首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.

Background

Parasitic nematodes of humans, other animals and plants continue to impose a significant public health and economic burden worldwide, due to the diseases they cause. Promising antiparasitic drug and vaccine candidates have been discovered from excreted or secreted (ES) proteins released from the parasite and exposed to the immune system of the host. Mining the entire expressed sequence tag (EST) data available from parasitic nematodes represents an approach to discover such ES targets.

Methods and Findings

In this study, we predicted, using EST2Secretome, a novel, high-throughput, computational workflow system, 4,710 ES proteins from 452,134 ESTs derived from 39 different species of nematodes, parasitic in animals (including humans) or plants. In total, 2,632, 786, and 1,292 ES proteins were predicted for animal-, human-, and plant-parasitic nematodes. Subsequently, we systematically analysed ES proteins using computational methods. Of these 4,710 proteins, 2,490 (52.8%) had orthologues in Caenorhabditis elegans, whereas 621 (13.8%) appeared to be novel, currently having no significant match to any molecule available in public databases. Of the C. elegans homologues, 267 had strong “loss-of-function” phenotypes by RNA interference (RNAi) in this nematode. We could functionally classify 1,948 (41.3%) sequences using the Gene Ontology (GO) terms, establish pathway associations for 573 (12.2%) sequences using Kyoto Encyclopaedia of Genes and Genomes (KEGG), and identify protein interaction partners for 1,774 (37.6%) molecules. We also mapped 758 (16.1%) proteins to protein domains including the nematode-specific protein family “transthyretin-like” and “chromadorea ALT,” considered as vaccine candidates against filariasis in humans.

Conclusions

We report the large-scale analysis of ES proteins inferred from EST data for a range of parasitic nematodes. This set of ES proteins provides an inventory of known and novel members of ES proteins as a foundation for studies focused on understanding the biology of parasitic nematodes and their interactions with their hosts, as well as for the development of novel drugs or vaccines for parasite intervention and control.  相似文献   

2.
Trypanosoma brucei brucei (T.b.brucei) is an extra-cellular parasite that causes Animal African Trypanosomiasis (AAT) disease in animals. Till day, this disease is more difficult to treat and control due to lack of efficient vaccines and early diagnosis of the parasite infection. T.b.brucei Excretory/Secretory (ES) proteins were involved in pathogenesis and key for understanding the host-parasite interactions. Functions of T.b.brucei's ES proteins were poorly investigated and experimental identification is expensive and time-consuming. Bioinformatics approaches are cost-effective by facilitating the experimental analysis of potential drug targets for parasitic diseases. Here we applied several bioinformatics tools to predict and functionalize the annotation of 1104 ES proteins and immunoinformatics approaches carried out to predict and evaluate the epitopes in T.b.brucei. Secretory information, functional annotations and potential epitopes of each ES proteins were available at http://tbb.insilico.in. This study provides functional information of T.b.brucei for experimental studies to identify potential targets for diagnosis and therapeutics development.  相似文献   

3.
Livestock infection by the parasitic fluke Fasciola hepatica causes major economic losses worldwide. The excretory-secretory (ES) products produced by F. hepatica are key players in understanding the host-parasite interaction and offer targets for chemo- and immunotherapy. For the first time, subproteomics has been used to compare ES products produced by adult F. hepatica in vivo, within ovine host bile, with classical ex host in vitro ES methods. Only cathepsin L proteases from F. hepatica were identified in our ovine host bile preparations. Several host proteins were also identified including albumin and enolase with host trypsin inhibitor complex identified as a potential biomarker for F. hepatica infection. Time course in vitro analysis confirmed cathepsin L proteases as the major constituents of the in vitro ES proteome. In addition, detoxification proteins (glutathione transferase and fatty acid-binding protein), actin, and the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase were all identified in vitro. Western blotting of in vitro and in vivo ES proteins showed only cathepsin L proteases were recognized by serum pooled from F. hepatica-infected animals. Other liver fluke proteins released during in vitro culture may be released into the host bile environment via natural shedding of the adult fluke tegument. These proteins may not have been detected during our in vivo analysis because of an increased bile turnover rate and may not be recognized by pooled liver fluke infection sera as they are only produced in adults. This study highlights the difficulties identifying authentic ES proteins ex host, and further confirms the potential of the cathepsin L proteases as therapy candidates.  相似文献   

4.
5.
The parasitic protozoan, Leishmania, survives in harsh environments within its mammalian and sand fly hosts. Secreted proteins likely play critical roles in the parasite’s interactions with its environment. As a preliminary identification of the spectrum of potential excreted/secreted (ES) proteins of Leishmania infantum chagasi (Lic), a causative agent of visceral leishmaniasis, we used standard algorithms to screen the annotated L. infantum genome for genes whose predicted protein products have an N-terminal signal peptide and lack transmembrane domains and membrane anchors. A suite of 181 candidate ES proteins were identified. These included several that were documented in the literature to be released by other Leishmania spp. Six candidate ES proteins were selected for further validation of their expression and release by different parasite stages. We found both amastigote-specific and promastigote-specific released proteins. The ES proteins of Lic are candidates for future studies of parasite virulence determinants and host protective immunity.  相似文献   

6.
RNA interference (RNAi) is widely used in Caenorhabditis elegans to identify gene function and has been adapted as a high-throughput screening method to identify genes involved in essential processes. The technique has been applied to parasitic nematodes with variable success and we believe that inconsistent outcomes preclude its use as a robust screen with which to identify potential control targets. In this article, key issues that require clarification are discussed, including the mode of delivery of double-stranded RNA to the parasite, the developmental stage targeted and, perhaps of most importance, whether the RNAi pathway (as defined by studies in C. elegans) is fully functional in some parasitic nematodes.  相似文献   

7.
8.
9.
Trematodes, also known as flukes, are phylogenetically ancient parasitic organisms. Due to their importance as human and veterinary parasites, their proteins have been investigated extensively as drug and vaccine targets. Among those, proteases, as crucial enzymes for parasite survival, are considered candidate molecules for anti-parasitic interventions. Surprisingly however, trematode serine proteases, in comparison with other groups of proteases, are largely neglected. Genes encoding serine proteases have been identified in trematode genomes in significant abundance, but the biological roles and biochemical functions of these proteases are poorly understood. However, increasing volumes of genomic and proteomic studies, and accumulated experimental evidence, indicate that this class of proteases plays a substantial role in host–parasite interactions and parasite survival. Here, we discuss in detail serine proteases at genomic and protein levels, and their known or hypothetical functions.  相似文献   

10.
RNA interference (RNAi) is a method for the functional analysis of specific genes, and is particularly well developed in the free-living nematode Caenorhabditis elegans. There have been several attempts to apply this method to parasitic nematodes. In a recent study undertaken in Haemonchus contortus, Geldhof and colleagues concluded that, although a mechanism for RNAi existed, the methods developed for RNAi in C. elegans had variable efficacy in this parasitic nematode. The potential benefits of RNAi are clear; however, further studies are required to characterize the mechanism present in parasitic nematodes, and to improve culture systems for these nematodes to monitor the long-term effects of RNAi. Only then could RNAi become a reliable assay of gene function.  相似文献   

11.
Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5–10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis.  相似文献   

12.
13.
Cui J  Liu J  Li Y  Shi T 《PloS one》2011,6(1):e16022
Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome.  相似文献   

14.
15.
Parasite proteinases have important functions in host-parasite interactions. Consequently, they have been investigated as targets for the control of both plant and animal parasites. Plant parasitic nematodes cause estimated annual losses to world agriculture of US$100 billion and, currently, their control often relies on highly toxic nematicides, with associated environmental risks. The potential of disrupting digestive proteinases for plant parasitic nematode control, via expression of proteinase inhibitors in transgenic plants, is summarized here by Catherine Lilley, Pauline Devlin, Peter Urwin and Howard Atkinson. They then consider whether the approach of expressing antinematode proteins in plants can be adapted for control of certain animal parasitic nematodes.  相似文献   

16.
RNA interference (RNAi), first described for Caenorhabditis elegans , has emerged as a powerful gene silencing tool for investigating gene function in a range of organisms. Recent studies have described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when preparasitic juvenile nematodes take up double-stranded (ds)RNA that elicits a systemic RNAi response. Important developments over the last year have shown that in planta expression of a dsRNA targeting a nematode gene can successfully induce silencing in parasitizing nematodes. When the targeted gene has an essential function, a resistance effect is observed paving the way for the potential use of RNAi technology to control plant parasitic nematodes.  相似文献   

17.
18.
Adenine nucleotide translocators (ANTs) belong to the mitochondrial carrier family (MCF) of proteins. ATP production and consumption are tightly linked to ANTs, the kinetics of which have been proposed to play a key regulatory role in mitochondrial oxidative phosphorylation. ANTs are also recognized as a central component of the mitochondrial permeability transition pore associated with apoptosis. Although ANTs have been investigated in a range of vertebrates, including human, mouse and cattle, and invertebrates, such as Drosophila melanogaster (vinegar fly), Saccharomyces cerevisiae (yeast) and Caenorhabditis elegans (free-living nematode), there has been a void of information on these molecules for parasitic nematodes of socio-economic importance. Exploring ANTs in nematodes has the potential lead to a better understanding of their fundamental roles in key biological pathways and might provide an avenue for the identification of targets for the rational design of nematocidal drugs. In the present article, we describe the discovery of an ANT from Haemonchus contortus (one of the most economically important parasitic nematodes of sheep and goats), conduct a comparative analysis of key ANTs and their genes (particularly ant-1.1) in nematodes and other organisms, predict the functional roles utilizing a combined genomic-bioinformatic approach and propose ANTs and associated molecules as possible drug targets, with the potential for biotechnological outcomes.  相似文献   

19.
The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin) that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins). Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth). Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi), suggesting a common parasitic behavior and a possible conservation of function between metazoan parasites of plants and animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号