首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Treatment of membranes with islet activating protein (IAP), a toxin from Bordetella pertussis, results in abolition of GTP-dependent, receptor-mediated inhibition of adenylate cyclase. This appears to result from IAP-catalyzed ADP-ribosylation of a 41,000-Da membrane-bound protein. A protein with 41,000- and 35,000-Da subunits has been purified from rabbit liver membranes as the predominant substrate for IAP. This protein has now been shown to be capable of regulating membrane-bound adenylate cyclase activity of human platelets under various conditions. The characteristics of the actions of the IAP substrate are as follows. 1) Purified 41,000/35,000-Da dimer is capable of restoring the inhibitory effects of guanine nucleotides and the alpha 2-adrenergic agonist, epinephrine, on the adenylate cyclase activity of IAP-treated membranes. 2) The subunits of the dimer dissociate in the presence of guanine nucleotide analogs or A1(3+), Mg2+, and F-. The 41,000-Da subunit has a high affinity binding site for guanine nucleotides. 3) The resolved 35,000-Da subunit of the dimer mimics guanine nucleotide- and epinephrine-induced inhibition of adenylate cyclase. 4) The resolved (unliganded) 41,000-Da subunit stimulates adenylate cyclase activity and relieves guanine nucleotide- +/- epinephrine-induced inhibition of the enzyme. In contrast, the GTP gamma S-bound form of the 41,000-Da subunit inhibits adenylate cyclase activity, although with lower apparent affinity than does the 35,000-Da subunit. 5) The 35,000-Da subunit increases the rate of deactivation of Gs, the stimulatory regulatory protein of adenylate cyclase. In contrast, the 41,000-Da subunit can interact with Gs and inhibit its deactivation. These data strongly suggest that the IAP substrate is another dimeric, guanine nucleotide-binding regulatory protein and that it is responsible for inhibitory modulation of adenylate cyclase activity.  相似文献   

2.
Proteolytic experiments performed on transducin and Go alpha subunit strongly suggest that the amino-terminal residues of the alpha chain are involved in the interaction with beta gamma subunits. To test the possibility that the same region in Gs may fulfill a similar function, we introduced a deletion in the amino-terminal domain of Gs alpha. The properties of the wild type and the deleted alpha chains were characterized on in vitro translated proteins or after reconstitution of cyc- membranes by in vitro-translated alpha subunits. The mutant (delta 2-29) Gs alpha could still bind guanosine 5'-3-O-(thio)triphosphate, as revealed by its resistance to trypsin proteolysis and was still able to interact with the membrane. However, (delta 2-29) Gs alpha was not ADP-ribosylated by cholera toxin. In contrast to Gs alpha, addition of beta gamma subunits did not increase the rate of sedimentation of (delta 2-29) Gs alpha in sucrose gradients. Binding experiments on reconstituted membranes showed that the coupling to beta-adrenergic receptors was very low with (delta 2-29) Gs alpha. Finally, the mutant did not restore activation of adenylate cyclase of cyc- membranes. We propose that the primary functional defect is the loss of interaction with beta gamma subunits, which secondarily impairs beta gamma-dependent properties such as receptor coupling and cholera toxin-catalyzed ADP-ribosylation. However, it remains to be established that the lack of adenylate cyclase activation also results from this impaired interaction with beta gamma subunits.  相似文献   

3.
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta subunits are functionally indistinguishable. GTP-dependent hormonal inhibition of adenylate cyclase and that caused by guanine nucleotide analogs seem to result from dissociation of the subunits of Gi. Such inhibition can be explained by reduction of the concentration of the free alpha subunit of Gs as a result of its interaction with the beta subunit of Gi in normal Gs-containing membranes. However, inhibition in S49 lymphoma cyc- cell membranes presumably cannot be explained by the Gi-Gs interaction, since the activity of the alpha subunit of Gs is not detectable in this variant. Several characteristics of Gi-mediated inhibition of adenylate cyclase have been studied in both S49 cyc- and wild type membranes. There are several similarities between inhibition of forskolin-stimulated adenylate cyclase by guanine nucleotides and somatostatin in cyc- and wild type membranes. 1) Somatostatin-induced inhibition of the enzyme is dependent on GTP; nonhydrolyzable GTP analogs are also effective inhibitors. 2) The effect of guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) is essentially irreversible, and somatostatin accelerates GTP gamma S-induced inhibition. 3) Inhibition of adenylate cyclase by somatostatin or Gpp(NH)p is attenuated by treatment of cells with islet-activating protein (IAP). 4) Both cyc- and wild type membranes contain the substrate for IAP-catalyzed ADP-ribosylation (the alpha subunit of Gi). 5) beta Subunit activity in detergent extracts of membranes is liberated by exposure of the membranes to GTP gamma S. The alpha subunit of Gi in such extracts has a reduced ability to be ADP-ribosylated by IAP, which implies that this subunit is in the GTP gamma S-bound form. The resolved subunits of Gi have been tested as regulators of cyc- and wild type adenylate cyclase under a variety of conditions. The alpha subunit of Gi inhibits forskolin-stimulated adenylate cyclase activity in cyc-, while the beta subunit stimulates; these actions are opposite to those seen with wild type membranes. The inhibitory effects of GTP plus somatostatin (or GTP gamma S) and the alpha subunit of Gi are not additive in cyc- membranes. In wild type, the inhibitory effects of the hormone and GTP gamma S are not additive with those of the beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have introduced two types of mutations into cDNAs that encode the alpha subunit of Gs, the guanine nucleotide-binding regulatory protein that stimulates adenylyl cyclase. The arginine residue (Arg187) that is the presumed site of ADP-ribosylation of Gs alpha by cholera toxin has been changed to Ala, Glu, or Lys. The rate constant for hydrolysis of GTP by all of these mutants is reduced approximately 100-fold compared with the wild-type protein. As predicted from this change, these proteins activate adenylyl cyclase constitutively in the presence of GTP. Despite these substitutions, cholera toxin still catalyzes the incorporation of 0.2-0.3 mol of ADP-ribose/mol of mutant alpha subunit. The sequence near the carboxyl terminus of Gs alpha was altered to resemble those in Gi alpha polypeptides, which are substrates for pertussis toxin. Despite this change, the mutant protein is a poor substrate for pertussis toxin. Although this protein has unaltered rates of GDP dissociation and GTP hydrolysis, its ability to activate adenylyl cyclase in the presence of GTP is enhanced by 3-fold when compared with the wild-type protein but only when these assays are performed after reconstitution of Gs alpha into cyc- (Gs alpha-deficient) S49 cell membranes.  相似文献   

5.
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta (35,000 Da) subunits are functionally indistinguishable. Gi and Gs both dissociate in the presence of guanine nucleotide analogs or Al3+, Mg2+, and F- in detergent-containing solutions. Several characteristics of Gi- and Gs-mediated regulation of adenylate cyclase activity have been studied in human platelet membranes. The nonhydrolyzable analog of GTP, guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) mimics GTP-dependent hormonal inhibition or stimulation of adenylate cyclase under appropriate conditions. This inhibition or stimulation follows a lag period. The combined addition of epinephrine or prostaglandin E1 with GTP gamma S results in the immediate onset of steady state inhibition or activation. The effects of the GTP analog are essentially irreversible. Fluoride is also an effective inhibitor of prostaglandin E1-stimulated adenylate cyclase, while it markedly stimulates the basal activity of the enzyme. The addition of the resolved 35,000-Da subunit of Gi to membranes results in inhibition of adenylate cyclase, and the resolved 41,000-Da subunit has a stimulatory effect on enzymatic activity. The inhibitory action of the 35,000-Da subunit is almost completely abolished in membranes that have been irreversibly inhibited by GTP gamma S plus epinephrine; this irreversible inhibition is almost completely relieved by the 41,000-Da subunit. Detergent extracts of membranes that have been treated with GTP gamma S plus epinephrine contain free 35,000-Da subunit. The 41,000-Da subunit of Gi contained in such extracts has a reduced ability to be ADP-ribosylated by islet-activating protein (IAP), which implies that this subunit is in the GTP gamma S-bound form. The irreversible inhibition of adenylate cyclase caused by GTP gamma S (plus epinephrine) in membranes is highly correlated with the liberation of free 35,000-Da subunit activity and is inversely related to the 41,000-Da IAP substrate activity in detergent extracts prepared therefrom. The increase in free 35,000-Da subunit activity in extracts and the inhibition of adenylate cyclase activity in GTP gamma S (plus epinephrine)-treated membranes are both markedly inhibited by treatment with IAP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Adenylate cyclase in the presence of GTP became active by the addition of cholera toxin irrespective of the presence of glucagon, and under the same condition the Gs of these activated enzymes were good acceptor of an ADP-ribose moiety. On the other hand, the cyclase in the presence of GDP remained inactive with cholera toxin but became active by the further addition of glucagon. However, neither of these Gs served as a cholera toxin substrate. Glucagon reduced an inhibitory action of added GDP for cholera toxin plus GTP-stimulated adenylate cyclase activity but did not for toxin plus GTP-enhanced ADP-ribosylation of Gs. These results demonstrate that Gs-GTP complex formation alone is not sufficient for Gs to serve as a cholera toxin substrate, and suggest an additional GTP binding site responsible for ADP-ribosylation by the toxin. Hormone dependent preferential interaction between the GTP binding site on Gs coupled with adenylate cyclase regulation and membrane-associated nucleoside diphosphate kinase is discussed.  相似文献   

7.
The specific mechanism by which the inhibitory guanine nucleotide binding protein (Gi) mediates the inhibition of adenylate cyclase activity is still unclear. The subunit dissociation model, based on studies in purified or reconstituted systems, suggests that the beta gamma subunit, which is dissociated with activation of Gi, inhibits the function of the stimulatory guanine nucleotide binding protein (Gs) by reducing the concentration of the free alpha s subunit. In the present study, Gs protein function is determined by measuring cholera toxin-blockable, isoproterenol-induced increases in guanosine triphosphate (GTP) binding capacity to rat cardiac ventricle membrane preparations. Carbamylcholine totally inhibited this beta-adrenergic receptor-coupled Gs protein function. Pretreatment of the cardiac ventricle membrane with pertussis toxin prevented this muscarinic agonist effect. These results confirm the possibility of an inhibitory agonist-receptor coupled effect through Gi on Gs protein function proximal to the catalytic unit of adenylate cyclase in an intact membrane preparation.  相似文献   

8.
Cholera toxin causes the devastating diarrheal syndrome characteristic of cholera by catalyzing the ADP-ribosylation of Gs alpha, a GTP-binding regulatory protein, resulting in activation of adenylyl cyclase. ADP-ribosylation of Gs alpha is enhanced by 19 kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors or ARFs. We investigated the effects of agents known to alter toxin-catalyzed activation of adenylyl cyclase on the stimulation of toxin- and toxin subunit-catalyzed ADP-ribosylation of Gs alpha and other substrates by an ADP-ribosylation factor purified from a soluble fraction of bovine brain (sARF II). In the presence of GTP, sARF II enhanced activity of both the toxin catalytic unit and a reduced and alkylated fragment ('A1'), as a result of an increase in substrate affinity with no significant effects on Vmax. Activation of toxin was independent of Gs alpha and was stimulated 4-fold by sodium dodecyl sulfate, but abolished by Triton X-100. sARF II therefore serves as a direct allosteric activator of the A1 protein and may thus amplify the pathological effects of cholera toxin.  相似文献   

9.
The effects of transforming growth factor beta (TGF beta) on parathyroid hormone (PTH)-responsive adenylate cyclase were examined in clonal rat osteosarcoma cells (UMR-106) with the osteoblast phenotype. Purified TGF beta incubated with UMR-106 cells for 48 hr produced a concentration-dependent increase in PTH stimulation of adenylate cyclase, with maximal increase in PTH response (37%) occurring at 1 ng/ml TGF beta. TGF beta also enhanced receptor-mediated activation of adenylate cyclase by isoproterenol and prostaglandin E2 (PGE2) and nonreceptor-mediated enzyme activation by cholera toxin and forskolin. In cells in which PTH-stimulated adenylate cyclase activity was augmented by treatment with pertussis toxin, the incremental increase in PTH response produced by TGF beta was reduced by 33%. However, TGF beta neither mimicked nor altered the ability of pertussis toxin to catalyze the ADP-ribosylation of a 41,000-Da protein, presumably the alpha subunit of the inhibitory guanine nucleotide-binding regulatory component (Gi) of adenylate cyclase, in cholate-extracted UMR-106 cell membranes. TGF beta also had no effect on the levels of alpha or beta subunits of Gi, as assessed by immunotransfer blotting. In time course studies, brief (less than or equal to 30 min) exposure of cells to TGF beta during early culture was sufficient to increase PTH response but only after exposed cells were subsequently allowed to grow for prolonged periods. TGF beta enhancement of PTH and isoproterenol responses was blocked by prior treatment of cells with cycloheximide but not indomethacin. The results suggest that TGF beta enhances PTH response in osteoblast-like cells by action(s) exerted at nonreceptor components of adenylate cyclase. The effect of TGF beta may involve Gi, although in a manner unrelated to either pertussis toxin-catalyzed ADP-ribosylation of the alpha subunit of Gi or changes in levels of Gi subunits. The regulatory action of TGF beta on adenylate cyclase is likely to be mediated by the rapid generation of cellular signals excluding prostaglandins, followed by a prolonged sequence of events involving protein synthesis. These observations suggest a mechanism by which TGF beta may regulate osteoblast responses to systemic hormones.  相似文献   

10.
Hormonal stimulation of adenylate cyclase from bovine cerebral cortex is mediated by a guanine-nucleotide regulatory protein (Gs). This protein contains at least three polypeptides: a guanine nucleotide-binding alpha s component and a beta X gamma component, which modulates the function of alpha s. The alpha s component from many tissues can be ADP-ribosylated with cholera toxin, but has been unusually difficult to modify in brain. We have improved incorporation of ADP-ribose by including isonicotinic acid hydrazide to inhibit the potent NAD glycohydrolase activity of brain. ADP-ribosylation is further improved by addition of detergent to render the substrates accessible and 20 mM-EDTA to chelate metal ions. Although Mg2+ is absolutely required for activation of adenylate cyclase by the GTP analogue guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), it is not obligatory for p[NH]ppG-stimulated ADP-ribosylation by cholera toxin. Under these conditions, the ADP-ribosylation of brain membranes is not enhanced by a cytosolic protein. We find that there are two major sizes of brain alpha s, which we have named 'alpha sL', with an apparent Mr of 42,000-45,000, and 'alpha sH' with an apparent Mr of 46,000-51,000 depending on the gel-electrophoretic system used. The alpha sL and alpha sH components can incorporate different amounts of ADP-ribose depending on the reaction conditions, so that one or the other may appear to predominate. Thus we show that incomplete ADP-ribosylation by cholera toxin is not a good indication of the relative amounts of alpha s units. Functionally, however, both forms of alpha s appear to be similar. Both forms associate with the catalytic unit of adenylate cyclase, but neither of them does so preferentially. There is an excess of each of them over the amount associated with catalytic unit. We have now substantially purified Gs from brain by a modification of the method of Sternweis et al. [(1981) J. Biol. Chem. 256, 11517-11526] as well as by a new, simplified, procedure. On SDS/polyacrylamide-gel electrophoresis, the purified brain Gs contains both the 45 and 51 kDa alpha s polypeptides revealed by ADP-ribosylation and a beta X gamma component. Activation of purified alpha s by guanine nucleotides or fluoride can be reversed by addition of purified beta X gamma component. The activated form of purified brain Gs has an Mr of 49,000 as determined by hydrodynamic measurements, which is consistent with the idea that the active form of brain Gs is the dissociated one.  相似文献   

11.
The alpha subunits of Gi (Gi alpha) and Gs (guanine-nucleotide-binding proteins involved in adenylate cyclase inhibition and stimulation, respectively) was ADP-ribosylated by cholera toxin in differentiated HL-60 cell membranes upon stimulation of chemotactic receptors by fMLF (fM, N-formylmethionine). The ADP-ribosylation site of Gi alpha modified by cholera toxin appeared to be different from that modified by pertussis toxin [Iiri, T., Tohkin, M., Morishima, N., Ohoka, Y., Ui, M. & Katada, T. (1989) J. Biol. Chem. 264, 21,394-21,400]. This allowed us to investigate how the two types of ADP-ribosylation influence the function of the signal-coupling protein. The major findings observed in HL-60 cell membranes, where the same Gi alpha molecule was ADP-ribosylated by treatment of the membranes with either toxin, are summarized as follows. (a) More fMLF bound with a high affinity to cholera-toxin-treated membranes than to the control membranes. The high-affinity binding was, however, not observed in pertussis-toxin-treated membranes. (b) Although fMLF stimulated guanine nucleotide binding and GTPase activity in control membranes, stimulation was almost completely abolished in pertussis-toxin-treated membranes. In contrast, fMLF-dependent stimulation of GTPase activity, but not that of guanine nucleotide binding was attenuated in cholera-toxin-treated membranes. (c) Gi alpha, once modified by cholera toxin, still served as a substrate of pertussis-toxin-catalyzed ADP-ribosylation; however, the ADP-ribosylation rate of modified Gi was much lower than that of intact Gi. These results suggested that Gi ADP-ribosylated by cholera toxin was effectively capable of coupling with fMLF receptors, resulting in formation of high-affinity fMLF receptors, and that hydrolysis of GTP bound to the alpha subunit was selectively impaired by its ADP-ribosylation by cholera toxin. Thus, unlike the ADP-ribosylation of Gi by pertussis toxin, cholera-toxin-induced modification would be of great advantage to the interaction of Gi with receptors and effectors that are regulated by the signal-coupling protein. This type of modification might also be a candidate for unidentified G proteins which were less sensitive to pertussis toxin and appeared to be involved in some signal-transduction systems.  相似文献   

12.
We report a 39 kDa substrate for cholera and pertussis toxins is present in D. discoideum membranes. This protein did not co-migrate with alpha subunits of either Gs (45 kDa and 52 kDa) or Gi (41 kDa) from control mammalian cells. The presence of GTP or its non-hydrolyzable analogs enhanced the ADP-ribosylation in response to cholera toxin, but did not significantly alter ADP-ribosylation by pertussis toxin. Divalent cations inhibited the ADP-ribosylation by both toxins. The possible association of this novel G-protein with D. discoideum adenylate cyclase may underlie some of the unique regulatory features of this enzyme. Alternatively, this G-protein may regulate one of several other cellular responses mediated by the cAMP receptor.  相似文献   

13.
A factor (ARF) that is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory, GTP-binding regulatory component (Gs) of adenylate cyclase has been purified about 2000-fold from cholate extracts of rabbit liver membranes. ARF is an intrinsic membrane protein with Mr = 21,000. The final product can be resolved into two polypeptides with very similar molecular weights; each of these has ARF activity. The ADP-ribosylation of Gs can now be studied with defined components. GTP and ARF are both necessary cofactors. The data imply that the substrates for the activated toxin are NAD and a GTP X Gs X ARF complex, and the reaction proceeds in a lipid environment. The apparent ability of ARF to bind to the alpha subunit of Gs suggests that it may play another, unknown role in the regulation of adenylate cyclase activity.  相似文献   

14.
The visual excitation system of the retinal rod outer segments and the hormone-sensitive adenylate cyclase complex are regulated through guanine nucleotide-binding proteins, transducin in the former and inhibitory and stimulatory regulatory components, Gi and Gs, in the latter. These proteins are functionally and structurally similar; all are heterotrimers composed of alpha, beta, and gamma subunits and exhibit guanosine triphosphatase activity stimulated by light-activated rhodopsin or the agonist-receptor complex. Adenylate cyclase can be stimulated by vanadate, which, like NaF, probably acts through Gs. Effects of vanadate on the function of a guanine nucleotide-binding protein were investigated in a reconstituted model system consisting of purified transducin subunits (T alpha, T beta gamma) and rhodopsin in phosphatidylcholine vesicles. Vanadate (decameric) inhibited [3H]GTP binding to T alpha and noncompetitively inhibited GTP hydrolysis in a concentration-dependent manner with maximal inhibition of approximately 90% at 3-5 mM. Vanadate also inhibited release of bound GDP but did not affect the rate of hydrolysis of bound GTP (single turnover rate), indicating that vanadate did not interfere with the intrinsic GTPase activity of T alpha. Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate. These findings are consistent with the conclusion that vanadate can cause the dissociation of T alpha from T beta gamma, resulting in the inhibition of GDP-GTP exchange and thereby GTP hydrolysis. Adenylate cyclase activation could result from a similar effect of vanadate on Gs.  相似文献   

15.
We have developed a method to ADP-ribosylate the stimulatory guanine nucleotide-binding protein of adenylate cyclase (GS) in brain membranes by using cholera toxin. In particular, we used isonicotinic acid hydrazide and 3-acetylpyridine adenine dinucleotide to inhibit the potent NAD-glycohydrolase activity of brain membranes, and we used the detergent Triton X-100 (at 0.1%) to improve the accessibility of the toxin and guanine nucleotides used for supporting the ADP-ribosylation. This method reveals that GS is a very abundant protein in membranes derived from calf brain (approximately 30 pmol/mg of protein). In brain, GS exists in large excess over the previously reported amount of the adenylate cyclase catalytic subunit. The modification of GS with an ADP-ribosyl residue (a) elicits a four- to fivefold activation of adenylate cyclase by GTP, (b) increases the stabilization of adenylate cyclase by GTP, and (c) reduces adenylate cyclase activation by fluoride but does not change basal activity, activation by guanosine 5'-(beta, gamma-imido)triphosphate, or the sensitivity of adenylate cyclase to heat-induced denaturation. A correlation between ADP-ribosylation and the alterations in the activation of adenylate cyclase by guanine nucleotides and by fluoride is presented.  相似文献   

16.
The abundance of the alpha and beta subunits of the GTP-binding proteins (G-proteins) that transduce hormonal messages to adenylate cyclase was assessed in adipocyte membranes from lean (+/+) and obese (ob/ob) mice, using ADP-ribosylation with bacterial toxin and immunodetection. Both methods revealed two Gs alpha species (48 and 42 kDa) in the membranes. Compared with those of lean mice, the membranes from obese mice contained substantially less of the 48 kDa species of Gs alpha, as assessed by both methods. ADP-ribosylation by pertussis toxin showed that only half as much ADP-ribose was incorporated into Gi alpha in the membranes from obese as compared with lean mice. Immunodetection revealed two separate Gi alpha peptides (39 and 40 kDa) and showed that the 40 kDa species was less abundant in the membranes from obese mice, whereas the amount of the 39 kDa species was similar in membranes from both lean and obese animals. Based on ADP-ribosylation assays, in membranes from lean mice the ratio Gs alpha/Gi alpha was 1:16, whereas in the membranes from obese mice it was 1:10. Similar amounts of immunodetectable beta peptide were found in both types of membranes. On the basis of the currently accepted dissociation model of adenylate cyclase activation, the decrease in the abundance of the Gi alpha subunit in adipocyte membranes from obese mice could account for the abnormal kinetics of the enzyme in these membranes.  相似文献   

17.
The translocation of the alpha subunits of Gs from the membrane to the cytosol by iloprost, a stable prostacyclin analogue, was studied in mouse mastocytoma P-815 cells. In the presence of guanosine 5'-O-(thiotriphosphate) (GTP gamma S), iloprost stimulated the adenylate cyclase activity, caused the release of both 42- and 45-kDa proteins reactive with the anti Gs alpha carboxyl-terminal antibody, RM/1, from the membrane and attenuated cholera toxin-catalyzed ADP-ribosylation of the 42- and 45-kDa proteins in the membrane. The iloprost-stimulated adenylate cyclase activity and release of Gs alpha from the membrane were markedly suppressed by RM/1. Cholera toxin treatment also stimulated the adenylate cyclase activity and release of Gs alpha from the membrane, and iloprost synergistically potentiated these actions of cholera toxin. In mastocytoma cells, iloprost induced the translocation of both 42- and 45-kDa Gs alpha from the membrane to the cytosol, 45-kDa Gs alpha remaining in the cytosol for a longer time than 42- kDa Gs alpha. Whereas 42-kDa Gs alpha in the cytosol was eluted at the position of Mr = approximately 40,000 45-kDa Gs alpha was eluted at the position of Mr = approximately 120,000 from a Superose 12 gel filtration column. In contrast, both 42- and 45-kDa Gs alpha released in vitro from the membrane by iloprost plus GTP gamma S were eluted at the position of Mr = approximately 40,000, but only 45-kDa Gs alpha was eluted at the position of Mr = approximately 120,000 when it was incubated with cytosol. These results taken together demonstrate that iloprost induces the translocation of both 42- and 45-kDa Gs alpha from the membrane to the cytosol and that only the 45-kDa Gs alpha released exists in the cytosol as a soluble complex with unidentified component(s) in mastocytoma cells.  相似文献   

18.
Choleragen (cholera toxin) activates adenylate cyclase by catalyzing ADP-ribosylation of Gs alpha, the stimulatory guanine nucleotide-binding protein. It was recently found (Tsai, S.-C., Noda, M., Adamik, R., Moss, J., and Vaughan, M. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 5139-5142) that a bovine brain membrane protein known as ADP-ribosylation factor or ARF, which enhances ADP-ribosylation of Gs alpha, also increases the GTP-dependent NAD:arginine and NAD:protein ADP-ribosyltransferase, NAD glycohydrolase, and auto-ADP-ribosylation activities of choleragen. We report here the purification and characterization of two soluble proteins from bovine brain that similarly enhance the Gs alpha-dependent and independent ADP-ribose transfer reactions catalyzed by toxin. Like membrane ARF, both soluble factors are 19-kDA proteins dependent on GTP or GTP analogues for activity. Maximal ARF effects were observed at a molar ratio of less than 2:1, ARF/toxin A subunit. Dimyristoyl phosphatidylcholine was necessary for optimal ADP-ribosylation of Gs alpha but inhibited auto-ADP-ribosylation of the choleragen A1 subunit and NAD:agmatine ADP-ribosyltransferase activity. It appears that the soluble factors directly activate choleragen in a GTP-dependent fashion. The relationships of the ARF proteins to the ras oncogene products and to the family of guanine nucleotide-binding regulatory proteins that includes Gs alpha remains to be determined.  相似文献   

19.
Cloning of complementary DNAs that encode either of two forms of the alpha subunit of the guanine nucleotide-binding regulatory protein (Gs) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M.P., Casey, P.J., and Gilman, A.G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of Gs alpha (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13.min-1 and 0.34.min-1 at 20 degrees C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant Gs alpha have essentially the same kcat for GTP hydrolysis, approximately 4.min-1. Recombinant Gs alpha interacts functionally with G protein beta gamma subunits and with beta-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of beta gamma subunits. Both forms of recombinant Gs alpha can reconstitute GTP-, isoproterenol + GTP-, guanosine 5'-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for Gs purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant Gs alpha for adenylyl cyclase is 5-10 times lower than that of liver Gs under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that Gs alpha, when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.  相似文献   

20.
1. An ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase was identified in a plasma membrane fraction from rabbit corpora lutea and partially characterized by comparing the properties of the luteal transferase with those of cholera toxin. 2. Incubation of luteal membranes in the presence of GTP and varying concentrations of NAD resulted in concentration-dependent increases in adenylyl cyclase activity. 3. Stimulation of adenylyl cyclase by NAD and cholera toxin plus NAD was observed in the presence of GTP but not in the presence of guanosine-5'-O-(2-thiodiphosphate) or guanyl-5'-yl imidodiphosphate. 4. NAD or cholera toxin plus NAD reduced the Kact values for luteinizing hormone to activate adenylyl cyclase 3- to 3.5-fold. 5. NAD or cholera toxin plus NAD increased the extent to which cholate extracts from luteal membranes were able to reconstitute adenylyl cyclase activity in S49 cyc- mouse lymphoma membranes. 6. It was necessary to add ADP-ribose and arginine to the incubation mixture in order to demonstrate cholera toxin-specific ADP-ribosylation of a protein corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (alpha Gs). 7. Treatment of luteal membranes with NAD prior to incubation in the presence of [32P]NAD plus cholera toxin resulted in reduced labeling of alpha Gs. 8. Endogenous ADP-ribosylation of alpha Gs was enhanced by Mg but was not altered by guanine nucleotide, NaF or luteinizing hormone and was inhibited by cAMP. 9. Incubation of luteal membranes in the presence of [32P]ADP-ribose in the absence and presence of cholera toxin did not result in the labeling of any membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号