首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

2.
The epidermal maxilla II-gland of Scutigera coleoptrata was investigated using light and electron microscopy. The glandular epithelium surrounds a spacious integumental cavity at the base of the maxilla II. The gland is formed as a compound gland organ that is composed of thousands of epidermal gland units. Each of them consists of four different cell types: a secretory cell, an accessory or intermediary cell, and a proximal and distal canal cell. The intermediary and the two canal cells form a conducting canal. Only in the most distal part of the intermediary cell is the canal lined by a cuticle. In the area of the two canal cells, the conducting canal is completely covered by a cuticle. The canal passes through the cuticle and opens into the spacious integumental cavity, which serves as a secretion reservoir. The structural organization of the epidermal maxilla II-gland was compared to that of other compound epidermal gland organs in Chilopoda and Diplopoda. All these glandular organs in Myriapoda share the same ground pattern.  相似文献   

3.
In the notostigmophoran centipedes, two pairs of vesicular glands have evolved. These paired glands are situated in the first and second trunk segment and open via cuticular ducts in the upper part of the particular pleura. The vesicular glands of Scutigera coleoptrata were investigated using light and, for the first time, electron microscopical methods. The glands consist of wide sac‐like cavities that often appear vesicular. The epithelia of both glands are identically structured and consist of numerous glandular units. Each of these units consists of four different cells: a single secretory cell, a small intermediary cell, and one proximal and one distal canal cell. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cells. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the ultrastructure of glandular units of the vesicular glands is comparable to that of the glandular units of other epidermal glands in Chilopoda and Diplopoda, although the glands look completely different in the light microscope. Thus, it is likely that the vesicular glands and epidermal glands share the same ground pattern. With regard to specific differences in the cuticular lining of the intermediary cells, a common origin of epidermal glands in Myriapoda and Hexapoda is not supported. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
The salivary glands and salivary pumps were investigated by means of dissection and serial semithin sections in order to expose the anatomy and histology of Nymphalidae in relation to feeding ecology. The paired salivary glands are tubular, they begin in the head, and extend through the thorax into the abdomen. The epithelium is a unicellular layer consisting of a single cell type. Despite the uniform composition, each salivary gland can be divided into five anatomically and histologically distinct regions. The bulbous end region of the gland lies within the abdomen and is composed of highly prismatic glandular cells with large vacuoles in their cell bodies. The tubular secretion region extends into the thorax where it forms large loops running backward and forward. It is composed of glandular cells that lack large vacuoles. The salivary duct lies in the thorax and also shows a looped formation but is composed of flat epithelial cells. The salivary reservoir begins in the prothorax and reaches the head. Its cells are hemispherical and bulge out into the large lumen of the tube. In the head the outlet tube connects the left and right halves of the salivary gland, and its epithelial cells are flat. The salivary pump lies in the head ventral to the sucking pump and leads directly into the food canal of the proboscis. It is not part of the salivary gland but is derived from the salivarium. Both the thin cuticle of the roof of the salivary pump and the thick bottom are ventrally arched. Paired muscles extend from the hypopharyngeal ridges and obviously serve as dilators for the pump. A functional interpretation of the salivary pump suggests that when not in use, the dilators are not contracted and the pump is tightly closed due to its own elasticity. When the dilator muscles repeatedly contract, the saliva is forced forward into the food canal of the proboscis. The salivary gland anatomy was found to be similar to other Lepidoptera. Furthermore, the histology of the salivary glands is identical in all examined butterflies, even in the species which exhibit specialized pollen-feeding behavior.  相似文献   

5.
The functional anatomy of integumentary adjacent glands of the 4th male antennomere, termed male sex-antennomere (MSA4), of Amitus spiniferus (Brethes) (Hymenoptera : Platygastridae), is described. Externally, the lateral side of the MSA4 presents an elliptical, glabrous, and elevated plate with about 20 scattered pores. Internally, there is a glandular area consisting of some 20 isolated, 2-celled secretory units beneath the elevated plate. Each gland has a secretory cell, forming a cuticular receiving canal, and a canal cell, forming the conducting canal, which connects the receiving canal to the external glandular opening. The abundant secretion appears on the cuticular surface in cylindrical forms and as droplets, and probably acts as a recognition and/or an aphrodisiac pheromone during mating. This hypothesis is discussed with regard to behavioral observations reported for only 3 other known cases of similar glands in parasitoids. Modified antennomeres with specialized structures are briefly reviewed, and their secretory function and taxonomic importance in parasitic Hymenoptera, suggested.  相似文献   

6.
The genitalia of the female folding-trapdoor spider Antrodiaetus unicolor are characterized by two pairs of spermathecae that are arranged in a single row and connected to the roof of the bursa copulatrix. Each single spermatheca is divided into three main parts: stalk, bowl, and bulb, which are surrounded by the spermathecal gland. The epithelium of the spermathecal gland is underlain by a muscle meshwork and consists of different types of cells partly belonging to glandular cell units (Class 3 gland cells) that extend into pores in the cuticle of the stalk and bowl. Interestingly, the bulb lacks glandular pores and is characterized by a weakly sclerotized cuticle. This peculiarly structured bulb probably plays an important role in the discharge of the sperm mass. It is suggested that by contraction of the muscle layer the sperm mass may be squeezed out, when the bulb invaginates and expands into the spermathecal lumen, pushing the sperm to the uterus lumen. Each glandular unit consists of usually one or two central secretory cells that are for the most part surrounded by a connecting cell that again is surrounded by a canal cell. The canal cell, finally, is separated from the other epithelial cells (intercalary cells) located between the glandular units by several thin sheath cells that form the outer enveloping layer of the unit. The secretions are released through a cuticular duct that originates proximally between the apical part of the connecting cell and the apical microvilli of the secretory cells and runs into a pore of the spermathecal cuticle. The glandular products of the Class 3 gland cells likely contribute to the conditions allowing long-term storage of the spermatozoa in this species. Details regarding the ovary, the uterus internus, and the uterus externus are reported. Most of the secretion that composes the chorion of the egg is produced in the ovary. Glandular cell units observed in the uterus externus differ structurally from those in the spermathecae and likely play a different role. Finally, we briefly discuss our results on the female genitalia of A. unicolor in the light of knowledge about the reproductive biology of spiders.  相似文献   

7.
The sex pheromone glands of female Bruchidius atrolineatus (Coleoptera: Bruchidae) have been localized by recording the electric response of the antenna of males subjected to a stream of air, containing the volatile sex pheromone (electroanntennography-EAG). Some 50 unicellular glands are distributed irregularly in the ventral and dorsal intersegmental membranes situated at the extremity of the pygidium, each gland containing a short ductule with an evacuation pore, 0.5–1 μm in diameter. The receiving canal is composed of a network of fine epicuticular filaments. The glands are type 3. The ultrastructure of these sex pheromone-producing glands is described in females whose production-emission activity had been previously verified with EAG. Deep basal invaginations and inflated intercellular spaces indicate the transport of substances from the hemolymph to the gland cells. The presence of numerous elongated mitochondria, diverse inclusions, vesicles containing crystalline bodies, and abundant apical microvilli, all reveal elevated cellular activity, which is never observed in young or diapausing females that do not produce sex pheromone. The ultrastructural differences in different types of females (sexually active or diapausing), combined with comparative EAG recordings obtained with intact females or those in which the suspected glandular zone was masked, made it possible to localize the glands.  相似文献   

8.
Leam Sreng 《Zoomorphology》1985,105(3):133-142
Summary The abdominal glands described here play a decisive role in the typical sexual behavior of Nauphoeta cinerea. Unlike other cockroaches, the males of this species produce two successive chemical signals: the sex pheromone itself, produced by the sternal glands, attracts the female from a distance, and the aphrodisiacs, secreted by the tergal glands, are licked by the female who is thus in a favorable position for mating. The well developed glandular apparatus is composed of 5 sternal glands (St3 to St7) and 7 tergal glands (T2 to T8). These glands appear as a thickening of the epithelium without significant modification of the external cuticle. The glandular epithelium is made up of several kinds of cells: ordinary epidermal cells (which only exist in the sternal glands), cells with microtubules, type 2 cells (oenocytes), and especially type 3 glandular units (composed of a secretory cell and a canal cell). The products secreted by the sternal glands are chiefly volatile products and fatty acids and those secreted by the tergal glands are primarily fatty acids and proteins. In this work, the relationship between the cytology of the glandular cells and the nature of the secreted products is discussed.  相似文献   

9.
Pholcus phalangioidesdoes not possess receptacular seminis. The uterus externus (genital cavity) itself functions as a sperm storage structure. Two accessory glands are situated in the dorsal part of the uterus externus; they discharge their secretory product into the genital cavity. The secretion is considered to serve primarily as a matrix for sperm storage, i.e. to keep the spermatozoa in a fixed position. The accessory glands consist of numerous glandular units, each being composed of four cells: two secretory cells are always joined and surrounded twice by an inner and an outer envelope cell. Both envelope cells take part in forming a cuticular ductule that leads from the secretory cells to the pore plates of the uterus externus. The inner envelope cell produces the proximal part of the canal close to the microvilli of the secretory cells, whereas the outer envelope cell produces the distal part of the canal leading to the pore plate. Close to the pore the latter exhibits prominent microvilli that might indicate additional secretory activity.  相似文献   

10.
The digger wasp species Ampulex compressa produces its venom in two branched gland tubules. They terminate in a short common duct, which is bifurcated at its proximal end. One leg is linked with the venom reservoir, the other one extends to the ductus venatus. Each venom gland tubule possesses, over its entire length, a cuticle-lined central duct. Around this duct densely packed class 3 gland units each composed of a secretory cell and a canal cell are arranged. The position of their nuclei was demonstrated by DAPI staining. The brush border of the secretory cells surrounds the coiled end-apparatus. Venom is stored in a bladder like reservoir, which is surrounded by a thin reticulated layer of muscle fibres. The reservoir as a whole is lined with class 3 gland units. The tubiform Dufour's gland has a length of about 350 μm (∅ 125 μm) only and is surrounded by a network of pronounced striated muscle fibres. The glandular epithelium is mono-layered belonging to the class 1 type of insect epidermal glands. The gland cells are characterized by conspicuous lipid vesicles. Secretion of material via the gland cuticle into the gland lumen is apparent. Analysis of the polypeptide composition demonstrated that the free gland tubules and the venom reservoir contain numerous proteins ranging from 3.4 to 200 kDa. The polypeptide composition of the Dufour's gland is completely different and contains no lectin-binding glycoproteins, whereas a dominant component of the venom droplets is a glycoprotein of about 80 kDa. Comparison of the venom reservoir contents with the polypeptide pattern of venom droplets revealed that all of the major proteinaceous constituents are secreted. The secreted venom contains exclusively proteins present in the soluble contents of the venom gland. The most abundant compound class in the Dufour's gland consisted of n-alkanes followed by monomethyl-branched alkanes and alkadienes. Heptacosane was the most abundant n-alkane. Furthermore, a single volatile compound, 2-methylpentan-3-one, was identified in various concentrations in the lipid extract of the Dufour's gland.  相似文献   

11.
Members of the cucujiform family Erotylidae possess a whole arsenal of compound integumentary glands. Structural details of the glands of the pronotum of Tritoma bipustulata and Triplax scutellaris are provided for the first time. These glands, which open in the posterior and anterior pronotal corners, bear, upon a long, usually unbranched excretory duct, numerous identical gland units, each comprising a central cuticular canal surrounded by a proximal canal cell and a distal secretory cell. The canal cell forms a lateral appendix filled with a filamentous mass probably consisting of cuticle, and the cuticle inside the secretory cell is strongly spongiose—both structural features previously not known for compound glands of beetles. Additional data are provided for compound glands of the prosternal process and for simple (dermal) glands of the pronotum. A combined defense plus anti-microbial function of the compound glands is tentatively proposed.  相似文献   

12.
Abstract The ‘slit organs’ of Anoplodactylus petiolatus are found all over the body cuticle. They are composed of a cuticular pore apparatus, an inner and an outer canal cell, and of four large and one to three small compartment cells. Plasma of the latter seven cells is almost completely filled with large membrane-enclosed compartments that contain either numerous small vesicles (one of the large cells) or homogeneous material of varying electron density (three large and all the small cells). Microvilli are found in the apical region of the compartment cells. The nucleus is situated basally where Golgi-cisternae, coated vesicles and free ribosomes are frequently found. Apical microvilli and vesicles are also formed by the inner canal cell indicating that it might directly be involved in transport. Anatomically the ‘slit organs’ are similar to class III glands described for many arthropods. In addition, discharge of secretion via large intracellular compartments is also a feature found in arthropod glands. Although pycnogonids appear to take up substances across the cuticle, a genuine secretion rather than a more generalized transport function is suggested for the ‘slit organs’.  相似文献   

13.
Social insects have numerous exocrine glands, but these organs are understudied in termites compared to hymenopterans. The tarsomere and distal tibial glands of the termites Heterotermes tenuis, Coptotermes gestroi and Silvestritermes euamignathus were investigated by scanning and transmission electron microscopy. Pore plates are visible in scanning micrographs on the distal tibial surfaces and on the ventral surface of the first and second tarsomeres of workers of H. tenuis and C. gestroi. In contrast, workers of S. euamignathus have isolated pores spread throughout the ventral surfaces of the first, second, and third tarsomeres and the distal tibia. In all three species each pore corresponds to the opening of a class-3 secretory unit, composed of one secretory and one canal cell. Clusters of class-3 glandular cells are arranged side by side underneath the cuticle. The main characteristics of these exocrine glands include their presence on all the legs and the electron-lucent secretion in the secretory cells. Possible functions of these glands are discussed.  相似文献   

14.
In female alates of Macrotermes annandalei, two types of abdominal glands are involved in the secretion of sex pheromone. Tergal glands are found at the anterior margin of tergites 6-10 and posterior sternal glands (PSGs) are located at the anterior margin of sternites 6-7. The cytological features of both types of glands are quite similar. The fine structural organization of PSGs is studied more precisely and described for the first time. The glandular cuticle is pitted with narrow apertures corresponding to the openings of numerous subcuticular pouches. Several Class 3 glandular units open in each pouch. One canal cell and one secretory cell make an individual glandular unit. The canal cell is enlarged apically and is connected with the other canal cells to form a common pouch. Based on the structural features found in these glands, we propose a common secretory process for PSGs and tergal glands. During the physiological maturation of alates inside the nest, secretory vesicles amass in the cytoplasm of secretory cells, while large intercellular spaces collapse the cuticular pouches. At the time of dispersal flight, pouches are filled with the content of secretory vesicles while intercellular spaces are sharply reduced. After calling behavior, no secretion remains in the glands and pouches collapse again, while secretory cells are drastically reduced in size. The structure and the secretory processes of PSGs and tergal glands are compared to those of abdominal sexual glands known in termites.  相似文献   

15.
The fine structure of the interommatidial exocrine glands, found in the compound eyes of the water strider Aquarius remigis, is described using light, scanning, and transmission electron microscopy. The glandular pores of the glands are specialized into minute “nail-headed” structures (NS), which are described for the first time in arthropod compound eyes. Each NS is composed of two components: a rod-like stalk and a cup-like depression. The TEM study shows that the glands are class 3 epidermal glands as defined by Noirot and Quennedey (1974, 1991). Each gland consists of 3 cells: a gland cell, an intermediary cell, and a duct (canal) cell. The gland cell contains abundant electron-lucent vesicles, while the intermediary cell contains a large number of osmiophilic secretory granules. These two cells might secrete different substances which mix together in the dilated sac-like portion of the conducting canal before final release. The possible functions of the secretions released from these glands are discussed.  相似文献   

16.
The classification of Kinorhyncha is mainly based upon cuticular differentiations including closing apparatus, trunk cuticle, and various appendages. This paper investigates whether ultrastructural characters support taxonomic results based upon light microscopical characters. The trunk region of Eckinoderes cupitatus bears several epidermal glands and setae and one middorsal spine on the 6th zonite. These characters are constant in number and distribution. The epidermal glands are unicellular, merocrine, glandular cells with an opening built up by several ramified canals terminating in pores within a slightly elevated ring-like bulge. Setae are composed of two cells, one merocrine glandular cell and one sensory cell with microvilli surrounding the outlet differentiation of the glandular cell. The setae have a pore on its tip, where the secretory product is released. The middorsal spine bears a multiciliar sensory cell. No pore is developed on the tip of the spine.  相似文献   

17.
The ultrastructure of wax glands (integumentary, stigmatic, and peristigmatic glands) was investigated in larvae, cysts, and adult females and males of species belonging to the genera Porphyrophora, Sphaeraspis, and Eurhizococcus. The general organization and cytological characteristics are similar for all glands studied. Each gland is composed of a single layer of 8 to 40 cells. The glandular cells are characterized by a very large quantity of smooth endoplasmic reticulum which forms dense zones throughout the cytoplasm, but is always placed near the collecting canals in the presence of mitochondria. Each cell has a central canal reservoir which penetrates it deeply and gives rise to a large number of lateral collecting canals, formed by the invagination of the apical plasma membrane. The canals open into a subcuticular cavity forming a common reservoir in which the secretion is accumulated. This reservoir is covered by a modified cuticle formed from the endocuticle and the epicuticle. The endocuticle is composed of a network of fine tubular structures and has many filaments on its surface. The epicuticle is perforated by numerous pores. There is no cuticular duct. The secretion crosses the cuticle in three successive steps. First, it passes through the filaments, then through fine tubular structures of the endocuticle, and finally through the epicuticular pores.  相似文献   

18.
The Heteroptera show a diversity of glands associated with the epidermis. They have multiple roles including the production of noxious scents. Here, we examine the cellular arrangement and cytoskeletal components of the scent glands of pentatomoid Heteroptera in three families, Pentatomidae (stink bugs), Tessaratomidae, and Scutelleridae (shield-backed bugs or jewel bugs). The glands are; (1) the dorsal abdominal glands, (2) the tubular glands of the composite metathoracic gland, and (3) the accessory gland component of the composite metathoracic gland. The dorsal abdominal glands are at their largest in nymphs and decrease in size in adults. The metathoracic gland is an adult-specific gland unit with a reservoir and multiple types of gland cells. The accessory gland is composed of many unicellular glands concentrated in a sinuous line across the reservoir wall. The lateral tubular gland is composed of two-cell units. The dorsal abdominal glands of nymphs are composed of three-cell units with a prominent cuticular component derived from the saccule cell sitting between the duct and receiving canal. The cuticular components that channel secretion from the microvilli of the secretory cell to the exterior differ in the three gland types. The significance of the numbers of cells comprising gland units is related to the role of cells in regenerating the cuticular components of the glands at moulting in nymphs.  相似文献   

19.
The haplogyne spider D. erythrina possesses two distinctly different sperm storage organs: a bilobed anterior spermatheca and a large, sac-like posterior diverticulum. The glandular equipment of both storage types is markedly different: the glandular tissue of the spermatheca is composed of complicated glandular units comprising a cuticular ductule and three canal cells (class 3 cells) whereas the glandular tissue of the posterior diverticulum is composed of simple gland cells that discharge their product through the cuticle (class 1 cells). Thus, the glandular products produced differ, leading to different storage conditions for the spermatozoa from copulation to egg laying. It is suggested that multiple organ types have evolved to facilitate specialization in short-term and long-term storage and to allow (posterior diverticulum) or prevent (spermatheca) males from accessing previously stored sperm.  相似文献   

20.
The tribe Hilarini (Diptera: Empididae), commonly known as dance flies, can be recognised by their swollen silk-producing prothoracic basitarsus, a male secondary sexual characteristic. The ultrastructure and function of the silk-producing basitarsus from one undescribed morphospecies of Hilarini, 'Hilarempis 20', is presented. Male H. 20 collect small parcels of diatomaceous algae from the surface of freshwater creeks that they bind with silk produced by the gland in the basitarsus. The gift is then presented to females in a nearby swarm, composed predominately of females. The basitarsus houses approximately 12 pairs of class III dermal glandular units that congregate on the ventral side of the cavity. Each gland cell has a large extracellular lumen where secretion accumulates. The lumen drains to the outside via a conducting canal encompassed by a canal cell and a duct extending through the shaft of a specialised secretory spine. The secretory spines lie in pairs in a ventral groove that runs the length of the basitarsus. A comparison of the basitarsal secretory spines with sensilla on the basitarsi of non gland-bearing legs of males, and with non gland-bearing prothoracic basitarsi of females, suggests that the glandular units are derived from contact chemosensory sensilla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号