首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims Arbuscular mycorrhizal fungi can have a substantial effect on the water and nutrient uptake by plants and the competition between plants in harsh environments where resource availability comes in pulses. In this study we focus on interspecific competition between Acaia etbaica and Boswellia papyrifera that have distinctive resource acquisition strategies. We compared the extent of interspecific competition with that of intraspecific competition.Methods In a greenhouse study we examined the influence of Arbuscular Mycorrhiza (AM) and pulsed water availability on competitive interactions between seedlings of the rapidly growing species A. etbaica and the slowly growing species B. papyrifera. A factorial experimental design was used. The factors were AM, two water levels and five species combinationsImportant findings Seedlings of both species benefitted from AM when grown alone, and the positive growth response to pulsed water availability in B. papyrifera seedlings was in contrast with the negative growth response for A. etbaica seedlings. AM also affected the competitive performance of both species. B. papyrifera was not affected by intraspecific competition, whereas A. etbaica was negatively affected compared to the seedlings grown alone. This effect was stronger in the presence of AM. In interspecific competition, A. etbaica outcompeted B. papyrifera. Mycorrhiza and pulsed water availability did not affect the outcome of interspecific competition, and the aggressivity index of A. etbaica remained unchanged. The extent to which AM influences plant competition in a drought-stressed environment may depend on belowground functional traits of the species. AM and pulsed water availability could modify the balance between intraspecific and interspecific competition. By affecting the balance between intraspecific and interspecific competition, both factors could impact the establishment and survival of seedlings.  相似文献   

2.
AM 真菌和枯落物互作下两种喀斯特植物种间竞争较种内竞争更能促进植物养分利用 枯落物是植物养分获取和土壤养分转化的关键载体。丛枝菌根(Arbuscular mycorrhizae, AM)对植物养分摄取的影响已被广泛认知。然而,在养分亏缺的喀斯特生境中,不同竞争方式的植物如何通过AM真菌和枯落物利用养分尚不清楚。本研究对两种喀斯特适生植物构树(Broussonetia papyrifera)和云贵鹅耳枥(Carpinus pubescens)进行种内竞争和种  间竞争种植处理,并通过幼套球 囊霉(Glomus etunicatum)接种或不接种处理,以及土壤中添加或不添加两物种叶片混合枯落物处理,测定了植物生物量以及氮、磷、钾浓度等指标,研究植物的生长和养分利用。研究结果表明,AM真菌对两种植物养分摄取影响不同,AM真菌显著提高了种内和种间竞争下构树的养分摄取量,但降低了云贵鹅耳枥的养分摄取量。种间竞争下接种AM真菌,枯落物添加促进了云贵鹅耳枥对氮的摄取,抑制了构树对氮的摄取。接种AM真菌和添加枯落物条件下,种间竞争的构树对氮、磷和钾的摄取量及云贵鹅耳枥对氮的摄取量均高于种内竞争;种间竞争下两物种养分竞争力呈现明显差异,即构树对磷和钾养分竞争力显著提高,对氮则不显著;云贵鹅耳枥仅对钾的养分竞争力显著降低,对氮和磷则无显著影响。这些结果说明,在AM真菌与枯落物相互作用下,两种喀斯特植物种间竞争较种内竞争更能促进植物养分利用。  相似文献   

3.
We investigated a mathematical model of the dynamics of the ecological system consisting of two competing perennial species, each of which leads a sedentary life. It is an individual-based model, in which the growth of each individual is described. The rate of this growth is weakened by competition from neighboring individuals. The strength of the competitors' influence depends on their size and distance to them. The conditions, in which the competitive exclusion of one of the competitors and the coexistence of both competitors take place are provided. The influence of the parameters responsible for the strength of competition, the degree of competitive asymmetry, and consideration of the importance of specific elements of the spatial structure of this ecological system on the results of the competition were analyzed. Both species co-exist when they are equal competitors. Permanent coexistence is possible only when interspecific competition is weaker than intraspecific. When interspecific competition is stronger, the coexistence of equal interspecific competitors is random. Both species have equal probability of extinction. If species are not equal competitors, the stronger one wins. This result can be modified by different strengths of intraspecific competition. The weaker interspecific competitor can permanently coexist with stronger one, when its individuals suffer stronger intraspecific competition.  相似文献   

4.
Understanding the shifts in competitive ability and its driving forces is key to predict the future of plant invasion. Changes in the competition environment and soil biota are two selective forces that impose remarkable influences on competitive ability. By far, evidence of the interactive effects of competition environment and soil biota on competitive ability of invasive species is rare. Here, we investigated their interactive effects using an invasive perennial vine, Mikania micrantha. The competitive performance of seven Mmicrantha populations varying in their conspecific and heterospecific abundance were monitored in a greenhouse experiment, by manipulating soil biota (live and sterilized) and competition conditions (competition‐free, intraspecific, and interspecific competition). Our results showed that with increasing conspecific abundance and decreasing heterospecific abundance, (1) Mmicrantha increased intraspecific competition tolerance and intra‐ vs. interspecific competitive ability but decreased interspecific competition tolerance; (2) Mmicrantha increased tolerance of the negative soil biota effect; and (3) interspecific competition tolerance of Mmicrantha was increasingly suppressed by the presence of soil biota, but intraspecific competition tolerance was less affected. These results highlight the importance of the soil biota effect on the evolution of competitive ability during the invasion process. To better control Mmicrantha invasion, our results imply that introduction of competition‐tolerant native plants that align with conservation priorities may be effective where Mmicrantha populations are long‐established and inferior in inter‐ vs. intraspecific competitive ability, whereas eradication may be effective where populations are newly invaded and fast‐growing.  相似文献   

5.
We were interested in the role of arbuscular mycorrhiza (AM) in the competition between plants of different sizes. A pot experiment of factorial design was established, in which AM root colonization and competition were used as treatments. Five-week-old Prunella vulgaris seedlings were chosen as target plants (i.e. plants whose response to competition was studied) and the following (13 replicates of each) were used as neighbours: (1) a large, 10-week-old P. vulgaris, (2) two P. vulgaris seedlings, and (3) a large, 10-week-old Fragaria vesca. In the experiment where small neighbours were grown together with small target plants, competition did not reduce target plant weight significantly, compared to the other two treatments. The competitive effects of large neighbours were significant, regardless of species (both older neighbours reduced the weights of target plants similarly), but there was a clear difference between intra- and interspecific competition when plants were mycorrhizal. In intraspecific competition with a large neighbour, the target plant shoot weight was reduced 24% when inoculated with AM. Thus, AM amplified rather than balanced intraspecific competition. In interspecific competition with old F. vesca, the shoot weights of target plants were 22% greater when inoculated with AM than when non-mycorrhizal. The results showed that, for given soil condition, AM might increase species diversity by increasing competitive intraspecific suppression and decreasing the interspecific suppression of small plants by larger neighbours.  相似文献   

6.
A majority of plant species has roots that are colonized by both arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) fungi. The latter group may include plant mutualists, commensals, parasites and pathogens. The co-occurrence of these two broad groups may translate into competition for root volume as well as for plant-derived carbon (C). Here we provide evidence that the relative availability of soil nitrogen (N) and phosphorus (P) (i.e., soil nutrient stoichiometry) controls the competitive balance between these two fungal guilds. A decrease in the soil available N:P ratio resulted in a lower abundance of AM fungi and a corresponding increase in NM fungi. However, when the same fertilization treatments were applied in a soil in which AM fungi were absent, lowering the soil available N:P ratio did not affect NM fungal abundance. Taken collectively, our results suggest that the increase in NM fungal abundance was not a direct response to soil nutrient stoichiometry, but rather a competitive release from AM fungi responding negatively to higher soil P. We briefly discuss the mechanisms that may be responsible for this competitive release.  相似文献   

7.
天柱山黄山松种内与种间竞争的研究   总被引:3,自引:0,他引:3  
采用改进的竞争指数模型研究安徽天柱山黄山松的种内和种间竞争强度。结果发现:(1)随对象木胸径的增大,黄山松种群因自然稀疏过程中密度调节作用,植株距离增加,种内竞争强度降低;(2)黄山松群落内其它物种虽然较多,但个体普遍较小,结果种间竞争相对较弱,种内与种间竞争关系顺序为:黄山松—黄山松>杉木—黄山松>枹栎—黄山松>其它树种—黄山松;(3)竞争强度和对象木胸径的关系服从幂函数关系(CI=AD-B),当黄山松胸径达到20cm以上时,竞争强度变化不大,所得的预测模型能很好地预测黄山松种内和种间的竞争强度;(4)改进的竞争指数模型能很好地度量黄山松的种内和种间竞争强度,改进的确定邻体范围的方法能有效地确定黄山松的竞争范围。  相似文献   

8.
Theory predicts that intraspecific competition should be stronger than interspecific competition for any pair of stably coexisting species, yet previous literature reviews found little support for this pattern. We screened over 5400 publications and identified 39 studies that quantified phenomenological intraspecific and interspecific interactions in terrestrial plant communities. Of the 67% of species pairs in which both intra‐ and interspecific effects were negative (competitive), intraspecific competition was, on average, four to five‐fold stronger than interspecific competition. Of the remaining pairs, 93% featured intraspecific competition and interspecific facilitation, a situation that stabilises coexistence. The difference between intra‐ and interspecific effects tended to be larger in observational than experimental data sets, in field than greenhouse studies, and in studies that quantified population growth over the full life cycle rather than single fitness components. Our results imply that processes promoting stable coexistence at local scales are common and consequential across terrestrial plant communities.  相似文献   

9.
  • Plants usually interact with other plants, and the outcome of such interaction ranges from facilitation to competition depending on the identity of the plants, including their sexual expression. Arbuscular mycorrhizal (AM) fungi have been shown to modify competitive interactions in plants. However, few studies have evaluated how AM fungi influence plant intraspecific and interspecific interactions in dioecious species.
  • The competitive abilities of female and male plants of Antennaria dioica were examined in a greenhouse experiment. Females and males were grown in the following competitive settings: (i) without competition, (ii) with intrasexual competition, (iii) with intersexual competition, and (iv) with interspecific competition by Hieracium pilosella – a plant with similar characteristics to A. dioica. Half of the pots were grown with Claroideoglomus claroideum, an AM fungus isolated from the same habitat as the plant material. We evaluated plant survival, growth, flowering phenology, and production of AM fungal structures.
  • Plant survival was unaffected by competition or AM fungi. Competition and the presence of AM fungi reduced plant biomass. However, the sexes responded differently to the interaction between fungal and competition treatments. Both intra‐ and interspecific competition results were sex‐specific, and in general, female performance was reduced by AM colonization. Plant competition or sex did not affect the intraradical structures, extraradical hyphae, or spore production of the AM fungus.
  • These findings suggest that plant sexual differences affect fundamental processes such as competitive ability and symbiotic relationships with AM fungi.
  相似文献   

10.
Plant interactions with soil biota could have a significant impact on plant successional trajectory by benefiting plants in a particular successional stage over others. The influence of soil mutualists such as mycorrhizal fungi is thought to be an important feedback component, yet they have shown benefits to both early and late successional plants that could either retard or accelerate succession. Here we first determine if arbuscular mycorrhizal (AM) fungi differ among three stages of primary sand dune succession and then if they alter growth of plants from particular successional stages. We isolated AM fungal inoculum from early, intermediate or late stages of a primary dune succession and compared them using cloning and sequencing. We then grew eight plant species that dominate within each of these successional stages with each AM fungal inoculum. We measured fungal growth to assess potential AM functional differences and plant growth to determine if AM fungi positively or negatively affect plants. AM fungi isolated from early succession were more phylogenetically diverse relative to intermediate and late succession while late successional fungi consistently produced more soil hyphae and arbuscules. Despite these differences, inocula from different successional stages had similar effects on the growth of all plant species. Host plant biomass was not affected by mycorrhizal inoculation relative to un‐inoculated controls. Although mycorrhizal communities differ among primary dune successional stages and formed different fungal structures, these differences did not directly affect the growth of plants from different dune successional stages in our experiment and therefore may be less likely to directly contribute to plant succession in sand dunes.  相似文献   

11.
Plant–soil feedbacks have important effects on plant communities, but most theory has been derived from experiments on intraspecific plant–soil feedbacks. Much less is known about how interspecific plant–soil feedbacks affect coexistence and plant communities, due in part to experimental and analytical challenges. Here, we propose a framework for evaluating plant–soil feedbacks among multiple interacting species that incorporates 1) the average effect each species has on conspecific and heterospecific neighbors via how they modify soil biota, 2) the average response of each species to the soil modifications made by neighboring species, and 3) intraspecific feedback. We refer to this as the ‘effect–response–intraspecific’ (ERI) model. We used individual‐based models to evaluate the relative importance of intraspecific and interspecific soil feedback in determining species abundance ranks in simulated plant communities. To compare the heuristic value of the ERI model to that of an established model in which effects and responses to soil feedback are not explicitly recognized, we evaluated a ‘full‐factorial’ model in which soil feedbacks among five plant species were measured and then explicitly modeled. The ERI model indicated that the response to interspecific plant–soil feedbacks was the key factor for species’ abundance rank without spatial structure. In contrast, interspecific plant–soil feedback had no impact on species abundance with spatial structure, and intraspecific feedback became dominant. Thus, our models predict that the relative importance of intraspecific and interspecific feedbacks changes as a function of the degree of spatial structure in a system. Overall, the ERI model provides a novel and tractable framework for evaluating complex multi‐species plant–soil feedbacks.  相似文献   

12.
Plants interact simultaneously with each other and with soil biota, yet the relative importance of competition vs. plant–soil feedback (PSF) on plant performance is poorly understood. Using a meta‐analysis of 38 published studies and 150 plant species, we show that effects of interspecific competition (either growing plants with a competitor or singly, or comparing inter‐ vs. intraspecific competition) and PSF (comparing home vs. away soil, live vs. sterile soil, or control vs. fungicide‐treated soil) depended on treatments but were predominantly negative, broadly comparable in magnitude, and additive or synergistic. Stronger competitors experienced more negative PSF than weaker competitors when controlling for density (inter‐ to intraspecific competition), suggesting that PSF could prevent competitive dominance and promote coexistence. When competition was measured against plants growing singly, the strength of competition overwhelmed PSF, indicating that the relative importance of PSF may depend not only on neighbour identity but also density. We evaluate how competition and PSFs might interact across resource gradients; PSF will likely strengthen competitive interactions in high resource environments and enhance facilitative interactions in low‐resource environments. Finally, we provide a framework for filling key knowledge gaps and advancing our understanding of how these biotic interactions influence community structure.  相似文献   

13.

Background and aims

Recent studies have shown that tree-based intercropping (TBI) systems support a more diverse soil microbial community compared to conventional agricultural systems. However, it is unclear whether differences in soil microbial diversity between these two agricultural systems have a functional effect on crop growth.

Methods

In this study, we used a series of greenhouse experiments to test whether crops respond differently to the total soil microbial community (Experiment 1) and to arbuscular mycorrhizal (AM) fungal communities alone (Experiment 2) from conventionally monocropped (CM) and TBI systems.

Results

The crops had a similar growth response to the total soil microbial communities from both cropping systems. However, when compared to sterilized controls, barley (Hordeum vulgare) and canola (Brassica napus) exhibited a negative growth response to the total soil microbial communities, while soybean (Glycine max) was unaffected. During the AM fungal establishment phase of the second experiment, ‘nurse’ plants had a strong positive growth response to AM fungal inoculation, and significantly higher biomass when inoculated with AM fungi from the CM system compared to the TBI system. Soybean was the only crop species to exhibit a significant positive growth response to AM fungal inoculation. Similar to the total soil microbial communities, AM fungi from the two cropping systems did not differ in their effect on crop growth.

Conclusion

Overall, AM fungi from both cropping systems had a positive effect on the growth of plants that formed a functional symbiosis. However, the results from these experiments suggest that negative effects of non-AM fungal microbes are stronger than the beneficial effects of AM fungi from these cropping systems.  相似文献   

14.
环境因子对西藏高原草地植物丛枝菌根真菌的影响   总被引:11,自引:0,他引:11  
对西藏高原不同草地类型建群种植物的研究结果表明,寄主植物根围土壤AM真菌孢子密度与菌根侵染率之间无相关性;不同海拔条件下温度、降水量等的显著变化对草地植物AM真菌的发育和侵染具有重要影响,不同草地类型、土壤质地对AM真菌的影响亦较明显;在一定范围内,孢子密度随土壤pH、有机质含量的提高分别呈显著增加(r=0.5319*,n=20)和下降趋势(r=-0.1973,n=20),菌根侵染率与土壤pH、有机质含量间则分别呈一定程度的负相关和正相关;高磷土壤环境对AM真菌的产孢和侵染均具有不同程度的抑制作用;最适AM真菌发育和产孢的土壤pH、有机质和有效磷含量范围分别为8.0~8.7、3.8~4.8g·kg和7.8~10.1mg·kg-1;中度特别是重度退化草地对AM真菌的繁殖和侵染均具有不利影响,适度放牧对AM真菌关键种的保持具有重要意义;AM真菌对沙生苔草、矮生嵩草和扁穗莎草根系均具有良好的侵染效应.  相似文献   

15.
王丽丽  毕润成  闫明  祁建春 《生态学报》2012,32(17):5494-5501
种间分离的研究对于揭示种间相互作用、群落组成与动态具有重要意义。为了探讨五鹿山自然保护区白皮松林内物种间的关系及其共存机制,运用ArcGIS软件、N×N最近邻体列联表及其2×2列联表截表的方法、Pielou的分离指数,Hegyi单木竞争指数对山西五鹿山白皮松群落55个样方内的15种乔木和灌木的种间分离规律及9种乔木的种内种间竞争关系进行研究,并根据种间分离情况以及物种对环境的适应方式,将样地中15个物种划分为3个生态种组。结果表明:(1)该群落中随机毗邻种对占绝大多数(80%),正分离种对较少(16.19%),负分离种对极少(3.81%),群落趋于稳定。(2)种间分离在不同种之间存在着一定的差异,正分离常发生在群落中的建群种或优势种之间;而负分离常发生在群落中的优势种和一些伴生种之间。(3)物种的种间分离状况与其种内种间竞争及物种的空间分布格局具有密切的关系,正分离常常发生在种内竞争大于种间竞争呈聚集分布的优势种或建群种之间;而负分离常常发生在种间竞争大于种内竞争的优势种和伴生种之间,且同一生态种组内的物种种间竞争较不同生态种组间激烈。(4)种间分离与群落的生境异质性和物种的生态需求也具有密切的关系,即两个具有不同生境要求的物种之间常常发生正分离;而具有相同或相似生境要求的物种之间常常发生负分离。(5)白皮松群落内物种的总体分离规律为全面不分离。(6)由生境异质性和物种间不同的生态适应性引起的种内种间关系是维持五鹿山自然保护区白皮松群落稳定共存的机制。  相似文献   

16.
Arbuscular mycorrhizal (AM) fungi can influence plant nutrient uptake and, therefore, may alter interspecific plant competition. However, the role of AM fungi in subtropical tree competition is poorly understood. In this study, we investigated the effects of AM fungus identity (four species) and diversity (a mixture of the same four species) on the competitive relationships between seedlings of a pioneer tree Rhus chinensis and a late-pioneer tree Celtis sinensis, and between R. chinensis and a mid-successional tree Cinnamomum camphora. In seedlings, AM fungi significantly promoted a competitive advantage of R. chinensis over both Ce. sinensis and Ci. camphora. Furthermore, the extent to which AM fungi affected interspecific plant competition outcomes was dependent on AM fungus identity, and the effect of AM fungus diversity on interspecific competition outcomes may derive from the most beneficial AM fungal species.  相似文献   

17.
叶片是植物获取资源的重要器官,研究荒漠植物抗逆性化学性状的种间、种内变异对环境变化的响应有助于揭示植物对极端环境的适应机制。以艾比湖自然荒漠植物群落为研究对象,通过野外调查与实验分析,解析不同土壤水盐环境下群落水平抗逆性化学性状(钾K;钙Ca;钠Na;镁Mg)的差异及其种间、种内变异特征,利用冗余分析、相关性分析,明析群落水平性状种间、种内变异与土壤环境因子间关系及其在不同水盐环境间的变化规律。结果表明:(1)高水盐环境下土壤pH及Ca、Na含量均显著高于低水盐环境;低水盐环境下群落水平K、Na、Mg含量显著高于高水盐环境。(2)高水盐环境下群落抗逆性化学性状的种间变异(Ca除外,P<0.05)、种内变异均低于低水盐环境。(3)高水盐环境土壤因子与群落种间、种内变异相关性较高(|r|>0.3),其中与叶片Ca、Na种间变异普遍为负相关,与Na种内变异多为较强的正相关;低水盐环境种间、种内变异与土壤因子相关性总体较低,其中土壤盐分、水分与叶片Mg的种间变异呈负相关,与Na种内变异呈正相关。综上所述,水盐环境对荒漠植物群落水平的抗逆性化学性状有显著影响,各性状的种间、种内变异与土壤因子间关系在高水盐环境中更为密切,本研究为掌握胁迫环境下植物的适应策略提供依据。  相似文献   

18.
以最近邻株距离统计研究了湖北九宫山成熟常绿落叶阔叶混交林3种优势种青冈栎(Cyclobalanopsis glauca)、甜槠(Castanopsis eyrei)和短柄枹栎(Quercus serrata var.brevipetiolata)的邻域效应,进而探讨了局域尺度上的竞争/帮促关系与物种共存格局.结果显示,青冈栎、甜槠和短柄枹栎的最近邻株距离不存在下限;青冈栎的胸径大小与其种内最近邻株距离存在正相关(p=0.029),甜槠的胸径大小与种内、种间最近邻株距离均无相关性(p≥0.360),而短柄枹栎的胸径大小与种间最近邻株距离为负相关(p=0.040);3树种中任意一个的种内与种间最近邻株距离都没有显著差异(p≥0.122).这些结果表明,九宫山成熟常绿落叶阔叶混交林内邻域尺度上的竞争排斥并未充分激化,但是青冈栎的种内竞争仍然在起作用,而甜槠的竞争效应不明显,短柄枹栎则依赖种间帮促甚于相互竞争.同种和异种之间的排斥效果没有差异表明局域尺度的物种共存格局可能出于随机过程而非负密度制约过程.  相似文献   

19.
荒漠草原三种蝗虫成虫种内和种间竞争的研究   总被引:2,自引:1,他引:1  
荒漠草原三种蝗虫成虫种内和种间竞争的研究贺达汉方成郑哲民(宁夏农学院农学系,永宁750105)(陕西师范大学动物研究所,西安710062)Intra_andInterspecificCompetitionamongtheAdultsofThreeGr...  相似文献   

20.
Plants form mutualistic relationship with a variety of belowground fungal species. Such a mutualistic relationship can enhance plant growth and resistance to pathogens. Yet, we know little about how interactions between functionally diverse groups of fungal mutualists affect plant performance and competition. We experimentally determined the effects of interaction between two functional groups of belowground fungi that form mutualistic relationship with plants, arbuscular mycorrhizal (AM) fungi and Trichoderma, on interspecific competition between pairs of closely related plant species from four different genera. We hypothesized that the combination of two functionally diverse belowground fungal species would allow plants and fungi to partition their symbiotic relationships and relax plant–plant competition. Our results show that: 1) the AM fungal species consistently outcompeted the Trichoderma species independent of plant combinations; 2) the fungal species generally had limited effects on competitive interactions between plants; 3) however, the combination of fungal species relaxed interspecific competition in one of the four instances of plant–plant competition, despite the general competitive superiority of AM fungi over Trichoderma. We highlight that the competitive outcome between functionally diverse fungal species may show high consistency across a broad range of host plants and their combinations. However, despite this consistent competitive hierarchy, the consequences of their interaction for plant performance and competition can strongly vary among plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号