首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.  相似文献   

2.
Thermus thermophilus and Thermus aquaticus are thermophilic bacteria that are frequently found to attach to solid surfaces in hot springs to form biofilms. Uridine diphosphate (UDP)-galactose-4′-epimerase (GalE) is an enzyme that catalyzes the conversion of UDP-galactose to UDP-glucose, an important biochemical step in exopolysaccharide synthesis. We expressed GalE obtained from T. thermophilus HB8 in Escherichia coli and found that the enzyme is stable at 80 °C and can epimerize UDP-galactose to UDP-glucose and UDP-N-acetylgalactosamine (UDP-GalNAc) to UDP-N-acetylglucosamine (UDP-GlcNAc). Enzyme overexpression in T. thermophilus HB27 led to an increased capacity of biofilm production. Therefore, the galE gene is important to biofilm formation because of its involvement in epimerizing UDP-galactose and UDP-N-acetylgalactosamine for exopolysaccharide biosynthesis.  相似文献   

3.
Twenty genotypes of Jatropha collected from diverse eco-geographic regions from the states of Chhattisgarh (3), Andhra Pradesh (12), Rajasthan (4) and Uttarakhand (1) of India were subjected to elevated CO2 conditions. All the genotypes showed significant difference (p < 0.05 and 0.01) in the phenotypic traits in both the environments (elevated and ambient) and genotype x environment interaction. Among the physiological traits recorded, maximum photosynthetic rate was observed in IC565048 (48.8 μmol m−2 s−1) under ambient controlled conditions while under elevated conditions maximum photosynthetic rate was observed in IC544678 (41.3 μmol m−2 s−1), and there was no significant difference in the genotype x environment interaction. Stomatal conductance (Gs) emerged as the key factor as it recorded significant difference among the genotypes, between the environments and also genotype x environment interaction. The Gs and transpiration (E) recorded a significant decline in the genotypes under the elevated CO2 condition over the ambient control. Under elevated CO2 conditions, the minimum values recorded for Gs and E were 0.03 mmol m−2 s−1 and 0.59 mmol m−2 s−1 respectively in accession IC565039, while the maximum values for Gs and E were 1.8 mmol m−2 s−1 and 11.5 mmol m−2 s−1 as recorded in accession IC544678. The study resulted in the identification of potential climate ready genotypes viz. IC471314, IC544654, IC541634, IC544313, and IC471333 for future use.  相似文献   

4.
A production system of UDP-N-acetylglucosamine (UDP-GlcNAc) was established by using recombinant Escherichia coli and Corynebacterium ammoniagenes in combination. E. coli overexpressed the UDP-GlcNAc biosynthetic genes, glmM, glmU, glk, ppa, ack, and pta, whereas C. ammoniagenes contributed to the formation of UTP from orotic acid. Glucose 1,6-diphosphate (Glc-1,6-P2), which was required for the activity of phosphoglucosamine mutase involved in UDP-GlcNAc biosynthesis, was supplied by phosphoglucomutase and phosphofructokinase. Starting with orotic acid (65 mM) and glucosamine (400 mM), UDP-GlcNAc accumulated at 11.4 mM (7.4 g l–1) after 8 h.  相似文献   

5.
Neuropilin-2 (NRP2) is well known as a co-receptor for class 3 semaphorins and vascular endothelial growth factors, involved in axon guidance and angiogenesis. Moreover, NRP2 was shown to promote chemotactic migration of human monocyte-derived dendritic cells (DCs) toward the chemokine CCL21, a function that relies on the presence of polysialic acid (polySia). In vertebrates, this posttranslational modification is predominantly found on the neural cell adhesion molecule (NCAM), where it is synthesized on N-glycans by either of the two polysialyltransferases, ST8SiaII or ST8SiaIV. In contrast to NCAM, little is known on the biosynthesis of polySia on NRP2. Here we identified the polySia attachment sites and demonstrate that NRP2 is recognized only by ST8SiaIV. Although polySia-NRP2 was found on bone marrow-derived DCs from wild-type and St8sia2−/− mice, polySia was completely lost in DCs from St8sia4−/− mice despite normal NRP2 expression. In COS-7 cells, co-expression of NRP2 with ST8SiaIV but not ST8SiaII resulted in the formation of polySia-NRP2, highlighting distinct acceptor specificities of the two polysialyltransferases. Notably, ST8SiaIV synthesized polySia selectively on a NRP2 glycoform that was characterized by the presence of sialylated core 1 and core 2 O-glycans. Based on a comprehensive site-directed mutagenesis study, we localized the polySia attachment sites to an O-glycan cluster located in the linker region between b2 and c domain. Combined alanine exchange of Thr-607, -613, -614, -615, -619, and -624 efficiently blocked polysialylation. Restoration of single sites only partially rescued polysialylation, suggesting that within this cluster, polySia is attached to more than one site.  相似文献   

6.
7.
Epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS. Simultaneous expression of EOGT with Notch1 EGF repeats in human embryonic kidney 293T (HEK293T) cells led to immunoreactivity with the CTD110.6 antibody in the ER. Consistent with the GlcNAc modification in the ER, the enzymatic properties of EOGT are distinct from those of Golgi-resident GlcNAc transferases; the pH optimum of EOGT ranges from 7.0 to 7.5, and the Km value for UDP N-acetylglucosamine (UDP-GlcNAc) is 25 μm. Despite the relatively low Km value for UDP-GlcNAc, EOGT-catalyzed GlcNAcylation depends on the hexosamine pathway, as revealed by the increased O-GlcNAcylation of Notch1 EGF repeats upon supplementation with hexosamine, suggesting differential regulation of the luminal UDP-GlcNAc concentration in the ER and Golgi. As compared with wild-type EOGT, O-GlcNAcylation in the ER is nearly abolished in HEK293T cells exogenously expressing EOGT variants associated with AOS. Introduction of the W207S mutation resulted in degradation of the protein via the ubiquitin-proteasome pathway, although the stability and ER localization of EOGTR377Q were not affected. Importantly, the interaction between UDP-GlcNAc and EOGTR377Q was impaired without adversely affecting the acceptor substrate interaction. These results suggest that impaired glycosyltransferase activity in mutant EOGT proteins and the consequent defective O-GlcNAcylation in the ER constitute the molecular basis for AOS.  相似文献   

8.
Enhancer of rudimentary, e(r), encodes a small nuclear protein, ER, that has been implicated in the regulation of pyrimidine metabolism, DNA replication and cell proliferation. In Drosophila melanogaster, a new recessive Notch allele, Nnd-p, was isolated as a lethal in combination with an e(r) allele, e(r)p2. Both mutants are viable as single mutants. Nnd-p is caused by a P-element insertion in the 5′ UTR, 378-bp upstream of the start of translation. Together the molecular and genetic data argue that Nnd-p is a hypomorphic allele of N. The three viable notchoid alleles, Nnd-p, Nnd-1 and Nnd-3, are lethal in combination with e(r) alleles. Our present hypothesis is that e(r) is a positive regulator of the Notch signaling pathway and that the lethality of the N e(r) double mutants is caused by a reduction in the expression of the pathway. This is supported by the rescue of the lethality by a mutation in Hairless, a negative regulator of N, and by the synthetic lethality of dx e(r) double mutants. Further support for the hypothesis is a reduction in E(spl) expression in an e(r) mutant. Immunostaining localizes ER to the nucleus, suggesting a nuclear function for ER. A role in the Notch signaling pathway, suggests that e(r) may be expressed in the nervous system. This turns out to be the case, as immunostaining of ER shows that ER is localized to the developing CNS.  相似文献   

9.
The intraerythrocytic malaria parasite exerts tight control over its ionic composition. In this study, a combination of fluorescent ion indicators and 36Cl flux measurements was used to investigate the transport of Cl and the Cl-dependent transport of “H+-equivalents” in mature (trophozoite stage) parasites, isolated from their host erythrocytes. Removal of extracellular Cl, resulting in an outward [Cl] gradient, gave rise to a cytosolic alkalinization (i.e. a net efflux of H+-equivalents). This was reversed on restoration of extracellular Cl. The flux of H+-equivalents was inhibited by 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid and, when measured in ATP-depleted parasites, showed a pronounced dependence on the pH of the parasite cytosol; the flux was low at cytosolic pH values < 7.2 but increased steeply with cytosolic pH at values > 7.2. 36Cl influx measurements revealed the presence of a Cl uptake mechanism with characteristics similar to those of the Cl-dependent H+-equivalent flux. The intracellular concentration of Cl in the parasite was estimated to be ∼48 mm in situ. The data are consistent with the intraerythrocytic parasite having in its plasma membrane a 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid-sensitive transporter that, under physiological conditions, imports Cl together with H+-equivalents, resulting in an intracellular Cl concentration well above that which would occur if Cl ions were distributed passively in accordance with the parasite''s large, inwardly negative membrane potential.  相似文献   

10.
11.
12.
Cytoglobin (Cygb) was investigated for its capacity to function as a NO dioxygenase (NOD) in vitro and in hepatocytes. Ascorbate and cytochrome b5 were found to support a high NOD activity. Cygb-NOD activity shows respective Km values for ascorbate, cytochrome b5, NO, and O2 of 0.25 mm, 0.3 μm, 40 nm, and ∼20 μm and achieves a kcat of 0.5 s−1. Ascorbate and cytochrome b5 reduce the oxidized Cygb-NOD intermediate with apparent second order rate constants of 1000 m−1 s−1 and 3 × 106 m−1 s−1, respectively. In rat hepatocytes engineered to express human Cygb, Cygb-NOD activity shows a similar kcat of 1.2 s−1, a Km(NO) of 40 nm, and a kcat/Km(NO) (kNOD) value of 3 × 107 m−1 s−1, demonstrating the efficiency of catalysis. NO inhibits the activity at [NO]/[O2] ratios >1:500 and limits catalytic turnover. The activity is competitively inhibited by CO, is slowly inactivated by cyanide, and is distinct from the microsomal NOD activity. Cygb-NOD provides protection to the NO-sensitive aconitase. The results define the NOD function of Cygb and demonstrate roles for ascorbate and cytochrome b5 as reductants.  相似文献   

13.

Background

Several studies on the association of TNF-alpha (−308 G/A), IL-6 (−174 G/C) and IL-1beta (−511 C/T) polymorphisms with polycystic ovary syndrome (PCOS) risk have reported conflicting results. The aim of the present study was to assess these associations by meta-analysis.

Results

A total of 14 eligible articles (1665 cases/1687 controls) were included in this meta-analysis. The results suggested that there was no obvious association between the TNF-alpha (−308 G/A) polymorphism and PCOS in the overall population or subgroup analysis by ethnicity, Hardy–Weinberg equilibrium (HWE) in controls, genotyping method, PCOS diagnosis criteria, and study sample size. Also, no obvious association was found between the TNF-alpha (−308 G/A) polymorphism and obesity in patients with PCOS (body mass index [BMI] ≥ 25 kg/m2 vs. BMI < 25 kg/m2). Regarding the IL-6 (−174 G/C) polymorphism, also no association was found in the overall population in heterozygote comparison, dominant model, and recessive model. Even though an allelic model (odds ratio [OR] = 0.63, 95% confidence interval [CI] = 0.41–0.96) and a homozygote comparison (OR = 0.52, 95% CI = 0.30–0.93) showed that the IL-6 (−174 G/C) polymorphism was marginally associated with PCOS. Further subgroup analysis suggested that the effect size was not significant among HWE in controls (sample size ≤ 200) and genotyping method of pyrosequencing under all genetic models. Similarly, there was no association between the IL-1beta (−511 C/T) polymorphism and PCOS in the overall population or subgroup analysis under all genetic models. Furthermore, no significant association was found between the IL-1beta (−511 C/T) polymorphism and several clinical and biochemical parameters in patients with PCOS.

Conclusions

The results of this meta-analysis suggest that the TNF-alpha (−308 G/A), IL-6 (−174 G/C), and IL-1beta (−511 C/T) polymorphisms may not be associated with PCOS risk. However, further case–control studies with larger sample sizes are needed to confirm our results.

Electronic supplementary material

The online version of this article (doi:10.1186/s12863-015-0165-4) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.
17.
N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.  相似文献   

18.
The Dictyostelium discoideum gene gpt1 encodes a protein XP_638036 with sequence similarity to the α/β subunits of mammalian UDP-GlcNAc:Glycoprotein N-acetylglucosamine-1-phosphotransferase. We now demonstrate that extracts of D. discoideum clones with mutations in this gene transfer GlcNAc-P from UDP-GlcNAc to mannose residues at less than 5% the wild type value. Further, the lysosomal hydrolases of these mutant clones fail to bind to a cation-independent mannose 6-phosphate receptor affinity column, indicating a lack of methylphosphomannosyl residues on the high mannose oligosaccharides of these proteins. We conclude that the gpt1 gene product catalyzes the initial step in the formation of methylphosphomannosyl residues on D. discoideum lysosomal hydrolases.  相似文献   

19.
The purpose of this study was to develop a protocol to induce high frequency of callus and subsequent plantlet regeneration for Pseudarthria viscida; an important medicinal plant. The cotyledonary node and young leaf pieces (1 × 0.5 cm, length × breadth) were used as explants for callus induction and subsequent shoot regeneration and adventitious roots induction from the shoots. The best results were achieved on the following media: (1) 96 % callus induction from cotyledonary node explants on MS medium supplemented with 1.5 mgl−1 2, 4 dichlorophenoxyacetic acid (2, 4-D) and 0.5 mgl−1 1-naphthalene acetic acid (NAA), (2) 97 % shoot regeneration from cotyledonary node derived calli with an average of 44.9 shoots per explant on MS medium fortified with 3.0 mgl−1 N6-benzylaminopurine (BA) and 1 mgl−1 NAA,37 (3) 98 % rooting with an average number of 3.3 roots per shoot on MS medium containing indole-3-butyric acid (IBA) or NAA (0.5–4 mgl−1) after 45 days. The plantlets were transferred to the field after acclimatization. Of the 40 plantlets transplanted to the soil, 29 survived (72.5 %).  相似文献   

20.
Mycobacterium tuberculosis (Mtb) and Rhodococcus jostii RHA1 have similar cholesterol catabolic pathways. This pathway contributes to the pathogenicity of Mtb. The hsaAB cholesterol catabolic genes have been predicted to encode the oxygenase and reductase, respectively, of a flavin-dependent mono-oxygenase that hydroxylates 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3-HSA) to a catechol. An hsaA deletion mutant of RHA1 did not grow on cholesterol but transformed the latter to 3-HSA and related metabolites in which each of the two keto groups was reduced: 3,9-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-17-one (3,9-DHSA) and 3,17-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9-one (3,17-DHSA). Purified 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione 4-hydroxylase (HsaAB) from Mtb had higher specificity for 3-HSA than for 3,17-DHSA (apparent kcat/Km = 1000 ± 100 m−1 s−1 versus 700 ± 100 m−1 s−1). However, 3,9-DHSA was a poorer substrate than 3-hydroxybiphenyl (apparent kcat/Km = 80 ± 40 m−1 s−1). In the presence of 3-HSA the Kmapp for O2 was 100 ± 10 μm. The crystal structure of HsaA to 2.5-Å resolution revealed that the enzyme has the same fold, flavin-binding site, and catalytic residues as p-hydroxyphenyl acetate hydroxylase. However, HsaA has a much larger phenol-binding site, consistent with the enzyme''s substrate specificity. In addition, a second crystal form of HsaA revealed that a C-terminal flap (Val367–Val394) could adopt two conformations differing by a rigid body rotation of 25° around Arg366. This rotation appears to gate the likely flavin entrance to the active site. In docking studies with 3-HSA and flavin, the closed conformation provided a rationale for the enzyme''s substrate specificity. Overall, the structural and functional data establish the physiological role of HsaAB and provide a basis to further investigate an important class of monooxygenases as well as the bacterial catabolism of steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号