首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Precise data on fertility results following peri- and postovulatory insemination in spontaneously ovulating gilts is lacking. Using transcutaneous sonography every 4 h during estrus as a tool for diagnosis of ovulation, the effects of different time intervals of insemination relative to ovulation were investigated with liquid semen (Experiment 1, n=76 gilts) and frozen semen (Experiment 2, n=80 gilts). In Experiment 3 (n=24 gilts) the number of Day-28 embryos related to the various intervals between insemination and ovulation was determined after the use of liquid semen. Using liquid semen the fertilization rates based on Day-2 to Day-5 embryos and the number of accessory spermatozoa decreased significantly in gilts inseminated with 2 x 10(9) spermatozoa per dosage in intervals of more than 12 h before or more than 4 h after ovulation. In the time interval 4 to 0 h before ovulation, comparable fertilization rates were obtained using frozen semen (88.1%) and liquid semen (92.5%). Fertilization rates and numbers of accessory spermatozoa decreased significantly when gilts were inseminated with frozen semen more than 4 h before or 0 to 4 h after the detection of ovulation. The percentage of Day-28 embryos was significantly higher following preovulatory insemination compared to inseminations 0 to 4 h and 4 to 8 h after ovulation. It is concluded that the optimal time of insemination using liquid semen is 12 to 0 h before ovulation, and 4 to 0 h before ovulation using frozen semen. The results stress the importance of further research on sperm transport and ovulation stimulating mechanisms, as well as studies on the time of ovulation relative to estrus-weaning intervals and estrus duration.  相似文献   

2.
Extending the raw ejaculate prior to artificial insemination (AI) is beneficial, in part, due to the increased number of females that are bred from an ejaculate, along with prolonged shelf life of the semen. The objective of this study was to examine the affects of storage time on the fecundity of porcine semen diluted in 2 semen extenders, Androhep and X-CELL. A completely randomized design with a factorial arrangement of treatments was utilized in which 429 high quality, gel-free ejaculates from 48 boars were used in a timed, double insemination of 1,431 first-service gilts. The gilts were divided into groups and inseminated with semen stored in Androhep or X-CELL for 2 to 3 d, 3 to 4 d, 4 to 5 d, or 5 to 6 d prior to use (day of collection = Day 0). Sperm age was identical, and both extenders were used concurrently each day of the trial. Farrowing rate and litter size data were recorded. Farrowing rates did not differ between extenders through Days 4 to 5 of storage. Gilts inseminated with Androhep diluted stored semen showed a decrease (P < 0.001) in farrowing rate compared with those inseminated with semen extended in X-CELL stored for 5 to 6 d. Mean litter sizes did not differ between extenders through Days 2 to 3 of storage. Compared with the X-CELL extended semen, gilts inseminated with Androhep extended semen produced smaller litters when semen was stored for 4 to 5 d (P < 0.05). Within the Androhep treatment, smaller mean litter sizes (P < 0.05) were evident when the semen was stored for 3 to 4 and 4 to 5 d. No differences were detected in litter size or farrowing rate for gilts bred with semen stored for 2 to 6 d in the X-CELL extender (P > 0.1). The results of this study indicate that extender type influences the fertility potential of fresh porcine semen stored for 2 to 6 d. For optimal fecundity in gilts, semen extended with Androhep extender should be used for AI within 3 d. The X-CELL extended semen can be used for up to 6 d without significant decrease in litter size or farrowing rate. These recommendations are dependent upon using high quality semen that is properly handled from collection through insemination.  相似文献   

3.
Artificial insemination (AI) in rabbits is not extensive in the breeding programs of the rabbit meat industry. A limiting factor is related to the semen preservation. In order to improve the use of AI, two experiments have been conducted to evaluate sperm viability and fertility of rabbit semen chilled and stored at 15 degrees C after dilution in Tris-based extenders. In Experiment 1, pooled semen samples were diluted 1:10 (semen/extender) in four different Tris-based extenders (Tris-citric-glucose (TCG), TES-Tris-glucose (TTG), Tris-citric-fructose (TCF) and TES-Tris-fructose (TTF)) and stored at 15 degrees C. Sperm viability was evaluated at 0, 24, 48, 72 and 96 h following dilution for total sperm motility (TSM), forward progressive motility (FPM), plasma membrane integrity (PMI) and acrosome integrity (NAR). Viability of spermatozoa declined with time of storage (P<0.05), irrespective of the extender used. There were interactions between extender and time of storage (P<0.05) in all viability parameters evaluated. After 96 h of storage, TCG provided the highest sperm viability (P<0.05) and TTG the lowest (P>0.05). In Experiment 2, a field trial was conducted at a commercial farm to evaluate the conception and farrowing rates of rabbit spermatozoa extended in TCG. After synchronization of oestrous and induction of ovulation, 3713 does with different physiological conditions (nulliparous, primiparous, lactating and re-breeding) were inseminated one time (15x10(6) sperm per doses) with semen stored at 0 (n: 1275), 24 (n: 1503) and 48 h (n: 935) at 15 degrees C. Overall conception and farrowing rates were 77.1+/-0.7 and 70.4+/-0.7, respectively, and the mean litter size was 7.6+/-0.1. Fertility results were unaffected by the time of semen storage (P>0.05). Regardless of time of semen storage, fertility results were affected by the physiological conditions of does (P<0.05). Nulliparous and lactating does showed the highest fertility and primiparous the lowest. In summary, these results indicate that Tris-buffer extenders are effective for preserving viability and fertilizing capability of rabbit spermatozoa stored at 15 degrees C.  相似文献   

4.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

5.
Differences in sperm fertilizing capacity of males often remain undetected by routine semen parameters. Heterospermic insemination with equal numbers of spermatozoa from 2 males is an accurate method for assessing differences in fertility. Use of heterospermic insemination depends on a reliable, efficient assay to identify paternity of conceptuses or offspring. In this study, polymorphic DNA markers amplified by PCR were tested to determine paternity of Day 5 to 6 embryos. The fertilizing capacity of 2 boars (A and B) with similar semen parameters was compared after homospermic (n=14 gilts) and heterospermic (n=11 gilts) insemination. Single AI's were performed under suboptimal conditions using 1 x 10(9) spermatozoa at 12 to 24 h before ovulation to prompt differences in fertilization and to stimulate sperm competition. The fertilization rate and the number of accessory spermatozoa were determined in Day 5 to 6 embryos. Using 5 different polymorphic DNA markers, paternity could be determined in 95.8% of the embryos. Boar B sired significantly (P<0.05) more offspring than Boar A after insemination with pooled semen, and this was reflected by a significantly (P<0.05) higher number of accessory spermatozoa following homospermic insemination with semen from Boar B, although fertilization rates did not differ between the 2 boars after homospermic insemination. The results suggest that the viability of spermatozoa in the female reproductive tract contributes to differences in fertility rates of males with similar in vitro sperm quality parameters. The number of accessory spermatozoa is a more sensitive measure of boar fertility than the fertilization rate. Polymorphic DNA markers are suitable for verification of parentage even at a very early stage of embryonic development.  相似文献   

6.
This study was performed to investigate the influence of boars and thawing diluents on the fertilizing capacity of deep frozen spermatozoa at various intervals between inseminations and ovulation. Forty-four Swedish crossbred gilts were inseminated following injection of HCG late in the prooestrus. Inseminations were performed 22, 28, 34 and 38 hrs. after injection of HCG. Ovulation was expected to occur 40 hrs. after injection of HCG. Two boars, previously tested for fertility with frozen semen, supplied the spermatozoa. Roar seminal plasma and OLEP were utilized as thawing diluents. The gilts were slaughtered 32–48 hrs. after estimated ovulation. The genital tracts were removed immediately after stunning and bleeding and the numbers of recent ovulations, recovered ova and fertilized ova were recorded. Additionally recovered ova were classified according to estimated numbers of spermatozoa attached to the zona pellucida. Similar fertilization rates were obtained when inseminations were performed 2 and 6 hrs. before estimated ovulation. A clear decline in fertility appeared when inseminations were performed earlier than 6 hrs. before expected ovulation. The results were influenced by the boars as well as by the thawing diluents. Seminal plasma yielded a higher fertilization rate than OLEP in inseminations performed 2 hrs. before estimated ovulation. The boars yielded similar fertility in inseminations performed 2 hrs. before estimated ovulation. With increasing intervals between inseminations and ovulation the difference between the boars increased. The single gilt in which fertilized ova were found after insemination 18 hrs. before ovulation was inseminated with spermatozoa from the superior boar, thawed in seminal plasma. The present results indicate that spermatozoa with low resistance to freezing-thawing have a short fertile life in the female genital tract after insemination.  相似文献   

7.
An insemination trial was conducted to evaluate the fertility of extended slow-cooled stallion spermatozoa stored for 70 h or 80 h at 5 to 7 degrees C before insemination. Then, 1 or 2 of the first sperm-rich fractions were collected with an open-ended vagina from 4 stallions. Semen from each stallion was diluted within 2 to 3 min after collection with a modified Kenney skim milk extender (6). The proportion of raw semen in the insemination doses was 24+/-6%. One insemination dose (25 to 50 ml) consisted of approximately 2 billion total spermatozoa. In the trial, palpation per rectum and ultrasonography of 34 mares (40 cycles) were performed every 12 h. The pregnancy rate per cycle (30-d) with semen stored for 70 h before insemination was 77% (17 cycles) and, with semen stored for 80 h, 57% (23 cycles). The difference was not statistically significant. The combined pregnancy rate per cycle was 65%. These results indicate that stallion semen can retain its fertilizing capacity for up to 80 h when collected and diluted using this procedure and when the inseminations are done less than 12 h after ovulation.  相似文献   

8.
In normal production practices, sows and gilts are inseminated at least twice during estrus because the timing of ovulation is variable relative to the onset of estrus. The objective of this study was to determine if a normal fertilization rate could be achieved with a single insemination of low sperm number given at a precise interval relative to ovulation. Gilts (n=59) were randomly assigned to one of three treatment groups: low dose (LD; one insemination, 0.5 x 10(9) spermatozoa), high dose (HD; one insemination, 3 x 10(9) spermatozoa) or multiple dose (MD; two inseminations, 3 x 10(9) spermatozoa per insemination). Twice daily estrus detection (06:00 and 18:00 h) was performed using fenceline boar contact and backpressure testing. Transrectal ultrasonography was performed every 6 h beginning at the detection of the onset of standing estrus and continuing until ovulation. Gilts in the LD and HD groups were inseminated 22 h after detection of estrus; MD gilts received inseminations at 10 and 22 h after detection of estrus. Inseminations were administered by using an insemination catheter and semen was deposited into the cervix. The uterus was flushed on Day 5 after the onset of estrus and the number of corpora lutea, oocytes, and embryos were counted. Time of insemination relative to ovulation was designated as 40 to >24 h, 24 to >12 h, and 12 to 0 h before ovulation and >0 h after ovulation. The LD gilts had fewer embryos (P<0.04), more unfertilized oocytes (P<0.05) and a lower fertilization rate (P<0.07) compared to MD gilts. The effects of time of insemination relative to ovulation and the treatment by time interaction were not significant. We conclude that a cervical insemination with low spermatozoa concentration may not result in acceptable fertility even when precisely timed relative to ovulation.  相似文献   

9.
Cervical artificial insemination (AI) in sheep with fresh semen yields a much higher pregnancy rate than when frozen-thawed semen is used, and consequently frozen semen is only acceptable for laparoscopic insemination. The short life span of fresh semen is a major constraint on the use of AI in genetic improvement programs for sheep. The main objective of this study was to examine the effects of storage conditions on viability and fertilization ability of fresh ram (Ovis aries) semen up to 72 h postcollection. Experiment 1 was designed to evaluate the effect of diluent type (standard skim milk, AndroMed, OviPro, and INRA 96) and storage temperature (5 °C and 15 °C) on the motility and viability of fresh ram semen. Storage temperature, irrespective of diluent, had a significant effect on both motility and viability. Storage at 5 °C maintained acceptable motility and viability up to 72 h compared with that of storage at 15 °C. In Experiment 2, the penetrating ability of fresh ram semen, diluted in either skim milk, AndroMed, or INRA 96, was assessed using artificial mucus. Flat capillary tubes containing artificial mucus were suspended in 250 μL semen at a sperm concentration of 20 × 106/mL. Semen was stored at 5 °C and tested after 6, 24, 48, and 72 h. There was a significant diluent by time interaction. In Experiment 3, the fertilizing ability of fresh ram semen stored at 5 °C was evaluated in vitro. Fresh semen (diluted in either skim milk, AndroMed, or INRA 96) was added to matured ewe oocytes at 6, 24, or 72 h after semen collection. Cleavage rate was recorded at 48 h postinsemination, and blastocyst development was recorded on Days 6 to 9. There was a significant treatment effect on cleavage and blastocyst rates; insemination of semen stored for 24 h resulted in higher rates than those for storage at 72 h. In Experiment 4, the fertilizing ability of fresh ram semen was evaluated in vivo. Semen was diluted in INRA 96, stored at 5 °C, and used to inseminate ewes on the day of collection or at 24, 48, and 72 h postcollection. Multiparous ewes were cervically inseminated at a synchronized estrus. Fertility rate decreased linearly (P < 0.001) up to 72 h after semen collection.  相似文献   

10.
The effects of extender and storage at 20 degrees C on equine spermatozoa were evaluated in two experiments using embryo recovery as the end point. In both experiments, inseminations were every other day, starting on Day 2 or 3 of estrus or after a 35-mm follicle was detected, with 250 x 10(6) progressively motile cells (based on initial evaluation). In Experiment 1, semen from two stallions was used to compare the motility and fertility of spermatozoa maintained in a) heated skim milk extender at 37 degrees C with insemination in <1 h; b) E-Z Mixin extender at 37 degrees C with insemination in <1 h; and c) E-Z Mixin extender at 37 degrees C with cooling to 20 degrees C and insemination after storage for 12 h at 20 degrees C. The percentage of motile spermatozoa was 34% after 12 h compared to 55% at 0 h (P < 0.05). However, the percentage of mares from which an embryo was recovered 6.5 d after ovulation was 62, 56, and 50% for Treatments A, B, and C (P > 0.05). In Experiment 2, semen from three stallions was used to compare the motility and fertility of spermatozoa in a) E-Z Mixin extender at 37 degrees C with insemination in <1 h or b) E-Z Mixin extender at 37 degrees C with cooling to 20 degrees C and insemination after storage for 24 h at 20 degrees C. The percentage of motile spermatozoa was 17% after 24 h compared to 54% at 0 h (P < 0.05). There was no difference between treatments (P > 0.05) in the percentage of mares from which an embryo was recovered 6.0 d after ovulation (68 vs 62%) or among stallions. Thus, stallion semen extended in E-Z Mixin was held at 20 degrees C for 24 h without a marked decline in fertility.  相似文献   

11.
This study was done to determine the effects of processing techniques on the quality of semen from Dutch AI-bucks with the view on improving pregnancy rates after artificial insemination (AI) with liquid or frozen-thawed semen. Motility of spermatozoa was estimated under a microscope whereas the percentage live spermatozoa and the percentage live spermatozoa with intact acrosomes were determined by means of flow cytometry. Aspects of semen processing that were investigated are storage temperature of liquid semen (i), the effect of glycerol on liquid-stored semen (ii), removal of seminal plasma (iii) and type of extender (iv). The correlation between semen quality and fertility rates in inseminated does was also investigated. The percentage motile spermatozoa in semen stored in liquid form for 72 h progressively declined over time, irrespective of whether storage occurred at 4 or 18 degrees C. The percentage motile spermatozoa in semen stored at 18 degrees C was similar to that in semen stored at 4 degrees C if stored for 24 h but lower if stored for 48 h. Goats differ in the sensitivity of their spermatozoa to the deleterious effects of glycerol. Neither the removal of seminal plasma nor the type of extender had any effect on semen quality before freezing but semen frozen in a Tris-citric acid-glucose (TCG) buffer with egg yolk without removal of the seminal plasma had better quality after thawing than semen frozen in another diluent or after removal of seminal plasma. Remarkably no significant correlation between fertility and membrane integrity of spermatozoa could be found. Thus, although integrity assays for spermatozoa are useful to asses resistance to semen handling, the validity of these assays for predicting fertility is questioned.  相似文献   

12.
The objectives of this study were to determine the optimal time of insemination in the pre-ovulatory period (from 32 to 0 h before ovulation) and to evaluate once-daily versus twice-daily inseminations in gilts. In Experiment 1, pre-puberal gilts (n=102) were observed for estrus every 8h and ultrasonography was performed every 8h from the onset of estrus to confirmation of ovulation. The gilts were inseminated once with 4 x 10(9) spermatozoa at various intervals prior to ovulation. Pregnancy detection was conducted 24 days after AI and gilts were slaughtered 4-6 days later. Corpora lutea and the number of viable embryos were counted and the embryo recovery rate was calculated (based on the percentage of corpora lutea). Inseminations performed <24h before ovulation resulted in a higher embryo recovery rate (P=0.02) and produced 2.1 more embryos (P=0.01) than inseminations >or=24h before ovulation. However, the pregnancy rate was reduced when inseminations were performed >16 h before ovulation (P=0.08). In Experiment 2, pre-puberal gilts (n=105) were observed for estrus every 12h and ultrasonography was performed every 12h from the onset of estrus to confirmation of ovulation. Gilts were inseminated (with 4 x 10(9) spermatozoa) 12h after the onset of estrus, with inseminations repeated either every 12h (twice-daily) or 24h (once-daily) during estrus. The gilts were allowed to farrow. There were no differences (between gilts bred twice-daily versus once-daily) for return to estrus rate (P=0.36) and adjusted farrowing rate (P=0.19). However, gilts inseminated once-daily had 1.2 piglets less than those inseminated twice-daily (P=0.09). In conclusion, gilts should be inseminated up to 16 h before ovulation, as intervals >16 h reduced pregnancy rate and litter size.  相似文献   

13.
Skim milk (SM) is considered to be the most widely employed extender for goat sperm used for artificial insemination (AI). However, the fertilizing life span of sperm stored in milk or milk-based extenders does not exceed 12h. Besides some seminal plasma components, such as a protein fraction from the goat bulbourethral gland secretion (SBUIII), interacts with some milk fractions and inhibits the spermatozoa motility. The aim of this study was to prolong the survival of buck semen and its fertility. Buck ejaculates were diluted to a final concentration of 100x10(6)spermatozoa/ml with three different diluents: SM, TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) and TEMPOL+hyaluronic acid (TEMPOL+HA). At 7h from dilution 42 goats were inseminated with semen diluted with SM (short-term semen) while after storage for 24h, 44 and 45 goats were inseminated with semen diluted with TEMPOL and TEMPOL+HA (long-term storage), respectively. At day 50 from AI the percentages of pregnant goats were 71.4% (30/42) with SM, 61.4% (27/44) with TEMPOL and 48.8% (22/45) with TEMPOL+HA, with significant differences between SM and TEMPOL+HA. The kidding rate was 66.7% (28/42) with SM diluent, 61.4% (27/44) with TEMPOL and 48.8% (22/45) with TEMPOL+HA, without significant differences among treatment groups. In conclusion, it is possible to maintain good fertility in goats after AI with semen stored for 24h in TEMPOL.  相似文献   

14.
Huo LJ  Ma XH  Yang ZM 《Theriogenology》2002,58(7):1349-1360
The purpose of this study was to assess sperm quality in extended boar semen during in vitro storage in order to determine which extender should be used and how long boar semen can be stored. Freshly ejaculated boar semen was diluted with equal volumes of Beltsville thaw solution (BTS), Androhep, KIEV or Zorlesco extenders and stored at 17 degrees C for up to 15 days. Sperm quality was evaluated by examining viability using SYBR-14/PI and Hoechst 33258 staining, mitochondrial activity using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) staining, acrosome intactness by Coomassie blue staining, and capacitation status by chlortetracycline (CTC) staining. There were over 50% viable spermatozoa in boar semen extended with Zorlesco and Androhep extenders on Day 13 of storage. The percentage of JC-1-stained spermatozoa was 53.8 +/- 2.1% for Zorlesco and 57.7 +/- 1.60% for Androhep extenders on Day 13 of storage. The percentage of acrosome-intact spermatozoa detected by Coomassie blue staining was higher than that in the SYBR-14PI-, Hoechst 33258-, and JC-1-stained samples in our study. The results from SYBR-14/PI, Hoechst 33258, JC-1, and Coomassie blue staining were highly correlated (r > or = 0.9461). There were less than 15% capacitated spermatozoa in the semen extended with BTS, Androhep and Zorlesco extenders during 9 days of storage. However, most viable boar spermatozoa became capacitated by Day 13 of storage. The rank order of four extenders for maintaining sperm viability and mitochondrial activity was as follows: Androhep, Zorlesco, BTS, KIEV.  相似文献   

15.
We conducted two studies to improve preservation of rabbit semen. The objective of the first study was determine whether a glucose- and fructose-based extender with two different amounts of gelatin would solidify at 15 degrees C, and to evaluate the influence of gelatin supplementation on sperm motility parameters after storing semen up to 10 days at 15 degrees C. The fertility of rabbit semen diluted in the best gelatin-supplemented extender established in Study 1 and stored for up to 5 days was evaluated in the second study. In Study 1, semen was collected with an artificial vagina from 40 bucks. Each ejaculate was diluted to (80-100) x 10(6) spermatozoa/mL (1:3, semen/extender) at 37 degrees C in one of the three following glucose- and fructose-based extenders: control (standard liquid extender), semi-gel or gel (0.7 or 1.4 g gelatin in 100 mL extender, respectively). Pools of semen were allocated among 0.6 mL plastic artificial insemination (AI) guns. Thirty (10 per extender group) AI doses were immediately analyzed (0 h) and the remainder stored in a refrigerator (15 degrees C) for 12, 24, 36, 48, 72, 96, or 240 h. All doses with gelatin extenders solidified at 15 degrees C. Semen samples, prewarmed to 37 degrees C, were evaluated with a computer-assisted sperm analysis (CASA) system. The percentage of motile cells was significantly lower using the liquid compared to the gel extenders during semen storage from 0 to 96 h. Although significance was lost, these differences persisted after 240 h of storage. Motility of spermatozoa in the semi-gel extender was intermediate between that of liquid and gel extender throughout the study. Study 2 was performed on 1250 multiparous lactating does. Five homogeneous groups of 250 does previously synchronized were inseminated using semen previously stored for 120, 96, 72, 48 or 24 h, respectively. Rabbit does receiving 24 h-stored semen (diluted with the control extender used in Study 1) served as controls. The remaining females received seminal doses supplemented with 1.4 g/100mL gelatin (gel extender used in Study 1). Kindling rates for rabbit does inseminated with gelatin-supplemented (solid) semen doses stored for 48 h (88%) or 72 h (83%) were similar to those recorded for liquid controls stored for 24 h (81%), whereas rates significantly decreased when the semen was solid and stored for 96 h (64%) or 120 h (60%) before AI. In conclusion, rabbit spermatozoa were effectively stored in the solid state at 15 degrees C, with fertility preserved for up to 5 days. Solid storage of rabbit semen would facilitate commercial distribution.  相似文献   

16.
A breeding trial was conducted to evaluate the effect of in vitro storage time and temperature on fertilizing capacity of equine spermatozoa. Semen obtained from one stallion and diluted with skim milk-glucose extender was used to artificially inseminate 45 estrussynchronized mares. The mares were assigned to one of three treatment groups (15 mares per group): 1) insemination with fresh semen (collected within 0.5 h of use), 2) insemination with semen stored for 24 h at 20 degrees C or 3) insemination with semen stored for 24 h at 5 degrees C. The mares were inseminated daily during estrus, from the detection of a 35-mm follicle until ovulation, with 250 x 10(6) progressively motile spermatozoa (based on initial sperm motility of fresh semen). Semen samples (n = 35) were evaluated prior to insemination for percentages of total sperm motility (TSM), progressive sperm motility (PSM) and sperm velocity (SV). Single-cycle 15-d pregnancy rates. resulting from insemination with fresh semen, from fresh semen stored for 24 h at 20 degrees C or from semen stored for 24 h at 5 degrees C were the same (11 15 ; 73%). Mean diameters (mm) of 15-d embryonic vesicles were not different (P>0.05) among these three treatment groups (21.5 +/- 2.9, 19.6 +/- 2.6 and 20.5 +/- 3.6, respectively). Ten pregnant mares were aborted on Day 15 of gestation for use in another project. The pregnancy status of the 23 remaining pregnant mares was again determined at 35 to 40 d and 55 to 60 d of gestation. No pregnancy losses occurred during this time period. Mean TSM percentages were different (P<0.05) among the three groups: the fresh semen percentage was 89 +/- 2, semen stored for 24 h at 20 degrees C was 57 +/- 11 and semen stored for 24 h at 5 degrees C was 80 +/- 6. Similar differences were found for mean PSM and SV. Semen storage at either 20 or 5 degrees C for 24 h had no apparent effect on the fertilizing capacity of the extended semen samples; however, the reduction in all motility parameters tested was more dramatic in semen stored at 20 degrees C than that stored at 5 degrees C.  相似文献   

17.
Three experiments were conducted to evaluate the effects of egg yolk and(or) glycerol added to a nonfat dried skim milk-glucose (NDSMG) extender on motion characteristics and fertility of stallion spermatozoa. In Experiment 1, ejaculates from each of 8 stallions were exposed to each of 4 extender treatments: 1) NDSMG, 2) NDSMG + 4% egg yolk (EY), 3) NDSMG + 4% glycerol (GL), and 4) NDSMG + 4% egg yolk + 4% glycerol (EY + GL). Samples were cooled at -0.7 degrees C/min from 37 to 20 degrees C; subsamples were then cooled at -0.05 or -0.5 degrees C/min from 20 to 5 degrees C. Percentages of motile spermatozoa (MOT) and progressively motile spermatozoa (PMOT) were determined at 6, 24 and 48 h after initiation of cooling. There was no overall effect (P > 0.05) of cooling rate. PMOT was highest (P < 0.05) for spermatozoa extended in NDSMG + GL at 48 h. At 24 and 48 h, MOT and PMOT were lowest (P < 0.05) for spermatozoa extended in NDSMG + EY. In Experiment 2, ejaculates from 8 stallions were exposed to each of 4 treatments: 1) NDSMG, 2) NDSMG + EY, 3) semen centrifuged in NDSMG and resuspended in NDSMG, and 4) semen centrifuged in NDSMG and resuspended in NDSMG + EY. Samples were cooled from 20 to 5 degrees C at each of 2 rates (-0.05, -0.5 degrees C/min). A detrimental interaction between seminal plasma and egg yolk was noted for PMOT at 6 h and for both MOT and PMOT at > or = 24 h postcooling. Experiment 3 determined if egg yolk or glycerol affected fertility. The seminal treatments were 1) NDSMG, 2) NDSMG + EY with previous removal of seminal plasma, and 3) NDSMG + GL. All samples were cooled to 5 degrees C and stored 24 h before insemination. Embryo recovery rates 7 d after ovulation were lower for mares inseminated with spermatozoa cooled in NDSMG + EY (17%, 4/24) or NDSMG + GL (13%, 3/24) extenders, than semen cooled in NDSMG (50%, 12/24). We concluded that egg yolk (with seminal plasma removal) or glycerol added to NDSMG extender did not depress MOT or PMOT of cooled stallion spermatozoa but adversely affected fertility.  相似文献   

18.
The aim of this study was to determine the apoptotic-like changes in the spermatozoa of fresh and stored boar semen and to investigate the relationship between this phenomenon and the quality of embryos produced in vivo. The experiments were divided into two series. In the first series, ten ejaculates were collected from five boars, which were crossbreeds of the Polish Landrace and Large White breeds. The semen was stored as a liquid until Day A (the day on which sperm motility decreased to 30%). Three fluorescence methods were used to evaluate semen quality: an assay to assess the early changes in sperm membrane integrity using the fluorophore YO-PRO-1, an assay for phosphatidylserine (PS) translocation across the plasma membrane using fluorescein-labeled annexin-V and the mitochondrial-specific probe JC-1 (5,5',6,6'-tetrachloro-1,1',3,3' tetraethylbenzimidazolylcarbocyanine iodide) for measuring changes in mitochondrial membrane potential. Our results showed that liquid preservation of boar semen causes apoptotic-like changes in the sperm, and a significant increase in both: apoptotic sperm (YO-PRO-1(+)/PI(-)) and early apoptotic sperm (annexin-V(+)/PI(-)) were observed between Day 0 (fresh semen) and Day A only in semen from three of the five boars. In the second series of experiments, the semen from boar nos. 1, 2, and 3 was selected for insemination of superovulated gilts. The fertilizing capacity of fresh and stored semen with different levels of apoptotic spermatozoa was measured based on the morphology and the number of cells of embryos that were obtained after insemination with this semen. Our studies indicated no significant differences in the fertilization rate of gilts after insemination with fresh and stored semen with increased levels of apoptotic spermatozoa. After insemination with stored semen, a significantly greater number of degenerated embryos were observed, but the morphologically normal blastocysts obtained after insemination with either fresh or stored semen had a similar number of nuclei.  相似文献   

19.
In the horse industry, milk or milk-based extenders are used routinely for dilution and storage of semen cooled to 4-8 degrees C. Although artificial insemination (AI) with chilled and transported semen has been in use for several years, pregnancy rates are still low and variable related to variable semen quality of stallions. Over the years, a variety of extenders have been proposed for cooling, storage and transport of stallion semen. Fractionation of milk by microfiltration, ultrafiltration, diafiltration and freeze-drying techniques has allowed preparation of purified milk fractions in order to test them on stallion sperm survival. Finally, a high protective fraction, native phosphocaseinate (NPPC), was identified. A new extender, INRA96, based on modified Hanks' salts, supplemented with NPPC was then developed for use with cooled/stored semen.Four experiments were conducted to compare INRA96 and milk-based extenders under various conditions of storage. The diluted semen was maintained under aerobic conditions when stored at 15 degrees C, and anaerobic conditions when stored at 4 degrees C. In experiment 1, split ejaculates from 13 stallions were diluted either in INRA96 extender then stored at 15 degrees C or diluted in Kenney or INRA82 extenders and then stored at 4 degrees C for 24h, until insemination. In experiment 2, semen from two stallions was extended in INRA96 then inseminated immediately or stored at 15 degrees C for 3 days until insemination. In experiment 3, semen from three stallions was diluted in INRA96 then stored at 15 or 4 degrees C for 24h until insemination, finally, in experiment 4, split ejaculates from four stallions were diluted in INRA96 or E-Z Mixin extenders then stored at 4 degrees C for 24h until insemination. Experiment 1 demonstrated that at 15 degrees C, INRA96 extender significantly improved pregnancy rate per cycle compared to Kenney or INRA82 extenders at 4 degrees C after 24h of storage (57%, n=178 versus 40%, n=171, respectively; P<0.01). Experiment 2 showed that semen stored at 15 degrees C for 3 days can achieve pregnancy at a fertility rate per cycle of 48% (n=52) compared to 68% (n=50, immediate insemination, P=0.06). Experiment 3 demonstrated that INRA96 extender can be as efficient at 15 degrees C (54%, n=37) as at 4 degrees C (54%, n=35) after 24h of storage. Finally, experiment 4 showed that INRA96 extender used at 4 degrees C (59%, n=39) seems to improve fertility per cycle compared to E-Z Mixin at 4 degrees C (49%, n=39, P=0.25), but this result has to be confirmed.These results demonstrate that semen diluted in INRA96 extender and stored at 15 degrees C can be an alternative to semen diluted in milk-based extenders and stored at 4 degrees C for "poor cooler" stallions. Furthermore, INRA96 extender can be as efficient at 15 degrees C as at 4 degrees C, for preserving sperm motility and fertility.  相似文献   

20.
It would be desirable to use semen parameters to predict the in vivo fertilizing capacity of a particular ejaculate. In animal production, an ejaculate is divided into multiple doses for artificial insemination (AI); therefore, it would be economically beneficial to know the functional quality (i.e., fertility) of the semen before it is inseminated. To identify a predictive assay of the fertilizing capacity of a porcine ejaculate, we performed 4 rapid assays of sperm quality (motility, viability, physiological status as assessed by chlortetracycline fluorescence, and ATP content) on samples from 9 ejaculates, before and after a thermal stress test (42.5 degrees C, 45 min). These parameters were subsequently correlated with in vivo fertility resulting from AI with 2 sperm doses, 3 x 10(9) or 0.3 x 10(9) motile cells in 70 mL (optimal or suboptimal sperm number per insemination, respectively) from these same ejaculates. No parameter was correlated to the fertility rates obtained after inseminating with the optimal semen doses, either before or after the thermal stress test (P > 0.05). However, with respect to the animals inseminated with the suboptimal semen dose, sperm motility (the percentage of motile spermatozoa as assessed visually by microscopy) prior to thermal stress was well-correlated to fertility rates (r = 0.783, P = 0.01). The percentage of spermatozoa displaying the chlortetracycline Pattern AR (acrosome reaction) was also statistically related to fertility (r = 0.05, P = 0.04), but the biological importance of this relationship is questionable given the small variation among ejaculates (range: 0 to 2%). No other sperm parameter was significantly related to fertility rates in this group (P > 0.05). These data, therefore, indicate that sperm motility is a useful indicator of sperm fertilizing capacity in vivo. Moreover, to identify a predictor of semen fertility it is critical that the number of spermatozoa used during insemination is sufficiently low to detect differences in sperm fertilizing efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号