首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time course of incorporation of [14C]arachidonic acid and [3H]docosahexaenoic acid into various lipid fractions in placental choriocarcinoma (BeWo) cells was investigated. BeWo cells were found to rapidly incorporate exogenous [14C]arachidonic acid and [3H] docosahexaenoic acid into the total cellular lipid pool. The extent of docosahexaenoic acid esterification was more rapid than for arachidonic acid, although this difference abated with time to leave only a small percentage of the fatty acids in their unesterified form. Furthermore, uptake was found to be saturable. In the cellular lipids these fatty acids were mainly esterified into the phospholipid (PL) and the triacyglycerol (TAG) fractions. Smaller amounts were also detected in the diacylglycerol and cholesterol ester fractions. Almost 60% of the total amount of [3H]Docosahexaenoic acid taken up by the cells was esterified into TAG whereas 37% was in PL fractions. For arachidonic acid the reverse was true, 60% of the total uptake was incorporated into PL fractions whereas less than 35% was in TAG. Marked differences were also found in the distribution of the fatty acids into individual phospholipid classes. The higher incorporation of docosahexaenoic acid and arachidonic acid was found in PC and PE, respectively. The greater cellular uptake of docosahexaenoic acid and its preferential incorporation in TAG suggests that both uptake and transport modes of this fatty acid by the placenta to fetus is different from that of arachidonic acid.  相似文献   

2.
The requirements for microsomal triglyceride transfer protein (MTP) during the turnover and transfer of glycerolipids from intracellular compartments into secretory very low-density lipoprotein (VLDL) were studied by pre-labelling lipids with [3H]glycerol and [14C]oleate in primary cultures of rat hepatocytes. The intracellular redistribution of pre-labelled glycerolipids was then compared at the end of subsequent chase periods during which the MTP inhibitor BMS-200150 was either present or absent in the medium. Inhibition of MTP resulted in a decreased output of VLDL triacylglycerol (TAG) and a delayed removal of labelled TAG from the cytosol and from the membranes of the smooth endoplasmic reticulum (SER), the cis- and the trans-Golgi. Inactivation of MTP did not decrease the bulk lipolytic turnover of cellular TAG as reflected by changes in its [3H]glycerol:[14C]oleate ratios. However, a larger proportion of the resultant TAG fatty acids was re-esterified and remained with the membranes of the various subcellular fractions rather than emerging as VLDL. The effects of BMS-200150 on the pattern of phospholipid (PL) mechanism and redistribution suggested that inhibition of MTP prevented the normal lipolytic transfer of PL-derived fatty acids out of the SER, cis- and trans-Golgi membrane pools. Finally, changes in the 14C specific radioactivities of the cytosolic and membrane pools of TAG suggested that inhibition of MTP prevented a normal influx of relatively unlabelled fatty acids into these pools during the chase period.  相似文献   

3.
The elongation of [9,10-3H]oleoyl-CoA with malonyl-CoA to form 20, 22, and 24 carbon monounsaturated fatty acids was demonstrated in housefly microsomes by radio-GLC. These elongation reactions, which have been postulated to be involved in hydrocarbon biosynthesis, have not been previously demonstrated in insects. 2-Octadecynoate (18:1 Δ2=) inhibited the in vivo incorporation of [1-14C]acetate into both fatty acids and hydrocarbons in a dose-dependent manner. At doses of 10 μg per female housefly of the alkynoic acid, the incorporation of [1-14C]acetate into hydrocarbon was inhibited 93%, the incorporation of [9,10-3H]oleate into hydrocarbon was inhibited 64%, and the incorporation of [1-14C]acetate into total internal lipid was inhibited 65%. Partially purified FAS was inhibited 50% and 95% at 15 μM and 40 μM, respectively, of the alkynoic acid. These results show that 2-octadecynoate inhibits hydrocarbon biosynthesis in the housefly by inhibiting FAS, and the in vivo data suggest that the elongation of 18:1 to longer chain fatty acids is also inhibited.  相似文献   

4.
Physiological effects of sublethal doses of atrazine on Lemna minor. VII. 1,2-[14C] acetate incorporation into the groups of lipids and their fatty acids. The lipids and the fatty acids of ten-day old duckweed (Lemna minor L.), cultivated aseptically in mineral solution containing sublethal concentrations of 0,10 and 0,50 ppm (0.46 and 2.3 μM, respectively) of atrazine, were analyzed by thin-layer chromatography and gas-liquid radiochromatography after 1,2-[14C] acetate feeding. Sublethal concentrations of atrazine increased the incorporation of radioactivity in total lipids, diacylgalactosylglycerol (DGG), diacyldigalactosylglycerol (DDG), sul-folipids (SL), phosphatidylglycerol (PG), diacylglycerol (DAG) and triacylglycerol + steroll esters (TAG+SE). The incorporation of acetate-1,2-[14C] decreased in phos-phatidylcholine (PC) and in phosphatidylethanolamine (PE) in the presence of atrazine. The radioactivity increased in total Transic-hexadecenoic, linoleic and α -linolenic acids while it decreased in the other fatty acids. This indicates that the sublethal concentrations of atrazine stimulate the desaturation of fatty acids of L. minor. The radioactivity was strongly incorporated in the α -linolenic acid of DGG in the presence of atrazine. The specific radioactivity of α-linolenic acid was greater in DAG than in PG > TAG + SE > PC > PE > DGG > SL > DDG and it increased in all groupd of lipids analyzed under the influence of sublethal doses of atrazine. The labelling of Translchexadecenoic acid of PG and its specific radioactivity increased in the presence of atrazine. These changes suggest that the sublethal concentrations of atrazine stimulate especially the lipid metabolism of the chloroplasts of L. minor and they could explain the increase in the number of grana per chloroplast in treated L. minor. The results are discussed in relation to the biosynthesis of galactolipids.  相似文献   

5.
The biosynthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in monocyte-like leukemia U937 cells was monitored by adding [3H]choline, [14C]ethanolamine or [14C]glycerol to the culture media; incorporation into phospholipid (PL) increased with time. The effect of unsaturated fatty acids (UFA) on PC and PE synthesis was investigated by pretreating U937 cells for 72h with 10 μM 18:1 (n –9), 18:2 (n –6), 18:3 (n –3), 20:4 (n –6) and 20:5 (n –3). The UFA caused no alteration in cell growth, as evidenced by light microscopy and the incorporation of [3H]thymidine and [3H]leucine. Total cellular uptake of radioactive precursors remained unaffected by all the treatments. Pretreatment with 20:5 resulted in approximately 25 per cent reduction in the incorporation of [3H]choline into PL, while no significant effect was detected with the other UFAs. 18:3, 20:4 and 20:5 depressed the incorporation of [14C]ethanolamine into PL by 34 per cent, 28 per cent and 49 per cent respectively. However, there was no redistribution of label with any of the treatments. 18:3, 20:4 and 20:5 also antagonized the stimulatory effect of endotoxin (LPS) on PC and PE synthesis. In addition, the incorporation from [14C]glycerol into PC and PE was reduced by 18:3, 20:4 and 20:5. Although the PL composition of the cells remained essentially unaffected, our study shows that chronic treatment of U937 cells with n –3 PUFA (20:5) depressed PC and PE synthesis, and 18:3 and 20:4 also caused inhibition of PE synthesis.  相似文献   

6.
Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation. N27 dopaminergic neurons incubated with Fe (1mM) for 24 hs displayed increased levels of reactive oxygen species (ROS), lipid peroxidation and elevated plasma membrane permeability. Cu-supplemented neurons (10, 50 μM) showed no evidence of oxidative stress markers. A different lipid acylation profile was observed in N27 neurons pre-labeled with [3H] arachidonic acid (AA) or [3H] oleic acid (OA). In Fe-exposed neurons, AA uptake was increased in triacylglycerols (TAG) whereas its incorporation into the phospholipid (PL) fraction was diminished. TAG content was 40% higher in Fe-exposed neurons than in controls. This increase was accompanied by the appearance of Nile red positive lipid bodies. Contrariwise, OA incorporation increased in the PL fractions and showed no changes in TAG. Lipid acylation profile in Cu-supplemented neurons showed AA accumulation into phosphatidylserine and no changes in TAG. The inhibition of deacylation/acylation reactions prompted an increase in oxidative stress markers and mitochondrial dysfunction in Fe-overloaded neurons. These findings provide evidence about the participation of lipid acylation mechanisms against Fe-induced oxidative injury and postulate that dopaminergic neurons cleverly preserve AA in TAG in response to oxidative stress.  相似文献   

7.
To investigate the incorporation of essential fatty acids into myelin components, 24-day-old rabbits were injected intracerebrally with [14C]linoleate, [14C]linolenate, or [3H]Myristate for comparison. Animals were killed 22 hr later and myelin was isolated. [3H]myristate labeled all myelin lipids including monogalactosyl diglyceride, with the exception of sulfatides. With14C-essential fatty acids, only glycerophospholipids were efficiently labeled and their specific activities were in the following decreasing orders: PC>PI>PE>PS with [14C]linoleate, and PE>PC>PI=PS with [14C]linolenate. Among myelin proteins, PLP and DM-20 were labeled with all 3 precursors. PLP was purified from myelin labeled with14C-essential fatty acids. The label was then cleaved from the protein by alkaline methanolysis and was identified as a dienoic ([14C]linoleate) or a tetraenoic ([14C]linolenate) fatty acid. MBP was not labeled with [3H]myristate, but was slightly labeled with both14C-essential fatty acids. The signification of the latter result is discussed.Abbreviations FA fatty acid(s) - HPTLC high-performance thin-layer chromatography - MBP myelin basic protein - PLP proteolipid protein - PC phosphatidylcholine - PE phosphatidylethanolamine and ethanolamine plasmalogens - PI phosphatidylinositol - PS phosphatidylserine - SDS sodium dodecylsulfate  相似文献   

8.
[3H]Palmitic acid and [14C]arachidonic acid were injected together into the cerebral ventricle of 4-month and 24-month-old rats. At different time intervals from the injection, the distribution of these fatty acids in the lipids from different brain areas was examined. The fatty acids were rapidly incorporated into the lipids through different mechanisms. The time-specific activity relationship indicate that the utilization of the fatty acid differs according to the different areas and aging decreases the utilization of both the fatty acids. The decline of arachidonic acid incorporation into phospholipids is particularly evident, indicating that aging affects mainly the utilization of polyunsaturated fatty acids.  相似文献   

9.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

10.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

11.
Long chain acyl-CoA synthetase (ACSL) catalyzes the initial step in long chain fatty acid metabolism. Of the five mammalian ACSL isoforms cloned and characterized, ACSL5 is the only isoform found to be located, in part, on mitochondria and thus was hypothesized to be involved in fatty acid oxidation. To elucidate the specific roles of ACSL5 in fatty acid metabolism, we used adenoviral-mediated overexpression of ACSL5 (Ad-ACSL5) in rat hepatoma McArdle-RH7777 cells. Confocal microscopy revealed that Ad-ACSL5 colocalized to both mitochondria and endoplasmic reticulum. When compared with cells infected with Ad-GFP, Ad-ACSL5-infected cells at 24 h after infection had 2-fold higher acyl-CoA synthetase activities and 30% higher rates of fatty acid uptake when incubated with 500 microM [1-(14)C]oleic acid. Metabolism of [1-(14)C]oleic acid to cellular triacylglycerol (TAG) increased 42% in Ad-ACSL5-infected cells, but when compared with control cells, metabolism to acid-soluble metabolites, phospholipids, and medium TAG did not differ substantially. The incorporation of [1-(14)C]oleate and [1,2,3-(3)H]glycerol into TAG was similar in Ad-ACSL5-infected cells, thus indicating that Ad-ACSL5 increased TAG synthesis through both de novo and reacylation pathways. However, [1-(14)C]acetic acid incorporation into cellular lipids showed that, when compared with control cells, Ad-ACSL5-infected cells did not increase the metabolism of fatty acids that were derived from de novo synthesis. These results suggest that uptake of fatty acids into cells is regulated by metabolism and that overexpressed ACSL5 partitions exogenously derived fatty acids toward TAG synthesis and storage.  相似文献   

12.
The effects of cadmium (Cd) stress on lipid composition and biosynthesis were investigated in young leaves of ten-day-old tomato seedlings (Lycopersicon esculentum Mill. cv. Ibiza F1). Cd was found to be mainly accumulated in roots, but a severe inhibition of biomass production occurred in leaves, even at its low concentration (1.0 μM). Seven days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Likewise, there was also a decline in the levels of tri-unsaturated fatty acids, such as linolenic (C18:3) and hexadecatrienoic (C16:3) acids. The linolenic acid (C18:3) decreased in monogalactosyldiacylglycerol (MGDG) and all phospholipids, while hexadecatrienoinic acid (C16:3) declined mainly in MGDG. Moreover, Cd at high concentrations (25.0 and 50.0 μM) significantly enhanced the levels of lipid peroxides. Radiolabelling experiments were carried out by laying down microdroplets of [1-14C]acetate–a major precursor of lipid biosynthesis–on attached leaves of the control and Cd-treated plants. After incubation for 1, 2, 12 and 24 h, the leaves were harvested and lipids extracted and analysed. Cd stress was found to decrease the incorporation of [1-14C]acetate in total lipids. The biosynthesis of total lipids was altered with 25.0 and 50.0 μM Cd. The decline in the incorporation of [1-14C]acetate due to Cd stress was observed in all lipid classes. There was also a substantial decline in the incorporation of [1-14C]acetate in tri-unsaturated fatty acids. The results indicate that Cd treatment induces an oxidative stress by inhibiting the chloroplastic and extrachloroplastic lipid-biosynthesis pathways as well as lipid peroxidation.  相似文献   

13.
Using PC12 cells undergoing neurite outgrowth, we studied the activation of various fatty acids, of different chain lengths and degrees of saturation, by long chain acyl-CoA synthetases (LCASs). Cells treated with nerve growth factor (NGF) were labeled with [3H]glycerol, [3H]oleic acid (OA) or [3H]arachidonic acid (AA) in the presence of other unlabeled fatty acids of endogenous or exogenous origin. Triacsin C (4.8 M), an inhibitor of acyl-CoA synthetase, decreased the incorporation of exogenous [3H]OA into glycerolipids by 30–90%, and increased by about 60% the accumulation of free [3H]OA in the cells. However it did not affect the incorporation of endogenous fatty acids nor of exogenous [3H]AA into phospholipids, suggesting that LCASs which activate exogenous AA and at least some endogenous fatty acids are relatively insensitive to this drug. Activities of the LCAS that is specific for AA (ACS), or of the non-specific LCAS which activates OA and other fatty acids (OCS), were much higher in microsomal and cytoplasmic fractions than in mitochondria or nuclei. The Vmax and Km values of ACS and OCS in microsomes were 12 and 0.7 nmol/min/mg protein and 70 and 37 M, respectively; and in cytoplasm, 6 and 0.6 nmol/ min/mg protein and 38 and 60 M, respectively. Triacsin C (2–33 M) did not affect ACS activity in microsomal or cytoplasmal fractions, but inhibited OCS activities dose-dependently and competitively: IC50 and apparent Ki values were 13.5 M and 14 M in microsomes, and 3.8 M and 4 M in cytoplasm. NGF stimulated the activities of the LCASs, and, consistently, the incorporation of the various fatty acids into glycerolipids. These data indicate that LCASs are heterogeneous with respect to their intracellular locations, substrate specificities, kinetic characteristics and sensitivities to triacsin C; and that this heterogeneity affects the extents to which individual fatty acids are utilized to form glycerolipids.  相似文献   

14.
We have shown previously that docosahexaenoic acid (DHA) promotes and arachidonic acid (AA) suppresses neurite outgrowth of PC12 cells induced by nerve growth factor (NGF) and that incorporation of [3H]ethanolamine into phosphatidylethanolamine (PE) is suppressed in PC12 cells by AA while DHA has no effect. In the present study, the effects of these fatty acids on PE synthesis via decarboxylation of phosphatidylserine (PS), another pathway of PE synthesis, and distribution of aminophospholipids were examined. Incorporation of [3H]serine into PS and PE was elevated in the course of NGF-induced differentiation and was further stimulated significantly by DHA, but not by AA. [3H]Ethanolamine uptake by PC12 cells was significantly suppressed by AA but not by DHA while these fatty acids did not affect [3H]serine uptake, indicating that the suppression by AA of [3H]ethanolamine incorporation into phosphatidylethanolamine is attributable, at least in part, to a reduction in [3H]ethanolamine uptake. The distribution of PE in the outer leaflet of plasma membrane decreased during differentiation, which is known to be accompanied by an increase in the surface area of plasma membrane. Supplementation of PC12 cells with DHA or AA did not affect the distribution of aminophospholipids. Thus, DHA and AA affected aminophospholipid synthesis and neurite outgrowth differently, but not the transport and distribution of aminophospholipids, while the PE concentration in the outer leaflet of the plasma membrane decreased in association with morphological changes in PC12 cells induced by NGF.  相似文献   

15.
Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism   总被引:1,自引:0,他引:1  
Previously we demonstrated that supplementation with the polyunsaturated fatty acids (PUFA) arachidonic acid (AA) or docosahexaenoic acid (DHA) increased neurite outgrowth of PC12 cells during differentiation, and that overexpression of rat acyl-CoA synthetase long-chain family member 6 (Acsl6, formerly ACS2) further increased PUFA-enhanced neurite outgrowth. However, whether Acsl6 overexpression enhanced the amount of PUFA accumulated in the cells or altered the partitioning of any fatty acids into phospholipids (PLs) or triacylglycerides (TAGs) was unknown. Here we show that Acsl6 overexpression specifically promotes DHA internalization, activation to DHA-CoA, and accumulation in differentiating PC12 cells. In contrast, oleic acid (OA) and AA internalization and activation to OA-CoA and AA-CoA were increased only marginally by Acsl6 overexpression. Additionally, the level of total cellular PLs was increased in Acsl6 overexpressing cells when the medium was supplemented with AA and DHA, but not with OA. Acsl6 overexpression increased the incorporation of [(14)C]-labeled OA, AA, or DHA into PLs and TAGs. These results do not support a role for Acsl6 in the specific targeting of fatty acids into PLs or TAGs. Rather, our data support the hypothesis that Acsl6 functions primarily in DHA metabolism, and that its overexpression increases DHA and AA internalization primarily during the first 24 h of neuronal differentiation to stimulate PL synthesis and enhance neurite outgrowth.  相似文献   

16.
The distribution of ketone bodies between oxidation and lipid synthesis was analysed in homogenates of developing rat brain. The capacity for lipid synthesis of homogenized or minced brain preparations was compared with rates of lipid synthesis in vivo, assessed by incorporation of 3H from 3H2O into fatty acids and cholesterol. Brain homogenates of suckling rats (but not those of adults) incorporated label from [3-14C]ketone bodies into lipids, but this process was slow as compared to 14CO2 production (< 5%) and much slower than the total rate of ketone-body utilization (< 0.5%). Study of 3H2O incorporation demonstrated that the rates of lipogenesis and cholesterogenesis are at least one order of magnitude higher in vivo than in vitro. Maximal rates of 3H incorporation into fatty acids (3 μmol/g brain . h) and into cholesterol (0.6 μmol/g brain . h) were found during the third postnatal week. Adult rats still incorporated 3H into brain fatty acids at an appreciable rate (1 μmol/g brain . h), whereas cholesterogenesis was very low. It is concluded that in vitro measurements of lipid synthesis severely underestimate the rates that occur in developing rat brain in vivo. The high rate of 3H incorporation into lipids by developing and adult rat brain as compared to the amounts of these lipids present in the brain suggests an important contribution of endogenous lipid synthesis during brain development and an appreciable rate of fatty acid turnover during brain growth, but also in the adult brain.  相似文献   

17.
The incorporation of polar and non-polar moieties into cerebral cortex (CC) and cerebellum (CRBL) phospholipids of adult (3.5-month-old) and aged (21.5-month-old) rats was studied in a minced tissue suspension. The biosynthesis of acidic phospholipids through [3H]glycerol appears to be slightly increased with respect to that of zwitterionic or neutral lipids in CC of aged rats with respect to adult rats. On the contrary, the synthesis of phosphatidylcholine (PC) from [3H]choline was inhibited. However, the incorporation of [14C]serine into phosphatidylserine (PS) was higher in CC and CRBL in aged rats with respect to adult rats. The synthesis of phosphatidylethanolamine (PE) from PS was not modified during aging. Saturated ([3H]palmitic) and polyunsaturated ([3H]arachidonic) acids were incorporated successfully by adult and aged brain lipids. In addition [3H]palmitic, [3H]oleic and [3H]arachidonic acid were employed as glycerolipid precursors in brain homogenate from aged (28.5 month old) and adult (3.5 month old) rats. [3H]oleic acid incorporation into neutral lipids (NL) and [3H]arachidonic acid incorporation into PC, PE and phosphatidylinositol (PI) were increased in aged rats with respect to adult rats. Present results show the ability and avidity of aged brain tissue in vitro to incorporate unsaturated fatty acids when they are supplied exogenously. They also suggest a different handling of choline and serine by base exchange enzyme activities to synthesize PC and PS during aging.  相似文献   

18.
Alterations in fatty acid metabolism are associated with impaired glucose uptake in skeletal muscle. Long-chain acyl-CoA synthetase (Acsl) 6 is the one of the Acsl isoforms expressed in skeletal muscle although its role in muscle energy metabolism has not been studied. Thus, the aims of this study were to investigate the role of Acsl6 in fatty acid partitioning and glucose uptake in differentiated skeletal myotubes using a siRNA-mediated knockdown approach. Compared with cells transfected with control siRNA, cells transfected with Acsl6 siRNA exhibited reduced intracellular triacylglycerol (TAG) accumulation. The initial rate of [1‑14C]‑oleic acid uptake was not altered while the incorporation of [1‑14C]‑acetic acids into total cellular lipids decreased under Acsl6 knockdown (p < 0.05). In a metabolic labeling study, Acsl6 suppression decreased the incorporation of [1‑14C]‑oleic acids and [1‑14C]‑acetic acids into TAG and diacylglycerol (DAG) (p < 0.05). During the chase period of a pulse-chase experiment, Acsl6 suppression increased the intracellular free fatty acids and decreased the fatty acid channeling toward the reacylation of TAG (p < 0.05). The incorporation of the labeled fatty acids into acid-soluble metabolites, β-oxidation product, was not changed under Acsl6 knockdown. Acsl6 siRNA decreased the insulin-induced uptake of [1‑14C]‑2‑deoxyglucose (p < 0.05) but did not change the glucose uptake in the presence of acipimox, inhibitor of lipolysis. Suppression of Acsl6 deteriorated Akt phosphorylation and Glut4 mRNA expression in response to insulin. These results suggest that Acsl6 activates and channels fatty acids toward anabolic pathways and has a role in glucose and fatty acid cycling through the re-esterification of fatty acids in skeletal muscle.  相似文献   

19.
This research aims to examine the effect of cadmium uptake on lipid composition and fatty acid biosynthesis, in young leaves of tomato treated seedlings (Lycopersicon esculentum cv. Ibiza F1). Results in membrane lipids investigations revealed that high cadmium concentrations affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the unsaturated fatty acid content, resulting in a lower degree of fatty acid unsaturation. The level of lipid peroxides was significantly enhanced at high Cd concentrations. Studies of the lipid metabolism using radioactive labelling with [1-14C]acetate as a major precursor of lipid biosynthesis, showed that levels of radioactivity incorporation in total lipids as well as in all lipid classes were lowered by Cd doses. In total lipid fatty acids, [1-14C]acetate incorporation was reduced in tri-unsaturated fatty acids (C16:3 and C18:3); While it was enhanced in the palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0) and linoleic (C18:2) acids. [1-14C]acetate incorporation into C16:3 and C18:3 of galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] and some phospholipids [phosphatidylcholine (PC) and phosphatidylglycerol (PG)] was inhibited by Cd stress. Our results showed that in tomato plants, cadmium stress provoked an inhibition of polar lipid biosynthesis and reduced fatty acid desaturation process.  相似文献   

20.
Stimulation of hepatic triglyceride synthesis and secretion by clofibrate   总被引:2,自引:0,他引:2  
Isolated hepatocytes prepared from rat and squirrel monkey livers were used to explore the mechanism of action of clofibrate, a hypolipidemic agent in current use. Addition of sodium clofibrate to cells suspended in Hanks medium stimulated the conversion of [1-14C]palmitate into esterified lipids and to 14CO2. This agent also promoted the incorporation of [2-3H]glycerol into cellular lipids when fatty acids were present in the incubation medium. Triglycerides were the major lipid class increased by the drug. Sodium clofibrate enhanced the discharge of labeled lipids into the medium from liver cells prelabeled with [2-3H]glycerol. These data suggest that clofibrate does not lower plasma triglyceride levels by interference with hepatic triglyceride production or secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号