首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. Occurrence of Acanthamoeba in the hospital environment may represent a health risk for patients, since these organisms can cause severe opportunistic illness, such as keratitis, and also can harbor pathogenic agents. We analyzed the dust from some environments of a public hospital in Curitiba, Parana State, Brazil. Two distinct populations of Acanthamoeba were isolated in five locations and morphologically classified as group I and group II according to Pussard and Pons. Isolates were identified as Acanthamoeba by PCR using primers to amplify a region of 18S rDNA, which showed variation in the product length among the isolates. A cloned culture of group II showed greater growth at 37 °C and in media with 0.1, 0.5, and 1.0 M mannitol, which are the physiological characteristics of pathogenic Acanthamoeba . Monitoring the presence of Acanthamoeba in hospital units, as well as evaluating the pathogenicity of the isolates, can be an approach to alert the health professionals to improve the disinfection procedures and minimize the risks of treating this problematic disease caused by this protozoan.  相似文献   

2.
Previous molecular examination of Acanthamoeba spp. has resulted in the determination of distinct genotypes in this genus (designated T1-T12, T14). Genotype T4 has been responsible for the majority of cases of Acanthamoeba keratitis. Here we examine the relative abundance of environmental T4 isolates on beaches and ask whether they have temperature and salinity tolerances that could enhance pathogenicity. Twenty-four Acanthamoeba strains were isolated from beach sand (n = 20), soil (n = 3), and tap water (n = 1) in south Florida. Phylogenetic analysis identified 19 of 24 isolates as T4, the Acanthamoeba keratitis-associated genotype. The remaining isolates were genotype T5 (4) and T11 (1). Nearly all beach isolates were genotype T4, whereas the tap water and soil isolates were mostly T5. All amoebae grew at 0, 1.0, and 2.0% salt and 19 of 20 beach isolates also grew at 3.2%. No soil or tap-water acanthamoebae reproduced at 3.2%. All isolates grew at 37 degrees C and two (T5) at 42 degrees C. Little correlation existed between beach location, salt-tolerance, and genetic relatedness. Overall, the large majority of environmental isolates obtained were genotype T4, suggesting it may be the most common genotype in this environment and could be a potential source of Acanthamoeba keratitis infections.  相似文献   

3.
Species of Acanthamoeba can cause keratitis and brain infections. The characterization of environmental isolates is necessary to analyze the risk of human infection. We aimed at identifying and genotyping Acanthamoeba isolates from soil, swimming pools, and water features in Brasília, Federal District, Brazil, as well as determining their physiological characteristics and pathogenic potential. Among the 18 isolates studied, eight were similar to genotype T5, five to T4, and one to T2/T6, classified by the sequence analysis of 18S rDNA. Genotypes of four isolates were not determined. Ten isolates (55%) grew at 37 °C and seven (39%) grew in media with 1.5M mannitol, which are the physiological parameters associated with pathogenic Acanthamoeba; also, four isolates from swimming pools presented high pathogenic potential. Our results indicate a widespread distribution of potentially pathogenic Acanthamoeba T4, T5, and T2/T6 in different environmental sources in Brasília, revealing the potential risk of human infection and the need of preventive measures.  相似文献   

4.
Subgenus Systematics of Acanthamoeba: Four Nuclear 18S rDNA Sequence Types   总被引:7,自引:0,他引:7  
ABSTRACT Classification of Acanthamoeba at the subgenus level has been problematic, but increasing reports of Acanthamoeba as an opportunistic human pathogen have generated an interest in finding a more consistent basis for classification. Thus, we are developing a classification scheme based on RNA gene sequences. This first report is based on analysis of complete sequences of nuclear small ribosomal subunit RNA genes ( Rns ) from 18 strains. Sequence variation was localized in 12 highly variable regions. Four distinct sequence types were identified based on parsimony and distance analyses. Three were obtained from single strains: Type T1 from Acanthamoeba castellanii V006, T2 from Acanthamoeba palestinensis Reich, and T3 from Acanthamoeba griffini S-7. T4, the fourth sequence type, included 15 isolates classified as A. castellanii, Acanthamoeba polyphaga, Acanthamoeba rhysodes , or Acanthamoeba sp., and included all 10 Acanthamoeba keratitis isolates. Interstrain sequence differences within T4 were 0%–4.3%, whereas differences among sequence types were 6%–12%. Branching orders obtained by parsimony and distance analyses were inconsistent with the current classification of T4 strains and provided further evidence of a need to reevaluate criteria for classification in this genus. Based on this report and others in preparation, we propose that Rns sequence types provide the consistent quantititive basis for classification that is needed.  相似文献   

5.
In order to refer to the basic information regarding the identification of isolates obtained from a contact lens container in Korea, the isoelectric focusing gel electrophoresis was employed to compare the isoenzyme band patterns among Acanthamoeba spp. including eight isolates and the simple pairwise dissimilarity analysis was carried out. For an alkaline phosphate development, isolate 7 and Acanthamoeba polyphaga showed homologous band patterns, and isolates 1, 2, and 3 showed the same patterns. For lactate dehydrogenase, similar patterns were observed in isolates 2 and 3. Isolates 3 and 5 showed homologous band patterns for malate dehydrogenase and glucose phosphate isomerase. For hexokinase, isolates 4, 7, and A, hatchetti showed the same band patterns. In others, a considerable number of interstrain polymorphisms was observed in nine isoenzyme band patterns. In Acanthamoeba group II, genetic distances among isolates 1, 2, 3, 4, and 5 ranged from 0.104 to 0.200. In comparison to A. castellanii, A. hatchetti, and A. polyphaga, genetic distances of isolates 7 and 8 were 0.254 and 0.219, respectively. In Acanthamoeba group III, including A. culbertsoni, A. healyi, and A. royreba, isolate 6 had genetic distances which ranged from 0.314 to 0.336. Finally, when comparing to the six reference Acanthamoeba, it was possible to classify isolates 1, 2, 3, 4, and 5, as genetically close-related species and as independent species group. Furthermore, isolates 6, 7 and 8 were identified as independent species as well.  相似文献   

6.
Genetic diversity of 18 Acanthamoeba isolates from ocean sediments was evaluated by comparing mitochondrial (mt) DNA RFLP, 18S rDNA sequences and by examining their cytopathic effects on human corneal epithelial cells versus reference strains. All isolates belonged to morphologic group II. Total of 16 restriction phenotypes of mtDNA from 18 isolates demonstrated the genetic diversity of Acanthamoeba in ocean sediments. Phylogenetic analysis using 18s rDNA sequences revealed that the 18 isolates were distinct from morphological groups I and III. Fifteen isolates showed close relatedness with 17 clinical isolates and A. castellanii Castellani and formed a lineage equivalent to T4 genotype of Byers group. Two reference strains from ocean sediment, A. hatchetti BH-2 and A. griffini S-7 clustered unequivocally with these 15 isolates. Diversity among isolates was also evident from their cytopathic effects on human corneal cells. This is the first time describing Acanthamoeba diversity in ocean sediments in Korea.  相似文献   

7.
The pathogenesis and pathophysiology of Acanthamoeba infections remain incompletely understood. Phospholipases are known to cleave phospholipids, suggesting their possible involvement in the host cell plasma membrane disruption leading to host cell penetration and lysis. The aims of the present study were to determine phospholipase activities in Acanthamoeba and to determine their roles in the pathogenesis of Acanthamoeba. Using an encephalitis isolate (T1 genotype), a keratitis isolate (T4 genotype), and an environmental isolate (T7 genotype), we demonstrated that Acanthamoeba exhibited phospholipase A(2) (PLA(2)) and phospholipase D (PLD) activities in a spectrophotometry-based assay. Interestingly, the encephalitis isolates of Acanthamoeba exhibited higher phospholipase activities as compared with the keratitis isolates, but the environmental isolates exhibited the highest phospholipase activities. Moreover, Acanthamoeba isolates exhibited higher PLD activities compared with the PLA(2). Acanthamoeba exhibited optimal phospholipase activities at 37℃ and at neutral pH indicating their physiological relevance. The functional role of phospholipases was determined by in vitro assays using human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. We observed that a PLD-specific inhibitor, i.e., compound 48/80, partially inhibited Acanthamoeba encephalitis isolate cytotoxicity of the host cells, while PLA(2)-specific inhibitor, i.e., cytidine 5'-diphosphocholine, had no effect on parasite-mediated HBMEC cytotoxicity. Overall, the T7 exhibited higher phospholipase activities as compared to the T4. In contract, the T7 exhibited minimal binding to, or cytotoxicity of, HBMEC.  相似文献   

8.
Free-living amoebae of the genus Acanthamoeba are the agents of both opportunistic and non-opportunistic infections and are frequently isolated from the environment. Of the 17 genotypes (T1-T17) identified thus far, 4 (T7, T8, T9, and T17) accommodate the rarely investigated species of morphological group I, those that form large, star-shaped cysts. We report the isolation and characterization of 7 new Brazilian environmental Acanthamoeba isolates, all assigned to group I. Phylogenetic analyses based on partial (~1200 bp) SSU rRNA gene sequences placed the new isolates in the robustly supported clade composed of the species of morphological group I. One of the Brazilian isolates is closely related to A. comandoni (genotype T9), while the other 6, together with 2 isolates recently assigned to genotype T17, form a homogeneous, well-supported group (2·0% sequence divergence) that likely represents a new Acanthamoeba species. Thermotolerance, osmotolerance, and cytophatic effects, features often associated with pathogenic potential, were also examined. The results indicated that all 7 Brazilian isolates grow at temperatures up to 40°C, and resist under hyperosmotic conditions. Additionally, media conditioned by each of the new Acanthamoeba isolates induced the disruption of SIRC and HeLa cell monolayers.  相似文献   

9.
Eleven Acanthamoeba isolates, obtained from Acanthamoeba keratitis patients, from contact lens cases of non-Acanthamoeba keratitis patients, from asymptomatic individuals, from necrotic tissue, and from tap water and two reference strains were investigated by morphological, molecular biological, and physiological means in order to discriminate clinically relevant and nonrelevant isolates. All clinically relevant isolates showed Acanthamoeba sp. group II morphology. 18S ribosomal DNA sequencing revealed sequence type T4 to be the most prevalent group among the isolates and also the group recruiting most of the pathogenic strains. Interestingly, within T4 the strains of no clinical relevance clustered together. Moreover, physiological properties appeared to be highly consistent with initial pathogenicity and with sequence clustering. Altogether, the results of our study indicate a correlation between the phylogenetic relationship and pathogenicity.  相似文献   

10.
In order to observe the cytotoxicity of Acanthamoeba spp., which were isolated from contact lens containers as ethiological agents for the probable amoebic keratitis in Korea, the crystal violet staining method and LDH release assay were carried out. In the crystal violet staining method, among eight contact lens container isolates, isolate 3 (Acanthamoeba KA/LS5) showed 83.6% and 81.8% of cytotoxicity, and isolate 7 (Acanthamoeba KA/LS37) showed 28.2% and 25.1% of cytotoxicity, in 1 mg/ml and 0.5 mg/ml lysate treatments, respectively. Acanthamoeba culbertsoni and A. healyi showed 84.0% and 82.8% of cytotoxicity. Similar results were observed in A. castellanii and A. hatchetti which showed 83.6% and 75.5% of cytotoxicity. Acanthamoeba royreba and A. polyphaga showed 9.0% and 1.7% of cytotoxicity. In the LDH release assay, isolate 3 (20.4%) showed higher cytotoxicity than other isolates in 1 mg/ml lysate treatment. The results provide that at least isolate 3 has the cytotoxic effect against CHO cells and seems to be the pathogenic strain.  相似文献   

11.
Listeria monocytogenes is a human pathogen, ubiquitous in the environment, and can grow and survive under a wide range of environmental conditions. It contaminates foods via raw materials or food-processing environments. However, the current knowledge of its ecology and, in particular, the mode of environmental survival and transmission of this intracellular pathogen remains limited. Research has shown that several intracellular pathogens are able to survive or replicate within free-living amoebae. To examine the viability of L. monocytogenes in interaction with Acanthamoeba spp., bacteria were co-cultured with three freshly isolated amoebae, namely Acanthamoeba polyphaga, Acanthamoeba castellanii and Acanthamoeba lenticulata . The survival of bacteria and amoebae was determined using culture techniques and microscopy. Under the experimental conditions used, all amoebae were able to eliminate bacteria irrespective of the hly gene. Bacteria did not survive or replicate within amoeba cells. However, extra-amoebic bacteria grew saprophytically on materials released from amoebae, which may play an important role in the survival of bacteria under extreme environmental conditions.  相似文献   

12.
Some unicellular organisms are able to encyst as a protective response to a harmful environment. The cyst wall usually contains chitin as its main structural constituent, but in some cases, as in Acanthamoeba, it consists of cellulose instead. Specific cytochemical differentiation between cellulose and chitin by microscopy has not been possible, due to the similarity of their constituent beta-1,4-linked hexose backbones. Thus, various fluorescent brightening agents and lectins bind to both cellulose and chitin. We have used a recombinant cellulose-binding protein consisting of two cellulose-binding domains (CBDs) from Trichoderma reesei cellulases linked together in combination with monoclonal anticellulase antibodies and anti-mouse immunoglobulin fluorescein conjugate to specifically stain cellulose in the cysts of Acanthamoeba strains for fluorescence microscopy imaging. Staining was observed in ruptured cysts and frozen sections of cysts but not in intact mature cysts. No staining reaction was observed with the chitin-containing cyst walls of Giardia intestinalis, Entamoeba dispar, or Pneumocystis carinii. Thus, the recombinant CBD can be used as a marker to distinguish between cellulose and chitin. Thirteen of 25 environmental or clinical isolates of amoebae reacted in the CBD binding assay. All 13 isolates were identified as Acanthamoeba spp. Five isolates of Hartmannella and seven isolates of Naegleria tested negative in the CBD binding assay. Whether cyst wall cellulose really is a unique property of Acanthamoeba spp. among free-living amoebae, as suggested by our findings, remains to be shown in more extensive studies.  相似文献   

13.
Amoebae from antarctic soil and water.   总被引:1,自引:1,他引:0       下载免费PDF全文
Samples of soil and water were taken from the McMurdo Sound-Dry Valley region of Antarctica. Of the 70 samples cultured, 22 yielded amoebae capable of clonal growth at 30 degrees C. None of the isolates was pathogenic for mice. Acanthamoeba isolates appeared to show better survival potential than Naegleria isolates.  相似文献   

14.
15.
ABSTRACT We examined the effects of the macrolide antimicrobial agent azithromycin and phenothiazine compounds against clinical isolates of Acanthamoeba spp. and Balamuthia mandrillaris , opportunistic pathogens of human beings and other animals. Acanthamoeba growth was inhibited in vitro at 1,5, and 10 μg/ml of azithromycin, but not the macrolides, erythromycin, and clarithromycin. In experiments attempting to simulate in vivo conditions, azithromycin protected monolayers of rat glioma cells from destruction by Acanthamoeba at a concentration of 0.1 μg/ml, and delayed destruction at concentrations of 0.001 and 0.01 μg/ml. We concluded that the minimal inhibitory concentration of azithromycin was 0.1 μg/ml. Our results, however, suggested that the drug was amebastatic but not amebicidal, since ameba growth eventually resumed after drug removal. The phenothiazines (chlorpromazine, chlorprothixene, and triflupromazine) inhibited Acanthamoeba growth by 70-90% at 5 and 10 μg/ml, but some of these compounds were toxic for rat glioma cells at 10 μg/ml. Azithromycin was not very effective against B. mandrillaris in an in vitro setting, but was amebastatic in tissue culture monolayers at concentrations of 0.1 μg/ml and higher. Balamuthia amebas showed in vitro sensitivity to phenothiazines. Ameba growth was inhibited 30-45% at 5 μg/ml in vitro, but completely at 5 μg/ml in the rat glioma model. In spite of their potential as antiamebic drugs in Balamuthia infections, toxicity of phenothiazines limits their use in clinical settings.  相似文献   

16.
Pathogenic free-living amoebae in Korea   总被引:4,自引:0,他引:4  
Acanthamoeba and Naegleria are widely distributed in fresh water, soil and dust throughout the world, and cause meningoencephalitis or keratoconjunctivitis in humans and other mammals. Korean isolates, namely, Naegleria sp. YM-1 and Acanthamoeba sp. YM-2, YM-3, YM-4, YM-5, YM-6 and YM-7, were collected from sewage, water puddles, a storage reservoir, the gills of a fresh water fish, and by corneal washing. These isolates were categorized into three groups based on the mortalities of infected mice namely, highly virulent (YM-4), moderately virulent (YM-2, YM-5 and YM-7) and nonpathogenic (YM-3). In addition, a new species of Acanthamoeba was isolated from a freshwater fish in Korea and tentatively named Korean isolate YM-4. The morphologic characters of its cysts were similar to those of A. culbertsoni and A. royreba, which were previously designated as Acanthamoeba group III. Based on experimentally infected mouse mortality, Acanthamoeba YM-4 was highly virulent. The isoenzymes profile of Acanthamoeba YM-4 was similar to that of A. royreba. Moreover, an anti-Acanthamoeba YM-4 monoclonal antibody reacted only with Acanthamoeba YM-4, and not with A. culbertsoni. Random amplified polymorphic DNA marker analysis and RFLP analysis of mitochondrial DNA and of a 18S small subunit ribosomal RNA, placed Acanthamoeba YM-4 in a separate cluster based on phylogenic distances. Thus Acanthamoeba YM-4 was identified as a new species, and assigned Acanthamoeba sohi. Up to the year 2002 in Korea, two clinical cases were found to be infected with Acanthamoeba spp. These patients died of meningoencephalitis. In addition, one case of Acanthamoeba pneumonia with an immunodeficient status was reported and Acanthamoeba was detected in several cases of chronic relapsing corneal ulcer, chronic conjunctivitis, and keratitis.  相似文献   

17.
In order to study the diversity and community of genus Mycobacterium in polluted soils, we tried to isolate mycobacteria from 11 soil samples collected from an illegal dumping site and 3 landfills in Japan. Using culture methods with or without Acanthamoeba culbertsoni, a total of 19 isolates of mycobacteria were obtained from 5 soil samples and 3 of them were isolated only by the co-culture method with the amoeba. Conventional biochemical tests and sequencing of the hsp65, rpoB, and 16S rRNA genes were performed for species identification of 17 of the 19 isolates. Among the 17 isolates, there was one isolate each of Mycobacterium vanbaalenii, Mycobacterium mageritense, Mycobacterium frederiksbergense, M. vanbaalenii or Mycobacterium austroafricanum, and Mycobacterium chubuense or Mycobacterium chlorophenolicum. The remaining 12 isolates could not be precisely identified at the species level. A phylogenic tree based on the hsp65 sequences indicated that 2 of the 12 isolates were novel species. In addition, 4 isolates were phylogenically close to species that degrade polycyclic aromatic hydrocarbons, which induce some cancers in humans. These results demonstrated that there were many hitherto-unreported mycobacteria in the polluted soils, and suggested that some mycobacteria might play roles in the natural attenuation and engineered bioremediation of contaminated sites with other microorganisms.  相似文献   

18.
Hexadecylphosphocholine (miltefosine) is an anticancer drug active in vitro against various protozoan parasites, and recently used for the treatment of disseminated Acanthamoeba infection. In the present study, we present results of weak cytotoxic activity of this potential amoebicidal agent for 2 of 3 clinical isolates of Acanthamoeba spp. Although the inhibition effect for all tested concentrations was apparent, and showed 100% eradication of trophozoites of Acanthamoeba castellanii strain at a concentration of 62.5 μM after 24 hr, the strains Acanthamoeba sp. and Acanthamoeba lugdunensis exhibited low sensitivity to hexadecylphosphocholine, even in high concentrations. The determined minimal trophocidal concentrations were 250 μM for Acanthamoeba sp. and 500 μM for A. lugdunensis after 24 hr of exposure. Although hexadecylphosphocholine is a potential agent for treatment of Acanthamoeba keratitis and systemic infections, in clinical practice the possible insusceptibility of the amoebic strain should be considered for optimizing therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号