulation of CD36 by n-3 fatty acids in cells involved in the initiation and progression of atherogenesis and inflammation, represents a further mechanism that may contribute to the beneficial effects of n-3 polyunsaturated fatty acids (PUFA) in these disorders.  相似文献   

14.
The effect of dietary n-6/n-3 fatty acid ratio on alpha-tocopherol homeostasis was investigated in rats. Animals were fed diets containing fat (17% w/w) in which the n-6/n-3 ratio varied from 50 to 0.8. This was achieved by combining corn oil, fish oil, and lard. The polyunsaturated to saturated ratio and total alpha-tocopherol remained constant in all diets. Results showed that enrichment of n-3 polyunsaturated fatty acids in the diet, even at a low amount (3.9% w/w), resulted in a dramatic reduction of blood alpha-tocopherol concentration, which, in fact, is the result of a decrease in plasma lipids, since the alpha-tocopherol to total lipids ratio was not significantly altered. The most striking effect observed was a considerable alpha-tocopherol enrichment (x 4) of the heart as its membranes became enriched with n-3 polyunsaturated fatty acids. This process appeared even with a low amount of fish oil (3.9% w/w) added to the diet. Accordingly, a strong positive correlation was found between heart alpha-tocopherol and docosahexaenoic acid (r = 0.86) or docosahexaenoic acid plus eicosapentaenoic acid levels (r = 0.84). Conversely, the liver alpha-tocopherol level dropped dramatically when n-3 polyunsaturated fatty acids were gradually added to the diet. It is concluded that fish oil intake dramatically alters the alpha-tocopherol homeostasis in rats.  相似文献   

15.
Several polyunsaturated fatty acids (C18-C22 acids) have been compared in their uptake by human platelets and their acylation into glycerophospholipid subclasses. This was also studied in the presence of linoleic and/or arachidonic acids, the main fatty acids of plasma free fatty acid pool. Amongst C20 fatty acids, dihomogamma linolenic acid (20:3(n-6)), 5,8,11-icosatrienoic acid (20:3(n-9)) and arachidonic acid (20:4(n-6)) were better incorporated. The uptake of 5,8,11,14,17-icosapentaenoic acid (20:5(n-3)) was significantly lower and comparable to that of C22 fatty acids (7,10,13,16-docosatetraenoic acid (22:4(n-6)) and 4,7,10,13,16,19-docosahexaenoic acid (22:6(n-3)) and linoleic acid (18:2(n-6)). In this respect, linolenic acid (18:3(n-3)) appeared the poorest substrate. The bulk of each acid was acylated into glycerophospholipids although the presence of linoleic and/or arachidonic acids diverted a part towards neutral lipids. This was prominent for 18:3(n-3) and C22 fatty acids. The glycerophospholipid distribution of each acid differed substantially and was not affected by the presence of linoleic and or arachidonic acids, except for 18:3(n-3) and 22:6(n-3) that were strongly diverted towards phosphatidylethanolamine (PE) at the expense of phosphatidylcholine (PC). The main features were an efficient acylation of 20:3(n-9) into phosphatidylinositol (PI) followed by 20:3(n-6) and 20:4(n-6), then by 20:5(n-3) and 22:4(n-6), and finally 22:6(n-3) and C18 fatty acids. This was reciprocal to the acylation into PE and to a lesser extent into PC which remained the main storage species in all cases. We conclude that human platelets may exhibit a certain specificity for taking up polyunsaturated fatty acids both in terms of total uptake and glycerophospholipid subclass distribution. Also the presence of polyunsaturated fatty acids of normal plasma, like linoleic and arachidonic acids, may interact specifically with such an uptake and distribution.  相似文献   

16.
Abstract: The biochemical and morphological effects of polyunsaturated fatty acids on fetal brain cells grown in a chemically defined medium were studied. Fetal brain cells were dissociated from mouse cerebral hemispheres taken on the 16th day of gestation. After cells had grown in chemically defined medium for 8 days, the proportion of polyunsaturated fatty acids of cultured cells was only one-half of that observed at day 0 and about 1.5 times less than that of cells grown in serum-supplemented medium. Fatty acid 20:3(n-9) was present in cultured cells grown in either chemically defined or serum-supple-mented medium. demonstrating the deficiency of essential fatty acids. The reduced amount of polyunsaturated fatty acids in cells grown in the chemically defined medium was balanced by an increase in monounsaturated fatty acids. The saturated fatty acids were not affected. When added at the seeding time, linoleic, linolenic, arachidonic, or docosahexaenoic acid stimulated the proliferation of small dense cells. Besides, we demonstrate that each of the four fatty acids studied was incorporated into phospholipids. Adding fatty acids of the n-6 series increased the content of n-6 fatty acids in the cells, but also provoked an increase in the n-3 fatty acids. Among several combinations of fatty acids, only 20:4 and 22:6, when added to the culture in a ratio of 2:1, restored a fatty acid profile similar to controls (i.e. in vivo tissue taken at post- natal dav 5).  相似文献   

17.
The oxidation of human and rat erythrocyte ghost membranes by molecular oxygen has been performed in an aqueous suspension at 37 degrees C. A constant rate of oxygen uptake was observed in the presence of radical initiator. alpha-Tocopherol in the membrane suppressed the oxidation and the induction period was clearly observed. alpha-Tocopherol decreased linearly during the induction period and when it was depleted the induction period was over and a rapid oxidation started. The rate of oxidation was proportional to the square root of the rate of initial radical generation. The kinetic chain length, the ratio of the rate of propagation to that of initiation, was long, ranging from 7 to 100. These results indicate that the erythrocyte ghost membranes are oxidized by a free radical chain mechanism by molecular oxygen. Among the fatty acids of membrane lipids, polyunsaturated fatty acids were oxidized exclusively. Proteins as well as polyunsaturated fatty acids were oxidized and the formation of the high- and low-molecular-weight proteins and the decrease of protein bands were observed on gel electrophoresis.  相似文献   

18.
Abstract— Three dietary levels of essential fatty acids (EFA), 3 0, 0 75 and 0 07 calorie-% were fed to rats for two generations or more. Myelin was isolated at the ages of 18, 30, 45 and 120 days and synaptosomal plasma membranes at 18, 30 and 45 days. No difference was found in the lipid composition between the dietary groups in either subcellular fraction. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) were analysed. In myelin the proportions of 18:1 and 20:1 increased with age, while those of 20:4 (n-6) and 22:6 (n-3) decreased, in synaptosomal plasma membranes the proportions of 20:4 (n-6) decreased with age, but 22:6 (n-3) increased and the sum of the polyunsaturated fatty acids was constant. At no age were significant differences found between the proportions of saturated and monounsaturated fatty acids, in either myelin or the synaptosomal plasma membrane fraction, when the different dietary groups were compared. In myelin from rats fed 007 calorie-% EFA the proportions of 20:4 (n-6) were slightly lower than in the two other groups, while those of 22 6 (n-3) were considerably lower. The synaptosomal plasma membranes fraction of rats fed O-07 calorie-% EFA had equal or slightly larger amounts of 20:4 (n-6) than in the two other groups, while 22:6 (n-3) was considerably smaller. In both subcellular fractions the decreased proportion of fatty acids of linoleic and linolenic acid series was compensated for by an increase in 20:3 (n-9) and 22:3 (n-9). The sum of these two fatty acids was equal in the EPG of myelin and synaptosomal plasma membranes at 18 days of age. At 30 and 45 days of age a lower value was found in the synaptosomal plasma membranes, while in the myelin fraction a slight decrease was found only at 120 days of age.  相似文献   

19.
This study was designed to assess the effect of ambient temperature on lipid content, lipid classes and fatty acid compositions of heart, liver, muscle and brain in oviparous lizards, Phrynocephalus przewalskii, caught in the desert area of China. Significant differences could be observed in the contents of the total lipid and fatty acid compositions among different temperatures (4, 25 and 38 degrees C). The study showed that liver and muscle were principal sites of lipid storage. Triacylglycerol (TAG) mainly deposited in the liver, while phospholipids (PL) was identified as the predominant lipid class in the muscle and brain. Palmitic and stearic acid generally occupied the higher proportion in saturated fatty acids (SFA), while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) consisted mainly of 16:1n-7, 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 regardless of tissue and temperature. These predominant fatty acids proportion fluctuations caused by temperature affected directly the ratio of unsaturated to saturated fatty acids. There was a tendency to increase the degree of unsaturation in the fatty acids of TAG and PL as environmental temperature dropped from 38 to 4 degrees C, although the different extent in different tissues. These results suggested that lipid characteristics of P. przewalskii tissues examined were influenced by ambient temperature.  相似文献   

20.
Abstract

The fatty acid composition, moisture, and total lipid of the eggs from the swimming crab, Portunus pelagicus, at three different embryonic stages (within 24 h, during the eye placode stage and the final heart beat stage), were measured. Results showed that the moisture and lipid content significantly increased and decreased (p < 0.05), respectively, as the stages progressed. The most prevalent fatty acids that were initially deposited included C16:0, C18:1n-9, and C18:0, while the most consumed fatty acids were C22:5n-6, C22:5n-3, and C20:1n-7. Among the major fatty acid groups, polyunsaturated fatty acids (PUFA) and long-chain PUFA (LC-PUFA) were consumed more than saturated fatty acids and significantly more (p < 0.05) than monounsaturated fatty acids (p < 0.05). Meanwhile, n-3 PUFA was deposited in significantly higher amounts (p < 0.05) than n-6 PUFA, but both were consumed at similar amounts at 43.4% and 41.3%, respectively. The relatively low amount of C20:5n-3 and C22:6n-3 consumption may indicate these fatty acids were conserved, while the essential fatty acids C18:3n-3 and C18:3n-6 were consumed at high amounts. These findings may have implications for broodstock nutrition in order to formulate a well-balanced diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号