首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 910 毫秒
1.
2.
3.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

4.
Molecular characterizations of environmental microbial populations based on recovery and analysis of DNA generally assume efficient or unbiased extraction of DNA from different sample matrices and microbial groups. Appropriate controls to verify this basic assumption are rarely included. Here three different DNA extractions, performed with two commercial kits (FastDNA and UltraClean) and a standard phenol-chloroform method, and two alternative filtration methods (Sterivex and 25-mm-diameter polycarbonate filters) were evaluated, using the addition of Nitrosopumilus maritimus cells to track the recovery of DNA from marine Archaea. After the comparison, a simplified phenol-chloroform extraction method was developed and shown to be significantly superior, in terms of both the recovery and the purity of DNA, to other protocols now generally applied to environmental studies. The simplified and optimized method was used to quantify ammonia-oxidizing Archaea at different depth intervals in a fjord (Hood Canal) by quantitative PCR. The numbers of Archaea increased with depth, often constituting as much as 20% of the total bacterial community.Efficient DNA extraction from environmental samples is fundamental to many culture-independent characterizations (10). Thus, there was an early and concerted effort to establish appropriate methods of DNA extraction from different types of environmental samples (14, 19, 25, 30, 34, 43, 47). DNA extraction efficiency is particularly important for quantitative PCR (qPCR), because poor DNA extraction efficiency results in the underestimation of gene copy numbers in the samples examined (6, 42).Most methodological developments addressed DNA extraction from soil and sediment samples, with fewer comparative studies of the efficiency of collection and extraction from water samples (4, 13, 40). In part, a methodological focus on soils reflected the simplicity of filtration to collect aquatic populations and the generally good recovery of DNA from the Gram-negative bacteria making up a significant fraction of aquatic communities. However, small Archaea are now known to constitute a substantial fraction of the prokaryotic populations in marine and terrestrial systems (2, 7, 9, 20, 26, 31, 33, 45). Since the archaeal cell wall and membrane structures are distinct from those of bacteria, there is no assurance that commonly used extraction methods are adequate. With increasing reliance on commercially available bead-beating-type DNA extraction kits, these methods are now often used for different water samples (1, 5-7, 14, 19, 36). Although most protocols incorporate mechanical disruption to ensure more-uniform extraction than is possible by using methods that rely entirely on enzymatic digestion and/or chemical disruption (4, 13, 40), the suitability of these protocols for the concerted analysis of archaeal and bacterial populations has not been fully evaluated.In the studies reported here, the recently isolated marine archaeon Nitrosopumilus maritimus strain SCM1 (22) was therefore used as a reference standard for evaluation of the commonly employed DNA extraction methods by using qPCR. This archaeon was then used as a reference for the development of a simple, rapid, and efficient method of extracting DNA from both archaeal and bacterial cells. The modified protocol was subsequently employed to characterize the vertical distribution of ammonia-oxidizing Archaea in a fjord (Hood Canal) in Puget Sound (Washington State), revealing a high fractional representation of Archaea relative to Bacteria not observed previously in coastal waters.  相似文献   

5.
Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum, an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 μm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae. Next, to elucidate the cytoskeletal structure of M. gallisepticum, we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.Mycoplasmas are commensal and occasionally pathogenic bacteria that lack a peptidoglycan layer (50). Several species feature a membrane protrusion at a pole; for Mycoplasma mobile, this protrusion is called the head, and for Mycoplasma pneumoniae, it is called the attachment organelle (25, 34-37, 52, 54, 58). These species bind to solid surfaces, such as glass and animal cell surfaces, and exhibit gliding motility in the direction of the protrusion (34-37). This motility is believed to be essential for the mycoplasmas'' pathogenicity (4, 22, 27, 36). Recently, the proteins directly involved in the gliding mechanisms of mycoplasmas were identified and were found to have no similarities to those of known motility systems, including bacterial flagellum, pilus, and slime motility systems (25, 34-37).Mycoplasma gallisepticum is an avian pathogen that causes serious damage to the production of eggs for human consumption (50). The cells are pear-shaped and have a membrane protrusion, consisting of the so-called bleb and infrableb (29), and gliding motility (8, 14, 22). Their putative cytoskeletal structures may maintain this characteristic morphology because M. gallisepticum, like other mycoplasma species, does not have a cell wall (50). In sectioning electron microscopy (EM) studies of M. gallisepticum, an intracellular electron-dense structure in the bleb and infrableb was observed, suggesting the existence of a cytoskeletal structure (7, 24, 29, 37, 58). Recently, the existence of such a structure has been confirmed by scanning EM of the structure remaining after Triton X-100 extraction (13), although the details are still unclear.A human pathogen, M. pneumoniae, has a rod-shaped cytoskeletal structure in the attachment organelle (9, 15, 16, 31, 37, 57). M. gallisepticum is related to M. pneumoniae (63, 64), as represented by 90.3% identity between the 16S rRNA sequences, and it has some open reading frames (ORFs) homologous to the component proteins of the cytoskeletal structures of M. pneumoniae (6, 17, 48). Therefore, the cytoskeletal structures of M. gallisepticum are expected to be similar to those of M. pneumoniae, as scanning EM images also suggest (13).The fastest-gliding species, M. mobile, is more distantly related to M. gallisepticum; it has novel cytoskeletal structures that have been analyzed through negative-staining transmission EM after extraction by Triton X-100 with image averaging (45). This method of transmission EM following Triton X-100 extraction clearly showed a cytoskeletal “jellyfish” structure. In this structure, a solid oval “bell,” about 235 nm wide and 155 nm long, is filled with a 12-nm hexagonal lattice. Connected to this bell structure are dozens of flexible “tentacles” that are covered with particles 20 nm in diameter at intervals of about 30 nm. The particles appear to have 180° rotational symmetry and a dimple at the center. The involvement of this cytoskeletal structure in the gliding mechanism was suggested by its cellular localization and by analyses of mutants lacking proteins essential for gliding.In the present study, we applied this method to M. gallisepticum and analyzed its unique cytoskeletal structure, and we then compared it with that of M. pneumoniae.  相似文献   

6.
7.
Cryptosporidium parvum oocysts, which are spread by the fecal-oral route, have a single, multilayered wall that surrounds four sporozoites, the invasive form. The C. parvum oocyst wall is labeled by the Maclura pomifera agglutinin (MPA), which binds GalNAc, and the C. parvum wall contains at least two unique proteins (Cryptosporidium oocyst wall protein 1 [COWP1] and COWP8) identified by monoclonal antibodies. C. parvum sporozoites have on their surface multiple mucin-like glycoproteins with Ser- and Thr-rich repeats (e.g., gp40 and gp900). Here we used ruthenium red staining and electron microscopy to demonstrate fibrils, which appear to attach or tether sporozoites to the inner surface of the C. parvum oocyst wall. When disconnected from the sporozoites, some of these fibrillar tethers appear to collapse into globules on the inner surface of oocyst walls. The most abundant proteins of purified oocyst walls, which are missing the tethers and outer veil, were COWP1, COWP6, and COWP8, while COWP2, COWP3, and COWP4 were present in trace amounts. In contrast, MPA affinity-purified glycoproteins from C. parvum oocysts, which are composed of walls and sporozoites, included previously identified mucin-like glycoproteins, a GalNAc-binding lectin, a Ser protease inhibitor, and several novel glycoproteins (C. parvum MPA affinity-purified glycoprotein 1 [CpMPA1] to CpMPA4). By immunoelectron microscopy (immuno-EM), we localized mucin-like glycoproteins (gp40 and gp900) to the ruthenium red-stained fibrils on the inner surface wall of oocysts, while antibodies to the O-linked GalNAc on glycoproteins were localized to the globules. These results suggest that mucin-like glycoproteins, which are associated with the sporozoite surface, may contribute to fibrils and/or globules that tether sporozoites to the inner surface of oocyst walls.Cryptosporidium parvum and the related species Cryptosporidium hominis are apicomplexan parasites, which are spread by the fecal-oral route in contaminated water and cause diarrhea, particularly in immunocompromised hosts (1, 12, 39, 47). The infectious and diagnostic form of C. parvum is the oocyst, which has a single, multilayered, spherical wall that surrounds four sporozoites, the invasive forms (14, 27, 31). The outermost layer of the C. parvum oocyst wall is most often absent from electron micrographs, as it is labile to bleach used to remove contaminating bacteria from C. parvum oocysts (27). We will refer to this layer as the outer veil, which is the term used for a structure with an identical appearance on the surface of the oocyst wall of another apicomplexan parasite, Toxoplasma gondii (10). At the center of the C. parvum oocyst wall is a protease-resistant and rigid bilayer that contains GalNAc (5, 23, 43). When excysting sporozoites break through the oocyst wall, the broken edges of this bilayer curl in, while the overall shape of the oocyst wall remains spherical.The inner, moderately electron-dense layer of the C. parvum oocyst wall is where the Cryptosporidium oocyst wall proteins (Cryptosporidium oocyst wall protein 1 [COWP1] and COWP8) have been localized with monoclonal antibodies (4, 20, 28, 32). COWPs, which have homologues in Toxoplasma, are a family of nine proteins that contain polymorphic Cys-rich and His-rich repeats (37, 46). Finally, on the inner surface of C. parvum oocyst walls are knob-like structures, which cross-react with an anti-oocyst monoclonal antibody (11).Like other apicomplexa (e.g., Toxoplasma and Plasmodium), sporozoites of C. parvum are slender, move by gliding motility, and release adhesins from apical organelles when they invade host epithelial cells (1, 8, 12, 39). Unlike other apicomplexa, C. parvum parasites are missing a chloroplast-derived organelle called the apicoplast (1, 47, 49). C. parvum sporozoites have on their surface unique mucin-like glycoproteins, which contain Ser- and Thr-rich repeats that are polymorphic and may be modified by O-linked GalNAc (4-7, 21, 25, 26, 30, 32, 34, 35, 43, 45). These C. parvum mucins, which are highly immunogenic and are potentially important vaccine candidates, include gp900 and gp40/gp15 (4, 6, 7, 25, 26). gp40/gp15 is cleaved by furin-like proteases into two peptides (gp40 and gp15), each of which is antigenic (42). gp900, gp40, and gp15 are shed from the surface of the C. parvum sporozoites during gliding motility (4, 7, 35).The studies presented here began with electron microscopic observations of C. parvum oocysts stained with ruthenium red (23), which revealed novel fibrils or tethers that extend radially from the inner surface of the oocyst wall to the outer surface of sporozoites. We hypothesized that at least some of these fibrillar tethers might be the antigenic mucins, which are abundant on the surface of C. parvum sporozoites. To test this hypothesis, we used mass spectroscopy to identify oocyst wall proteins and sporozoite glycoproteins and used deconvolving and immunoelectron microscopy (immuno-EM) with lectins and anti-C. parvum antibodies to directly label the tethers.  相似文献   

8.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

9.
10.
11.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

12.
The distribution of viral genotypes in the ocean and their evolutionary relatedness remain poorly constrained. This paper presents data on the genetic diversity and evolutionary relationships of 1.2-kb DNA polymerase (pol) gene fragments from podoviruses. A newly designed set of PCR primers was used to amplify DNA directly from coastal sediment and water samples collected from inlets adjacent to the Strait of Georgia, British Columbia, Canada, and from the northeastern Gulf of Mexico. Restriction fragment length polymorphism analysis of 160 cloned PCR products revealed 29 distinct operational taxonomic units (OTUs), with OTUs within a site typically being more similar than those among sites. Phylogenetic analysis of the DNA pol gene fragments demonstrated high similarity between some environmental sequences and sequences from the marine podoviruses roseophage SIO1 and cyanophage P60, while others were not closely related to sequences from cultured phages. Interrogation of the CAMERA database for sequences from metagenomics data demonstrated that the amplified sequences were representative of the diversity of podovirus pol sequences found in marine samples. Our results indicate high genetic diversity within marine podovirus communities within a small geographic region and demonstrate that the diversity of environmental polymerase gene sequences for podoviruses is far more extensive than previously recognized.Marine viruses are the most abundant (41) and diverse (2, 6) biological entities in the ocean. They affect community composition by causing the lysis of specific subsets of the microbial community (22, 28, 46, 47) and, by killing numerically dominant host taxa, may influence species evenness and richness (24, 28, 43, 50). Despite the abundance of bacteriophages in marine systems and their important roles in marine microbial composition, little is known about the distribution and diversity of specific groups of marine viruses. However, most marine bacteriophage isolates are tailed phages (3) belonging to the order Caudovirales (27), which comprises the families Myoviridae, Podoviridae, and Siphoviridae.Podoviruses are classified into several groups (e.g., T7-like, P22-like, and phi-29-like) based on genome size, genome arrangement, and shared genes and can be readily isolated from seawater (11, 16, 42, 45). Genomic analysis of roseophage SIO1 (33), cyanophage P60 (7), vibriophage VpV262 (21), and cyanophage PSSP7 (40) suggests that many of the isolates are T7-like. Despite the apparently wide distribution of podoviruses in the sea, and their potential importance as agents of microbial mortality, there has been little effort to explore their diversity.Sequence analysis of representative genes is one approach that has been used to examine the genetic diversity of specific groups of marine viruses. For example, homologues for structural genes (g20 and g23) found in T4-like phages are found in some marine myoviruses (18, 20) and have been used to examine the distribution, diversity, and evolutionary relationships among marine myoviruses (12, 14, 17, 37, 38, 49). Other studies have used DNA polymerase (pol) to examine the diversity of viruses infecting eukaryotic phytoplankton (8, 38) and have shown that phylogenies constructed with this gene are congruent with established viral taxonomy (9, 36, 37).Although it is not universally present, family A DNA pol is a good target for examining the diversity of podoviruses (4). Our study presents a newly designed set of PCR primers that amplify a longer fragment of the DNA polymerase from a much larger suite of podoviruses and shows that the diversity within marine podoviruses as revealed by DNA pol sequences is far greater than previously realized.  相似文献   

13.
The ability to undergo dramatic morphological changes in response to extrinsic cues is conserved in fungi. We have used the model yeast Schizosaccharomyces pombe to determine which intracellular signal regulates the dimorphic switch from the single-cell yeast form to the filamentous invasive growth form. The S. pombe Asp1 protein, a member of the conserved Vip1 1/3 inositol polyphosphate kinase family, is a key regulator of the morphological switch via the cAMP protein kinase A (PKA) pathway. Lack of a functional Asp1 kinase domain abolishes invasive growth which is monopolar, while an increase in Asp1-generated inositol pyrophosphates (PP) increases the cellular response. Remarkably, the Asp1 kinase activity encoded by the N-terminal part of the protein is regulated negatively by the C-terminal domain of Asp1, which has homology to acid histidine phosphatases. Thus, the fine tuning of the cellular response to environmental cues is modulated by the same protein. As the Saccharomyces cerevisiae Asp1 ortholog is also required for the dimorphic switch in this yeast, we propose that Vip1 family members have a general role in regulating fungal dimorphism.Eucaryotic cells are able to define and maintain a particular cellular organization and thus cellular morphology by executing programs modulated by internal and external signals. For example, signals generated within a cell are required for the selection of the growth zone after cytokinesis in the fission yeast Schizosaccharomyces pombe or the emergence of the bud in Saccharomyces cerevisiae (37, 44, 81). Cellular morphogenesis is also subject to regulation by a wide variety of external signals, such as growth factors, temperature, hormones, nutrient limitation, and cell-cell or cell-substrate contact (13, 34, 66, 75, 81). Both types of signals will lead to the selection of growth zones accompanied by the reorganization of the cytoskeleton.The ability to alter the growth form in response to environmental conditions is an important virulence-associated trait of pathogenic fungi which helps the pathogen to spread in and survive the host''s defense system (7, 32). Alteration of the growth form in response to extrinsic signals is not limited to pathogenic fungi but is also found in the model yeasts S. cerevisiae and S. pombe, in which it appears to represent a foraging response (1, 24).The regulation of polarized growth and the definition of growth zones have been studied extensively with the fission yeast S. pombe. In this cylindrically shaped organism, cell wall biosynthesis is restricted to one or both cell ends in a cell cycle-regulated manner and to the septum during cytokinesis (38). This mode of growth requires the actin cytoskeleton to direct growth and the microtubule cytoskeleton to define the growth sites (60). In interphase cells, microtubules are organized in antiparallel bundles that are aligned along the long axis of the cell and grow from their plus ends toward the cell tips. Upon contact with the cell end, microtubule growth will first pause and then undergo a catastrophic event and microtubule shrinkage (21). This dynamic behavior of the microtubule plus end is regulated by a disparate, conserved, microtubule plus end group of proteins, called the +TIPs. The +TIP complex containing the EB1 family member Mal3 is required for the delivery of the Tea1-Tea4 complex to the cell tip (6, 11, 27, 45, 77). The latter complex docks at the cell end and recruits proteins required for actin nucleation (46, 76). Thus, the intricate cross talk between the actin and the microtubule cytoskeleton at specific intracellular locations is necessary for cell cycle-dependent polarized growth of the fission yeast cell.The intense analysis of polarized growth control in single-celled S. pombe makes this yeast an attractive organism for the identification of key regulatory components of the dimorphic switch. S. pombe multicellular invasive growth has been observed for specific strains under specific conditions, such as nitrogen and ammonium limitation and the presence of excess iron (1, 19, 50, 61).Here, we have identified an evolutionarily conserved key regulator of the S. pombe dimorphic switch, the Asp1 protein. Asp1 belongs to the highly conserved family of Vip1 1/3 inositol polyphosphate kinases, which is one of two families that can generate inositol pyrophosphates (PP) (17, 23, 42, 54). The inositol polyphosphate kinase IP6K family, of which the S. cerevisiae Kcs1 protein is a member, is the “classical” family that can phosphorylate inositol hexakisphosphate (IP6) (70, 71). These enzymes generate a specific PP-IP5 (IP7), which has the pyrophosphate at position 5 of the inositol ring (20, 54). The Vip1 family kinase activity was unmasked in an S. cerevisiae strain with KCS1 and DDP1 deleted (54, 83). The latter gene encodes a nudix hydrolase (14, 68). The mammalian and S. cerevisiae Vip1 proteins phosphorylate the 1/3 position of the inositol ring, generating 1/3 diphosphoinositol pentakisphosphate (42). Both enzyme families collaborate to generate IP8 (17, 23, 42, 54, 57).Two modes of action have been described for the high-energy moiety containing inositol pyrophosphates. First, these molecules can phosphorylate proteins by a nonenzymatic transfer of a phosphate group to specific prephosphorylated serine residues (2, 8, 69). Second, inositol pyrophosphates can regulate protein function by reversible binding to the S. cerevisiae Pho80-Pho85-Pho81 complex (39, 40). This cyclin-cyclin-dependent kinase complex is inactivated by inositol pyrophosphates generated by Vip1 when cells are starved of inorganic phosphate (39, 41, 42).Regulation of phosphate metabolism in S. cerevisiae is one of the few roles specifically attributed to a Vip1 kinase. Further information about the cellular function of this family came from the identification of the S. pombe Vip1 family member Asp1 as a regulator of the actin nucleator Arp2/3 complex (22). The 106-kDa Asp1 cytoplasmic protein, which probably exists as a dimer in vivo, acts as a multicopy suppressor of arp3-c1 mutants (22). Loss of Asp1 results in abnormal cell morphology, defects in polarized growth, and aberrant cortical actin cytoskeleton organization (22).The Vip1 family proteins have a dual domain structure which consists of an N-terminal “rimK”/ATP-grasp superfamily domain found in certain inositol signaling kinases and a C-terminal part with homology to histidine acid phosphatases present in phytase enzymes (28, 53, 54). The N-terminal domain is required and sufficient for Vip1 family kinase activity, and an Asp1 variant with a mutation in a catalytic residue of the kinase domain is unable to suppress mutants of the Arp2/3 complex (17, 23, 54). To date, no function has been described for the C-terminal phosphatase domain, and this domain appears to be catalytically inactive (17, 23, 54).Here we describe a new and conserved role for Vip1 kinases in regulating the dimorphic switch in yeasts. Asp1 kinase activity is essential for cell-cell and cell-substrate adhesion and the ability of S. pombe cells to grow invasively. Interestingly, Asp1 kinase activity is counteracted by the putative phosphatase domain of this protein, a finding that allows us to describe for the first time a function for the C-terminal part of Vip1 proteins.  相似文献   

14.
15.
The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [13C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments.Archaea have long been known as extremophiles, since most cultivated archaeal strains were cultivated from extreme environments, such as acidic, hot, and high-salt environments. The view of archaea as extremophiles (i.e., acidophiles, thermophiles, and halophiles) has radically changed by the application of molecular technologies, including PCR in environmental microbiology. Using Archaea-specific PCR primers, novel archaeal 16S rRNA gene sequences were discovered in seawater (23, 27). Following these discoveries, an ever-increasing and unexpectedly high variety of archaeal 16S rRNA gene sequences has been reported from diverse “nonextreme” environments (67). This indicates that archaea are, like bacteria, ubiquitous in the biosphere rather than exclusively inhabiting specific extreme niches. Archaea are abundant in water columns of some oceanic provinces (33, 36) and deep-subsea floor sediments (11, 12, 48). Despite the increasing number of reports of the diversity and abundance of these nonextreme archaea by molecular ecological studies, their physiology and ecological roles have remained enigmatic.Oxidation of ammonia, a trait long thought to be exclusive to the domain Bacteria (13), was recently suggested to be a trait of archaea of the crenarchaeal groups I.1a and I.1b, based on a metagenome analysis (79) and supported by the discovery of archaeal amoA-like genes in environmental shotgun sequencing studies of Sargasso Sea water (80) and genomic analysis of “Candidatus Cenarchaeum symbiosum,” a symbiont of a marine sponge (30). Molecular ecological studies indicated that these ammonia-oxidizing archaea (AOA) are often predominant over ammonia-oxidizing bacteria (AOB) in ocean waters (9, 53, 87), soils (17, 47), and marine sediments (61). Critical evidence for autotrophic archaeal ammonia oxidation was obtained by the characterization of the first cultivated mesophilic crenarchaeon (group I.1a), “Candidatus Nitrosopumilus maritimus SCM1,” from an aquarium (38), and a related archaeon from North Sea water (87) and subsequently by enrichment of thermophilic AOA (22, 31). Whole-genome-based phylogenetic studies recently indicated that the nonthermophilic crenarchaea, including the AOA, likely form a phylum separate from the Crenarchaeota and Euryarchaeota phyla (15, 16, 72). This proposed new phylum was called Thaumarchaeota (15).Microorganisms in marine sediments contribute significantly to global biogeochemical cycles because of their abundance (85). Nitrification is essential to the nitrogen cycle in marine sediments and may be metabolically coupled with denitrification and anaerobic ammonium oxidation, resulting in the removal of nitrogen as molecular nitrogen and the generation of greenhouse gases, such as nitrous oxide (19, 75). Compared with studies on archaeal nitrification in the marine water column, only limited information on archaeal nitrification in marine sediments is available so far. Archaeal amoA genes have been retrieved from marine and coastal sediments (8, 26, 61), and the potentially important role of AOA in nitrification has been suggested based on the abundance of archaeal amoA genes relative to that of bacterial amoA genes in surface marine sediments from Donghae (South Korea) (61). Cultivation of AOA, although difficult (38), remains essential to estimating the metabolic potential of archaea in environments such as soils (47) and marine sediments (61). Here, we report the successful enrichment of AOA of crenarchaeal group I.1a from marine sediments by employing a coculture with sulfur-oxidizing bacteria (SOB) which was maintained for ca. 20 months with biweekly transfers. In this way, we were able to characterize AOA from marine sediments, providing a clue for the role of AOA in the nitrogen cycle of marine sediments.  相似文献   

16.
17.
18.
Pyomelanin overproduction is a common phenotype among Pseudomonas aeruginosa isolates recovered from cystic fibrosis and urinary tract infections. Its prevalence suggests that it contributes to the persistence of the producing microbial community, yet little is known about the mechanisms of its production. Using transposon mutagenesis, we identified factors that contribute to melanogenesis in a clinical isolate of P. aeruginosa. In addition to two enzymes already known to be involved in its biosynthesis (homogentisate dioxygenase and hydroxyphenylpyruvate dioxygenase), we identified 26 genes that encode regulatory, metabolic, transport, and hypothetical proteins that contribute to the production of homogentisic acid (HGA), the monomeric precursor of pyomelanin. One of these, PA14_57880, was independently identified four times and is predicted to encode the ATP-binding cassette of an ABC transporter homologous to proteins in Pseudomonas putida responsible for the extrusion of organic solvents from the cytosol. Quantification of HGA production by P. aeruginosa PA14 strains missing the predicted subcomponents of this transporter confirmed its role in HGA production: mutants unable to produce the ATP-binding cassette (PA14_57880) or the permease (PA14_57870) produced substantially less extracellular HGA after growth for 20 h than the parental strain. In these mutants, concurrent accumulation of intracellular HGA was observed. In addition, quantitative real-time PCR revealed that intracellular accumulation of HGA elicits upregulation of these transport genes. Based on their involvement in homogentisic acid transport, we rename the genes of this operon hatABCDE.Pseudomonas aeruginosa is a metabolically versatile, opportunistic pathogen that is a major cause of life-threatening infections in patients with burn wounds, compromised immunity, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) (23, 41). A major contributor to P. aeruginosa''s pathogenicity is its remarkable genomic plasticity, which often results is a wide range of phenotypic variation among isolates obtained from both acute and chronic infections. These phenotypes include small colony variant formation (24), alginate overproduction (36), hyperpigmentation (22), autoaggregation (13), and autolysis (64). Many of these phenotypes evolve as infections progress, and most have been ascribed to “loss-of-function” genome diversification that promotes long-term survival in the host environment (54). In this regard, recent studies have stimulated interest in another example of a loss-of-function phenotype, the mutation or deletion of hmgA, which encodes the homogentisate 1,2-dioxygenase enzyme. The absence of this protein leads to the accumulation and subsequent export of homogentisic acid (HGA), which ultimately aggregates into the pyomelanin polymer that manifests as a reddish brown pigmentation of P. aeruginosa colonies and their surrounding milieu (Fig. (Fig.1A)1A) (5, 49).Open in a separate windowFIG. 1.Pyomelanin production by the PA14 ΔhmgA and DKN343 strains. (A) Homogentisate pathway for the catabolism of chorismate and aromatic amino acids. Enzyme names are shown above the arrows for each step. A mutation or deletion of the hmgA gene (encoding homogentisate 1,2-dioxygenase) leads to the accumulation of pyomelanin. (B) Pyomelanin overproduction by the PA14 ΔhmgA mutant is abolished when complemented with an intact hmgA gene. Complementation of a melanogenic clinical P. aeruginosa isolate, DKN343, with hmgA results in no phenotypic change, indicating that other factors contribute to its pigmentation.Production of pyomelanin (and other forms of melanin) has been described to occur in a wide range of bacterial species, including Aeromonas (4), Azotobacter (51), Azospirillum (50), Bacillus (3), Legionella (8), Marinomonas (33), Micrococcus (40), Mycobacterium (45), Proteus (1), Rhizobium (12), Shewanella (61), Sinorhizobium (38), Streptomyces (67), and Vibrio (63) species. Notably, isolates of other bacterial species associated with chronic infections of the CF lung, Burkholderia cenocepacia and Stenotrophomonas maltophilia, can also be melanogenic (28, 58), suggesting a possible role for this pigment in the establishment and/or persistence of infection. Some genera produce melanin under normal conditions via polyphenol oxidases or laccases, while others synthesize the pigment only in response to specific environmental conditions (17, 35). Many species, however, including P. aeruginosa, overproduce pyomelanin as a result of a point mutation in hmgA or large chromosomal deletions of loci containing the homogentisate operon (2, 19). While these genetic variations have been frequently reported, there is little understanding of the competitive advantage, if any, that this pigment confers to the producing bacterium.Proposed roles for pyomelanin include the enhancement of bacterial surface attachment (20), extracellular electron transfer (61), iron reduction/acquisition (8), induction of virulence factor expression (63), heavy metal binding (21), and protection from environmental stress (11, 28, 32, 44, 53, 65). A protective role has also been proposed to occur in P. aeruginosa PA14, where pyomelanin was shown to contribute to the persistence of an overproducing strain in a chronic CF infection model in mice (49). However, given that melanogenic isolates have been recovered from laboratory-grown communities of P. aeruginosa PAO1 (5, 56), it is probable that pyomelanin plays other roles in addition to protection against host defense mechanisms.As a first step toward gaining a better understanding of pyomelanin function, we sought to identify the molecular determinants of its production in P. aeruginosa. By screening a library of pTnTet/minimariner transposon mutants of a pyomelanin-overproducing clinical isolate for alterations in pigmentation, we identified several genes whose products are involved in tyrosine catabolism, central metabolic pathways, nucleotide biosynthesis, regulation, and membrane transport, in addition to hypothetical proteins of unknown function. We chose to further characterize the gene identified most frequently in our screen, one annotated as encoding a putative ATP-binding cassette of an ABC-type transporter. Here, we demonstrate that this transporter is involved in HGA transport and the subsequent extracellular formation of pyomelanin.  相似文献   

19.
20.
A bioinformatic analysis of nearly 400 genomes indicates that the overwhelming majority of bacteria possess homologs of the Escherichia coli proteins FtsL, FtsB, and FtsQ, three proteins essential for cell division in that bacterium. These three bitopic membrane proteins form a subcomplex in vivo, independent of the other cell division proteins. Here we analyze the domains of E. coli FtsL that are involved in the interaction with other cell division proteins and important for the assembly of the divisome. We show that FtsL, as we have found previously with FtsB, packs an enormous amount of information in its sequence for interactions with proteins upstream and downstream in the assembly pathway. Given their size, it is likely that the sole function of the complex of these two proteins is to act as a scaffold for divisome assembly.The division of an Escherichia coli cell into two daughter cells requires a complex of proteins, the divisome, to coordinate the constriction of the three layers of the Gram-negative cell envelope. In E. coli, there are 10 proteins known to be essential for cell division; in the absence of any one of these proteins, cells continue to elongate and to replicate and segregate their chromosomes but fail to divide (29). Numerous additional nonessential proteins have been identified that localize to midcell and assist in cell division (7-9, 20, 25, 34, 56, 59).A localization dependency pathway has been determined for the 10 essential division proteins (FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN), suggesting that the divisome assembles in a hierarchical manner (29). Based on this pathway, a given protein depends on the presence of all upstream proteins (to the left) for its localization and that protein is then required for the localization of the downstream division proteins (to the right). While the localization dependency pathway of cell division proteins suggests that a sequence of interactions is necessary for divisome formation, recent work using a variety of techniques reveals that a more complex web of interactions among these proteins is necessary for a functionally stable complex (6, 10, 19, 23, 24, 30-32, 40). While numerous interactions have been identified between division proteins, further work is needed to define which domains are involved and which interactions are necessary for assembly of the divisome.One subcomplex of the divisome, composed of the bitopic membrane proteins FtsB, FtsL, and FtsQ, appears to be the bridge between the predominantly cytoplasmic cell division proteins and the predominantly periplasmic cell division proteins (10). FtsB, FtsL, and FtsQ share a similar topology: short amino-terminal cytoplasmic domains and larger carboxy-terminal periplasmic domains. This tripartite complex can be divided further into a subcomplex of FtsB and FtsL, which forms in the absence of FtsQ and interacts with the downstream division proteins FtsW and FtsI in the absence of FtsQ (30). The presence of an FtsB/FtsL/FtsQ subcomplex appears to be evolutionarily conserved, as there is evidence that the homologs of FtsB, FtsL, and FtsQ in the Gram-positive bacteria Bacillus subtilis and Streptococcus pneumoniae also assemble into complexes (18, 52, 55).The assembly of the FtsB/FtsL/FtsQ complex is important for the stabilization and localization of one or more of its component proteins in both E. coli and B. subtilis (11, 16, 18, 33). In E. coli, FtsB and FtsL are codependent for their stabilization and for localization to midcell, while FtsQ does not require either FtsB or FtsL for its stabilization or localization to midcell (11, 33). Both FtsL and FtsB require FtsQ for localization to midcell, and in the absence of FtsQ the levels of full-length FtsB are significantly reduced (11, 33). The observed reduction in full-length FtsB levels that occurs in the absence of FtsQ or FtsL results from the degradation of the FtsB C terminus (33). However, the C-terminally degraded FtsB generated upon depletion of FtsQ can still interact with and stabilize FtsL (33).While a portion of the FtsB C terminus is dispensable for interaction with FtsL and for the recruitment of the downstream division proteins FtsW and FtsI, it is required for interaction with FtsQ (33). Correspondingly, the FtsQ C terminus also appears to be important for interaction with FtsB and FtsL (32, 61). The interaction between FtsB and FtsL appears to be mediated by the predicted coiled-coil motifs within the periplasmic domains of the two proteins, although only the membrane-proximal half of the FtsB coiled coil is necessary for interaction with FtsL (10, 32, 33). Additionally, the transmembrane domains of FtsB and FtsL are important for their interaction with each other, while the cytoplasmic domain of FtsL is not necessary for interaction with FtsB, which has only a short 3-amino-acid cytoplasmic domain (10, 33).In this study, we focused on the interaction domains of FtsL. We find that, as with FtsB, the C terminus of FtsL is required for the interaction of FtsQ with the FtsB/FtsL subcomplex while the cytoplasmic domain of FtsL is involved in recruitment of the downstream division proteins. Finally, we provide a comprehensive analysis of the presence of FtsB, FtsL, and FtsQ homologs among bacteria and find that the proteins of this complex are likely more widely distributed among bacteria than was previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号