首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Carboxymethyl cellulase (CMCase) hydrolyses cellulose into glucose and is useful in various industrial applications. Conventional CMCase purification methods are rather complicated and time-consuming; thus, a cost-effective strategy for CMCase recovery is on demand. Polyethylene-glycol (PEG)/sodium citrate aqueous biphasic system (ABS) was adopted in this study to investigate the effectiveness of the ABS in the recovery of extracellular Bacillus subtilis CMCase from fermentation broth. Comprehensive optimization steps were executed that took into consideration the ABS variables of PEG molecular weight, tie-line length (TLL), volume ratio (VR), crude loading, pH and the addition of sodium chloride (NaCl). A CMCase recovery yield (YB) of 88.82% ± 0.69, a purification fold (PF) of 4.8 and a partition coefficient (K) of 0.44 ± 0.03 were achieved from the bottom phase of the PEG 6000/citrate ABS with TLL of 42.16% (w/w), VR of 0.29, 1% of (w/w) NaCl, pH 7.0, and 20% (w/w) crude loading. CMCase was mainly segregated to the salt-rich bottom phase because of the hydrophilicity of the enzyme surface. The highly effective recovery technique was further confirmed by SDS-PAGE analysis. Overall, the present study suggests that the ABS is a potential purification strategy for extracellular CMCase.  相似文献   

2.
Extraction of bromelain from pineapple peel (Nang Lae cultv.) using aqueous two phase system (ATPS) was optimized. Some biochemical properties including collagen hydrolysis were also investigated. Bromelain predominantly partitioned to the polyethylene glycol (PEG)-rich phase. The highest enzyme activity recovery (113.54%) and purification fold (2.23) were presented in the top phase of 15% PEG2000–14% MgSO4. Protein pattern and activity staining showed the molecular weight (MW) of bromelain to be about 29 kDa. The extracted bromelain showed the highest relative activity at pH 7.0 and 55 °C. Its activity was decreased continuously by increasing NaCl concentration (up to 1.5% (w/v)). The bromelain extract was applied to hydrolyze the skin collagen of beef and giant catfish (0–0.3 units). The β, α1, α2 of giant catfish skin collagen extensively degraded into small peptides when treated with 0.02 units of the bromelain extract. Bovine collagen was hydrolyzed using higher bromelain up to 0.18 units. This study showed the ATPS can be employed to partially purify bromelain from Nang Lae pineapple peel and the enzyme effectively hydrolyzed the collagens.  相似文献   

3.
The main parameters which influence the behaviour of phase separation in a single-stage Kühni-type aqueous two-phase extraction column containing polyethylene (PEG) and di-potassium hydrogen phosphate were characterised. Two aqueous two-phase system (ATPS) composed of 12% (w/w) PEG 1450 and 12% (w/w) di-potassium hydrogen phosphate (designated as 12/12) and 12% (w/w) PEG 1450 and 11% (w/w) di-potassium hydrogen phosphate (designated as 12/11) were chosen in this study. The hold-up ɛD increased with increasing impeller speeds and mobile phase flow rates. Phase separation for the 12/11 system was slower than that for the 12/12 system, which resulted in higher dispersed phase hold-up values for the 12/11 system. For 12/12 system, mass transfer of plasmid DNA (pDNA) from the dispersed mobile phase to the stationary phase increased rapidly with increasing impeller speeds of 130, 160 and 200 rpm which was reflected in the decreased values for CT/CTo. The degree of back-mixing quantified by the axial dispersion coefficient Dax was estimated to be 2.7 × 10−6 m2 s−1.  相似文献   

4.
A novel aqueous two phase system (ATPS) using trimethylamine-polyethylene glycols (TMA-PEG) to promote the extraction of C-phycocyanin (C-PC) from S.platensis was introduced. The purity of C-PC (EP) obtained in the ATPS of PEG1000/Na3PO4 was increased 2.1 times by the addition of TMA-PEG1000. The purification factor was enhanced from 2.9 to 10.1 when 65% TMA-PEG1000 was added in the system. The ATPS operation must be carried out in the pH range of 6.0-7.0 and at temperatures less than 35 °C for maintaining the stability of C-PC. The partition coefficient and recovery ratio of C-PC increased with the increasing concentration of TMA-PEG. The system parameters like TMA-PEG1000 content, tie line length (TLL), pH, temperature and phase volume ratio (Vr) were screened and optimized using the fractional factorial design and Box-Behnken experiment design. The optimized system is composed of 11.8% PEG1000/TMA-PEG1000 (w/w), 64.42% TMA-PEG1000 (w/w PEG1000) and 9.5% Na3PO4 (w/w) with 38.19% TLL (w/w) and 0.89 Vr at pH 6.5 and 25 °C. The obtained value of EP was 5.21 in one-stage ATPS and 6.7 in two-stage ATPS. The recovery ratio of C-PC in the new ATPS extraction system was more than 97%.  相似文献   

5.
The crude intracellular lipase (cell homogenate) from Trichosporon laibacchii was subjected to partial purification by aqueous two-phase system (ATPS) and then in situ immobilization by directly adding diatomites as carrier to the top PEG-rich phase of ATPS. A partition study of lipase in the ATPS formed by polyethylene glycol–potassium phosphate has been performed. The influence of system parameters such as molecular weight of PEG, system phase composition and system pH on the partitioning behaviour of lipase was evaluated. The ATPS consisting of PEG 4000 (12%) and potassium phosphate (K2HPO4, 13%) resulted in partition of lipase to the PEG-rich phase with partition coefficient 7.61, activity recovery 80.4%, and purification factor of 5.84 at pH of 7.0 and 2.0% NaCl. Moreover, the in situ immobilization of lipase in PEG phase resulted in a highest immobilized lipase activity of 1114.6 U g?1. The above results show that this novel lipase immobilization procedure which couples ATPS extract and enzyme immobilization is cost-effective as well as time-saving. It could be potentially useful technique for the purification and immobilization of lipase.  相似文献   

6.
《Process Biochemistry》2007,42(9):1296-1301
Recombinant Bacillus sphaericus phenylalanine dehydrogenase (PheDH) partitioning was studied in polyethylene glycol (PEG) and ammonium sulfate aqueous two-phase systems (ATPS). The objectives of this work were to investigate influences; varying the molecular mass and concentration of PEG, pH, phase volume ratio (VR), tie-line length (TLL) and concentration of (NH4)2SO4 on the partition behavior of PheDH. It was revealed that the partitioning was not affected by VR, while PEG molecular mass and concentration and (NH4)2SO4 concentration had significant effects on enzyme partitioning. Longer TLL and higher pH resulted in better partitioning into the top phase. Under the most favorable partition conditions with 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH4)2SO4 and VR = 0.25 at pH 8.0, partition coefficient (KE), recovery (R%), yield (Y%) and TLL were achieved 58.7%, 135%, 94.42% and 39.89% (w/w), respectively. Overall, the promising results obtained in this research indicated that the ATPS partitioning can be provided an efficient and powerful tool for recovery and purification of recombinant PheDH.  相似文献   

7.
(S)-(4-Chlorophenyl)-(pyridin-2-yl)methanol [(S)-CPMA] is an important chiral intermediate of anti-allergic drug Betahistine. Carbonyl reductase-producing microorganisms were isolated from soil samples for the stereoselective reduction of (4-chlorophenyl)-(pyridin-2-yl)methanone (CPMK) to (S)-CPMA. Among over 400 microorganisms isolated, one strain exhibiting the highest activity was selected and identified as Kluyveromyces sp. After optimization, the biotransformation reaction catalyzed by Kluyveromyces sp. CCTCC M2011385 whole-cell gave product (S)-CPMA in 81.5% ee and 87.8% yield at substrate concentration of 2 g/L in aqueous phase. Using an aqueous two-phase system (ATPs) consisted of PEG4000 (20%, w/w) and Na2HPO4 (14%, w/w), the product reached 86.7% ee and 92.1% yield at a higher substrate concentration of 6 g/L. The substrate tolerance and biocompatibility of microbial cells are greatly improved in ATPs by accumulating substrate/product in the upper PEG solution. This study, for the first time, reports the production of (S)-CPMA catalyzed by microbial cells.  相似文献   

8.
《Process Biochemistry》2014,49(12):2305-2312
The partitioning of proteases expressed by Penicillium restrictum from Brazilian Savanna in an inexpensive aqueous two-phase system composed of poly (ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied. The effects of PEG molecular weight and concentration, as well as NaPA concentration and the concentration of fermented broth on protease partitioning were studied. Partitioning into the top PEG-rich phase was increased in systems with smaller PEG-molecular weight, higher NaPA concentration and lower PEG concentration. For most systems studied, purification has been achieved by directing the biomolecule partition to the opposite phase of the other proteins, providing the enzyme purification. The highest partition coefficient was obtained using 20 wt% NaPA, 4 wt% PEG 2000 g mol−1 and 45 wt% fermented broth, leading to a purification factor of 1.98 and partition coefficient of 37.73. The system showed high mass balances and yield, indicating enzyme stability and applicability for industrial processes. The partitioning results using the PEG/NaPA/NaCl system show that this method could be used to purify or concentrate protease from fermented broth.  相似文献   

9.
《Process Biochemistry》2014,49(2):335-346
Selective purification still poses a challenge in the downstream processing of biomolecules such as proteins and especially enzymes. In this study a polyethylene glycol 3000 (PEG 3000)–phosphate aqueous two-phase system at 25 °C and pH 7 was successfully used for laccase purification and separation. Initially, the effect of phase forming components on enzyme activities in homogenous systems was studied. In the course of the extraction experiments tie lines, enzyme source, initial enzyme activities, phase ratio and sodium chloride concentrations were varied and their influence on the activity partitioning was determined. Partitioning results were validated using clear-native-PAGE and isoelectric focusing. Based on these results, the separation of laccases from Trametes versicolor and Pleurotus sapidus was investigated using the principle of superposition. Sodium chloride was used to adjust laccase partitioning in the applied aqueous two-phase system (ATPS). Finally, two modes of operation are proposed depending on the aim of the purification task. One mode with 0.133 g g−1 of PEG3000, 0.063 g g−1 of phosphate and without sodium chloride separates P. sapidus laccases from T. versicolor laccases with clearance factors of 5.23 and 6.45, respectively. The other mode of operation with 0.124 g g−1 of PEG3000, 0.063 g g−1 of phosphate and 0.013 g g−1 of sodium chloride enables a partitioning of both laccases into the bottom phase of the ATPS resulting in a purification factor of 2.74 and 96% activity recovery.  相似文献   

10.
《Process Biochemistry》2010,45(8):1432-1436
In this paper, a two-step process for initial capture of plasmid DNA (pDNA) and partial removal of RNA using polyethylene glycol (PEG) and di-potassium hydrogen phosphate aqueous two-phase systems (ATPS) has been investigated. A Kühni-type ATPS extraction column was prepared with 50 ml (12% (w/w) PEG 1450, 12% (w/w) phosphate) of stationary phase and loaded with crude mobile phase (26% (w/w) PEG 1450, 4% (w/w) phosphate and 70% (w/w) lysate) at a flow rate of 6 ml min−1 at an impeller speed of 200 rpm. The experiment was terminated after 100 min, and after complete resettling of the phases, 45 ml of stationary phase was harvested. During a subsequent second extraction step contained 18% (w/w) PEG 300 and 14% (w/w) phosphate, a proportion of RNA, which was also concentrated during the column process, was removed. It was demonstrated that the recovery of pDNA in the second bottom phase was 89.4%, which was similar to the initial recovery after column extraction (92.1%).  相似文献   

11.
《Process Biochemistry》2010,45(3):369-374
The recovery and purification of lysozyme from hen egg white has been investigated in an aqueous two-phase systems composed of thermoseparating random copolymers of ethylene oxide (EO), propylene oxide (PO) and potassium phosphate. In the primary extraction step lysozyme was satisfactorily partitioned to the top polymer-rich phase in a system composed of 40% (w/w) EO50PO50, 10% (w/w) potassium phosphate, and 0.85 M sodium chloride at pH 9.0, diluted 3-fold with crude egg white, where contaminating proteins were discarded in the bottom phosphate-rich phase. After the primary phase separation the upper EO50PO50 phase was removed and subjected to temperature-induced (65 °C) phase separation, which resulted in the partitioning of pure lysozyme to the top water phase. The separation system was found to be efficient in achieving the purification of lysozyme in a high yield of 85% and specific activity of 32,300 U/mg of protein, with a purification factor of 16.9 and a concentration of lysozyme in the water phase of 2.3 g/l in two extraction steps.  相似文献   

12.
《Process Biochemistry》2010,45(7):1148-1155
The protease from the latex of Calotropis procera was isolated by an aqueous two-phase system (ATPS). The systems consist of polyethylene glycol (PEG 4000, 6000 and 8000) at concentrations of 9, 12 and 15% (w/w) with salts (Na-citrate, MgSO4, K2HPO4, and (NH4)2SO4) at concentrations of 11, 14 and 17% (w/w) were investigated. The highest protease recovery was found in the PEG-rich phase of the system, comprising of 12% PEG 4000–17% MgSO4. For optimization of the system to obtain the higher yield of protease, the system pH (4, 7 and 10) or NaCl addition (2, 4 and 6%, w/w) was studied. At acidic (pH 4.0) and alkaline (9.0) conditions of the systems the reduction of KE and protease recovery was clearly observed compared to that of the neutral pH (7.0). The addition of NaCl up to a final concentration of 6% (w/w) significantly increased the yield to 107% of the control. Molecular weight distribution and activity staining showed that the isolated protease had the molecular weight of ∼38 kDa. However, the isolated protease had no activity under reducing condition (βME). Under cathodic electrophoresis, protease from C. procera showed the same protein pattern to purified papain.  相似文献   

13.
In this study an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and potassium phosphate was tested for the purification of lipase from Yarrowia lipolytica IMUFRJ 50682. Ultrafiltration and precipitation with acetone and kaolin were also used as traditional comparison methods Ultrafiltration was a good method with a purification factor of 6.55, but protease was also purified in this extract. For the precipitation with acetone and kaolin lower values of lipase and protease activity were found in relation to the original crude enzyme extract. Under the best conditions of ATPS (pH 6 and 4 °C), the purification fold was greater than 40 and selectivity was almost 500. Lipase was recovered in the salty phase which makes it easier to purify it. The optimum pH and temperature ranges for purified lipase with this system was 6–7 and 35–40 °C, respectively. Lipase thermostability was increased in relation to crude extract after the purification with the PEG/phosphate buffer system for temperatures lower than 50 °C. All enzyme extracts showed good stability to a wide pH range. Y. lipolytca lipase was successfully purified by using ATPS in a single downstream processing step and presented good process characteristics after this treatment.  相似文献   

14.
Lectin from crude extract of small black kidney bean (Phaseolus vulgaris) was successfully extracted using the reversed micellar extraction (RME). The effects of water content of organic phase (Wo), ionic strength, pH, Aerosol-OT (AOT) concentration and extraction time on the forward extraction and the pH and ionic strength in the backward extraction were studied to optimize the extraction efficiency and purification factor. Forward extraction of lectin was found to be maximum after 15 min of contact using 50 mM AOT in organic phase with Wo 27 and 10 mM citrate-phosphate buffer at pH 5.5 containing 100 mM NaCl in the aqueous phase. Lectin was backward extracted into a fresh aqueous phase using sodium-phosphate buffer (10 mM, pH 7.0) containing 500 mM KCl. The overall yield of the process was 53.28% for protein recovery and 8.2-fold for purification factor. The efficiency of the process was confirmed by gel electrophoresis analysis.  相似文献   

15.
Product inhibition is a barrier for enzymatic conversion of cellulose into reducing sugar in single aqueous phase. In addition, the difficulty in the recovery of cellulase also leads to high cost for the enzymatic hydrolysis of cellulose. In this study, enzymatic degradation of cellulose was carried out in pH–pH recyclable aqueous two-phase systems (ATPS) composed by copolymers poly (AA-co-DMAEMA-co-BMA) (abbreviated PADB3.8) and poly (MAA-co-DMAEMA-co-BMA) (abbreviated PMDB). In the systems, cellulase was immobilized on pH-response copolymer PMDB by using 1-Ethyl-3-(3-dimethyllaminopropyl)-carbodiimide hydrochloride (EDC) as cross-linker. Optimized partition coefficient of product in the systems was 2.45, in the presence of 40 mM (NH4)2SO4. Insoluble substrate and immobilized enzyme were biased to bottom phase, while the product was partitioned to top phase. Microcrystalline cellulose was hydrolyzed into reducing sugar, and the product entered into top phase. The yield of saccharification in ATPS could reach 70.57% at the initial substrate concentration of 0.5% (w/v), and the value was 9.3% higher than that in the single aqueous phase. Saccharification yield could reach 66.15% after immobilized cellulase was recycled five times in ATPS.  相似文献   

16.
Optically active epoxides can be prepared by kinetic resolution of racemic mixtures using stereospecific epoxide hydrolases. To increase the bio-resolution efficiency of a sparingly water-soluble epoxide (glycidyl phenyl ether, GPE), we investigated the use of organic/aqueous two-phase system. Various conditions were systematically examined and optimized in shake flasks. Isooctane was found to be the most suitable solvent as the organic phase. The phase volume ratio (ϕo/w) and biocatalyst concentration were shown to be sensitive parameters affecting both the reaction rate and the enzyme enantiospecificity in the biphase system. An isooctane/aqueous system was developed to overcome the low solubility and instability of GPE in the aqueous phase, resulting in a significant improvement of enatiomeric ratio (E-value) from 39.5 to 94.0 and an average productivity of 18.8 mg GPE/(h g) biocatalyst to 48.9 mg GPE/(h g) biocatalyst, respectively. Resolution of a 90.1 g/l solution of racemic glycidyl phenyl ether in isooctane phase was successfully carried out in a mechanically stirred reactor (120 ml), affording (S)-glycidyl phenyl ether in high (100%) enantiomeric excess with a yield of 44.5%.  相似文献   

17.
Aspergillopepsin I, an acid protease, was purified using an aqueous two-phase system that comprised various combinations of polyethylene glycol (PEG), NaH2PO4 and NaCl. Partition of the enzyme depended upon the molecular mass of the PEG and the presence of NaCl. With PEG 1500, 4000 and 6000, the partition coefficients were increased by 1,500-, 1,800- and 560-fold compared to values without NaCl. The presence of NaCl (8.75%, w/w) increased purification by 3.8, 9.5 and 2.8 times into these respective PEGs. The optimal aqueous two-phase system for acid protease purification was developed using response surface methodology. This system contained 17.3% of PEG 4000 (w/w), 15% NaH2PO4 (w/w) and 8.75% NaCl (w/w) and provided the best partition coefficient (Ke > 1,100) and yield over 99% in the same phase. The optimal ATPS purification factor of acid protease was over 5.  相似文献   

18.
Penicillin G acylase (PGA) catalyzed acylation of 7-aminocephalosporanic acid (7-ACA) with R-mandelic acid and its derivatives gives 7-[(1-hydroxy-1-phenyl)-acetamido]-3-acetoxymethyl-Δ3-cephem-4-carboxylic acid. This compound is a useful intermediate for the synthesis of some 3′-functionalized cephalosporins. However, acylations catalyzed by PGA isolated from Escherichia coli give poor results both considering a kinetical or a thermodynamical approach. In order to improve this enzymatic acylation, polyethylene glycol (PEG 600)-ammonium sulphate aqueous two-phase systems have been studied with the aim to have, during the reaction, a continuous extraction of the acylation product outside of the enzyme environment (the ammonium sulphate phase). This strategy shifts the equilibrium in the thermodynamically controlled synthesis and prevents the hydrolysis of the synthesized antibiotic in the kinetically controlled synthesis. The best results were achieved using PEG 600 (80% in water) equilibrated with 4 M ammonium sulphate. In these conditions, the acylation product was completely partitioned in the PEG phase (K > 200), whereas the substrates maintained a suitable concentration in the enzyme environment. Both in the kinetic (88% yield) and the thermodynamic (75% yield) processes, the results obtained were sensitively improved in comparison with those achieved working in homogeneous solution (phosphate buffer). Using R-mandelic acid methyl ester, the yield increased from 65% (monophasic system) to 88%. The PEG solution, without isolation of the acylation product, was successfully used for the synthesis of Cefamandole and Cefonicid.  相似文献   

19.
Anoxybacillus beppuensis TSSC-1 (GenBank Number, EU710556), a thermophilic bacterium isolated from a hot spring reservoir, was found to optimally secrete a monomeric α-amylase at 55 °C and pH 7. The enzyme was purified to homogeneity by a single-step purification on phenyl sepharose 6FF, achieving a 58% yield, 10,000 U/mg specific activity and 19.5 fold purification. The molecular weight, Km and Vmax were 43 kD, 0.5 mg ml?1 and 3571.42 μmol ml?1 m?1, respectively. The enzymatic catalysis of soluble starch was optimum at 80 °C and pH 7. The thermodynamic parameters, Kd, t1/2, ΔH*, ΔS*, E and ΔG*, were consistent. The very compact structure of the enzyme and the transitional enzyme–substrate complex resisted denaturation at extreme temperatures and alkaline pH. The Kd and t1/2 measurements were consistent with the high thermostability and pH tolerance observed. The structural stability of the enzyme was also reflected by the values of ΔH*, ΔS*, E and ΔG*. While the enzyme did not exhibit metal ion dependency, it was resistant to chemical denaturation. The broad thermo- and pH-tolerance of this enzyme suggests potential commercial opportunities.  相似文献   

20.
This work reports the purification and biochemical characterization of angiotensin I-converting enzyme (ACE) from ostrich (Struthio camelus) lung. The molecular weight of the purified enzyme was approximately evaluated to be 200 kDa and the maximum enzyme activity was observed at pH 7.5. The enzyme activity was increased by detergents of Triton X-100 (0.01%), cetyltrimethylammonium bromide (CTAB) (0.1 and 1 mM) and sodium dodecyl sulfate (SDS) (0.1 mM), while decreased by Triton X-100 (1% and 10%) and SDS (1 mM and 10 mM). The secondary and tertiary structure and activity of ACE in the absence and presence of trifluoroethanol (TFE) were investigated using circular dichroism, fluorescence quenching and UV–visible spectroscopy, respectively. Our results revealed that TFE stabilizes ACE at low concentrations, while acts as a denaturant at higher concentration (20%). The Km, Kcat and Kcat/Km values of ostrich ACE towards FAPGG were 0.8 × 10?4 M, 59,240 min?1 and 74 × 107 min?1 M?1, respectively. The values of IC50 and Ki for captopril were determined to be 36.5 nM and 16.6 nM, respectively. In conclusion, ostrich lung ACE is a new enzyme which could be employed as a candidate for studying ACE structure and its natural or synthetic inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号