首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Liver homogenate-supernatants from most Japanese exhibit an atypical pH optimum for ethanol oxidation at pH 8.8 instead of 10.5, the typical pH-activity optimum. It has been proposed that atypical livers contain alcohol dehydrogenase isozymes with 2 subunits while typical livers contain isozymes with 1 subunits, both produced by the ADH 2 gene. Because it is difficult to differentiate the atypical ADH2 2-2 phenotype from the ADH2 2-1 phenotype by starch gel electrophoresis, an agarose isoelectric focusing procedure was developed that clearly separated the atypical Japanese livers into two groups, A1 and A2. The isozymes in A1 and A2 livers were purified. Type A1 livers contained a single isozyme with an atypical pH-rate profile; it was designated 22. Three isozymes were isolated from A2 livers, two of which corresponded to 11 and 22. A third, absent from the typical and the atypical A1 livers, had an intermediate mobility; it was designated 21. Type A1 livers are, therefore, the homozygous ADH2 2-2 phenotype, and type A2 livers, the heterozygous ADH2 2-1 phenotype. The ADH2 2-2 phenotype was found in 53% of 194 Japanese livers, and the ADH2 2-1 phenotype, in 31%. Accordingly, the frequency of ADH 2 2 was 0.68.This study was supported by U.S. Public Health Service Grant AA 02342.  相似文献   

2.
The genetic variability of one of the liver isozymes of aldehyde oxidase (AOX-B2 or AOX-2) and the stomach isozyme of alcohol dehydrogenase (ADH-C2) has been examined among strains of mice. Evidence is presented for a fourth allele of Aox-2 and a third allele of Adh-3 . The hybrid allozyme pattern for mouse liver AOX was consistent with a dimeric subunit structure for this enzyme.  相似文献   

3.
A 'null' activity variant for the major liver isozyme of aldehyde oxidase (AOX-1) in adult male mice and an electrophoretically distinct, high activity variant of the second liver isozyme (AOX-2) were used to examine the segregation of the genetic loci encoding these enzymes (Aox-1 and Aox-2 respectively) in breeding studies. A single recombinant between these loci was observed among the 147 backcross progeny examined, which confirms a previous report (Holmes, 1979) for close linkage and genetic distinctness of the two loci. An activity variant for mouse liver xanthine oxidase (XOX) is also reported which behaved as though controlled by codominant alleles at a single locus (designated Xox-1 ). Genetic analyses showed that the Xox-1 locus segregated independently of the multiple- A ox loci.  相似文献   

4.
Summary The question, Is Hb G Philadelphia linked to -thalassaemia? was first posed because the abnormal haemoglobin is found in heterozygotes at a concentration greater than 25%, the proportion predicted from a 4 -chain gene model. Globin chain biosynthesis was studied in a West Indian family in which one parent had + thalassaemia and the other was heterozygous for the G Philadelphia chain gene. The former had a globin chain production ratio / well above 1, while the latter had a ratio significantly less than 1. One child of the marriage had inherited the + thallassaemia from one parent and the G Philadelphia chain gene from the other and showed the typical picture of /-thalassaemia (/ ratio slightly above normal). It is explained in the discussion that the evidence favours a close linkage of 2 -chain genes.  相似文献   

5.
Summary A total of 168 autopsy liver extracts from Japanese individuals were examined for the glutathione S-transferase (GST) isozymes by means of starch gel electrophoresis. The gene frequencies of GST1*1, GST1*2, and GST1*0 in Japanese were 0.252, 0.057, and 0.691, respectively. GST1*3 was detected as a rare variant allele. The incidence of GST1 0 in 41 liver biopsy samples from patients suffering from various liver diseases was investigated using polyacrylamide gel isoelectric focusing. The GST1 0 phenotype was found more frequently in livers with hepatitis and carcinoma than in control livers. The isozymes coded by different GST loci were partially purified and characterized to study their biochemical properties. The apparent Km values with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate for the isozymes at the GST1, GST2, GST3, and GST4 loci were 604, 1345, 776 and 591 M, respectively.  相似文献   

6.
Interleukin-1 α and β genes: linkage on chromosome 2 in the mouse   总被引:8,自引:0,他引:8  
Two interleukin-1 polypeptides, and , are known, and cDNAs corresponding to each have been described. Genomic cloning and Southern blotting experiments suggest that in the mouse each is encoded by a gene present in one copy per haploid genome. Analysis of a panel of somatic cell hybrids carrying various mouse chromosomes on a constant Chinese hamster background indicates that both genes map to mouse chromosome 2. Further, analysis of the inheritance of DNA restriction fragment length polymorphisms associated with each gene in recombinant inbred strains of mice shows the two loci to be tightly linked to one another, and to lie approximately 4.7 centimorgans distal to B2m (beta-2 microglobulin). We have named the locus encoding IL-1 Il-1 and the locus encoding IL-1 Il-1b.  相似文献   

7.
Photosynthetic coupling factor ATPases (F1-ATPases) generally censist of five subunits named , , , and in order of decreasing apparent molecular weight. The isolated enzyme has a molecular weight of between 390,000 to 400,000, with the five subunits probably occurring in a 3:3:1:1:1 ratio. Some photosynthetic F1 ATPases are inactive as isolated and require treatment with protease, heat or detergent in order to elicit ATPase activity. This activity is sensitive to inhibition by free divalent cations and appears to be more specific for Ca2+ vs. Mg2+ as the metal ion substrate chelate. This preference for Ca2+ can be explained by the higher inhibition constant for inhibition of ATPase activity by free Ca2+. Methods for the assay of a Mg-dependent ATPase activity have recently been described. These depend on the presence of organic solvents or detergents in the reaction mixture for assay. The molecular mechanism behind the expression of either the Ca- or Mg-ATPase activities is unknown. F1-ATPases function to couple proton efflux from thylakoid membranes or chromatophores to ATP synthesis. The isolated enzyme may thus also be assayed for the reconstitution of coupling activity to membranes depleted of coupling factor 1.The functions of the five subunits in the complex have been deduced from the results of chemical modification and reconstitution studies. The subunit is required for the functional binding of the F1 to the F0. The active site is probably contained in the (and ) subunit(s). The proposed functions for the and subunits are, however, still matters of controversy. Coupling factors from a wide variety of species including bacteria, algae, C3 and C4 plants, appear to be immunologically related. The subunits are the most strongly related, although the and subunits also show significant immunological cross-reactivity. DNA sequence analyses of the genes for the subunit of CF1 have indicated that the primary sequence of this polypeptide is highly conserved. The genes for the polypeptides of CF1 appear to be located in two cellular compartments. The , and subunits are coded for on chloroplast DNA, whereas the and subunits are probably nuclear encoded. Experiments involving protein synthesis by isolated chloroplasts or protein synthesis in the presence of inhibitors specific for one or the other set of ribosomes in the cell suggest the existence of pools of unassembled CF1 subunits. These pools, if they do exist in vivo, probably make up no greater than 1% of the total CF1 content of the cell.Abbreviations AMP-PNP adenylyl 5 imidodiphosphate - bchl bacteriochlorophyll - CF1 chloroplast coupling factor 1 - CF1-CF0 the chloroplast ATP synthase complex - chl chlorophyll - CvF1 F1 from Chromatium vinosum - DCCD N, N-dicyclohexyl carbodiimide - EF1 the coupling factor 1 isolated from membranes of Escherichia coli - F0 the hydrophobic, integral membrane portion of the ATP synthase - F1 coupling factor 1, the extrinsic membrane portion of the ATP synthase - FSBA 5-p-fluorosulfonylbenzoyladenosine - Kd dissociation constant - ki inhibition constant - kii intercept inhibition constant - kis slope inhibition constant - LS large subunit of ribulose bisphosphate carboxylase - MF1 mitochondrial coupling factor 1 - M1F1 F1 from Mastigocladus laminosus - NBD-Cl 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole - PAGE polyacrylamide gel electrophoresis - RcF1 F1 from Rhodopseudomonas capsulata - RpF1 F1 from Rhodopseudomonas palustris - RrF1 F1 from Rhodospirillum rubrum - RsF1 F1 from Rhodopseudomonas sphaeroides - SDS sodium dodecyl sulfate - S1F1 F1 from Synechococcus lividus - SpF1 F1 from Spirulina platensis - TF1 F1 from the thermophilic bacterium, PS3 - tricine N-tris (hydroxymethyl) methyl glycine - tris tris (hydroxymethyl)-amino methane; and - Vmax maximal velocity or maximal activity  相似文献   

8.
Members of the (13)--glucan glucanohydrolase (EC 3.2.1.39) gene family have been mapped on the barley genome using three doubled haploid populations and seven wheat-barley addition lines. Specific probes or polymerase chain reaction (PCR) primers were generated for the seven barley (13)--glucanase genes for which cDNA or genomic clones are currently available. The seven genes are all located on the long arm of chromosome 3 (3HL), and genes encoding isoenzymes GI, GII, GIII, GIV, GV and GVII (ABG2) are clustered in a region less than 20 cM in length. The region is flanked by the RFLP marker MWG2099 on the proximal side and the Barley Yellow Mosaic Virus (BYMV) resistance gene ym4 at the distal end. The gene encoding isoenzyme GVI lies approximately 50 cM outside this cluster, towards the centromere. With the exception of the gene encoding isoenzyme GIV, all of the (13)--glucanase genes are represented by single copies on the barley genome. The probe for the isoenzyme GIV gene hybridized with four DNA bands during Southern blot analysis, only one of which could be incorporated into the consensus linkage map.  相似文献   

9.
The signaling mechanisms for most of the antiproliferative processes are not fully understood. We have demonstrated that ERK(MAPK) signaling was involved in the induction of both p15INK4band p16INK4a CDK inhibitors and growth inhibition of hepatoma cell HepG2 triggered by the tumor promoter tetradecanoyl phorbol acetate (TPA). In this study, the upstream signal mechanism for TPA-induced ERK(MAPK) activation was investigated. In HepG2 cells only one of the cPKC isozymes, PKC, but not cPKCII, nPKC or aPKC was activated by TPA as demonstrated by its membrane translocation within 10–30 min and down-regulation at 24 h after TPA treatment. Pretreatment of 0.2–2.0 M Bisindolylmaleimides, an inhibitor of PKC, attenuated the TPA-induced phosphorylation of ERK, gene expressions of p15INK4band p16INK4a, and growth inhibition of HepG2 cell in a dose-dependent manner. Consistently, transfection of HepG2 with 1.0–3.0 M antisense (AS) PKC, but not (AS) PKCII, or nPKC oligonucleotides (ODN), for 36 h prior to TPA treatment also prevented the TPA-induced molecular and cellular effects described above. Taken together, we concluded that PKC is specifically required for TPA-induced ERK(MAPK) signaling to trigger gene expressions of p15INK4band p16INK4a leading to HepG2 growth inhibition.  相似文献   

10.
Substrate and coenzyme specificities of human liver and stomach aldehyde dehydrogenase (ALDH) isozymes were compared by staining with various aldehydes including propionaldehyde, heptaldehyde, decaldehyde, 2-furaldehyde, succinic semialdehyde, and glutamic -semialdehyde and with NAD+ or NADP+ on agarose isoelectric focusing gels. ALDH3 isozyme was isolated from a liver via carboxymethyl-Sephadex and blue Sepharose chromatographies and its kinetic constants for various substrates and coenzymes were determined. Consistent with the previously proposed genetic model for human ALDH3 isozymes (Yinet al., Biochem. Genet. 26:343, 1988), a single liver form and multiple stomach forms exhibited similar kinetic properties, which were strikingly distinct from those of ALDH1, ALDH2, and ALDH4 (glutamic -semialdehyde dehydrogenase). A set of activity assays using various substrates, coenzymes, and an inhibitor to distinguish ALDH1, ALDH2, ALDH3, and ALDH4 is presented. As previously reported in ALDH1 and ALDH2, a higher catalytic efficiency (V max/K m) for oxidation of long-chain aliphatic aldehydes was found in ALDH3, suggesting that these enzymes have a hydrophobic barrel-shape substrate binding pocket. Since theK m value for acetaldehyde for liver ALDH3, 83 mM, is very much higher than those of ALDH1 and ALDH2, ALDH3 thus represents an unique class of human ALDH isozymes and it appears not to be involved in ethanol metabolism.This work was supported by grants from the National Science Council and the Academia Sinica, Republic of China.  相似文献   

11.
Xanthophylls are oxygenated carotenoids that perform critical roles in plants. -carotene hydroxylases (-hydroxylases) add hydroxyl groups to the -rings of carotenes and have been cloned from several bacteria and plants, including Arabidopsis. The lut1 mutation of Arabidopsis disrupts -ring hydroxylation and has been suggested to identify a related carotene hydroxylase that functions specifically on -ring structures. We have used library screening and genomics-based approaches to isolate a second -hydroxylase genomic clone and its corresponding cDNA from Arabidopsis. The encoded protein is 70% identical to the previously reported Arabidopsis -hydroxylase 1. Phylogenetic analysis indicates a common origin for the two proteins, however, their different chromosomal locations, intron positions and intron sizes suggest their duplication is not recent. Although both hydroxylases are expressed in all Arabidopsis tissues analyzed, -hydroxylase 1 mRNA is always present at higher levels. Both cDNAs encode proteins that efficiently hydroxylate the C-3 position of -ring containing carotenes and are only weakly active towards -ring containing carotenes. Neither -hydroxylase cDNA maps to the LUT1 locus, and the genomic region encompassing the LUT1 locus does not contain a third related hydroxylase. These data indicate that the LUT1 locus encodes a protein necessary for -ring hydroxylation but unrelated to -hydroxylases at the level of amino acid sequence.  相似文献   

12.
Filamentous gametophytes of the fernO. sensibilis were exposed to paired combinations of light of different qualities, hormones and cations in the attempt to elucidate the underlying processes that regulate cell expansion. Simultaneous treatments with high-pH buffers or the auxin antagonistp-chlorophenoxyisobutyric acid abolished blue-light-mediated expansion but did not influence growth in red light. In contrast, the red-light response was preferentially altered by the ethylene absorbant KMnO4 or the Ca2+ chelator ethyleneglycol-bis(-aminoethyl ether) N,N-tetraacetic acid. The Ca2+ ionophore A23187 caused a significant reduction in cell expansion under both blue and red irradiation. A marked promotion of expansion was mediated by high concentrations of indole-3-acetic acid, but this effect was dependent on the presence of low-pH buffers. The ethylene-generating agent 2-chloroethylphosphonic acid decreased the magnitudes of both photoresponses; this inhibition was further enhanced by high Ca2+ concentrations. These findings and those with other plants are interpreted in terms of two independent control mechanisms for cell expansion: 1) a blue light photoreceptor-auxin-hydrogen ion system, and 2) a phytochrome-ethylene-calcium ion system.Abbreviations APW-X artificial pond water (the associated number designates pH) - CEPA 2-chloroethylphosphonic acid - EGTA ethyleneglycol-bis(-aminoethyl ether)N,N-tetraacetic acid - IAA indole-3-acetic acid - PCIB p-chlorophenoxyisobutyric acid  相似文献   

13.
The pheromone signal in the yeastSaccharomyces cerevisiae is transmitted by the and subunits of the mating response G-protein. TheSTE20 gene, encoding a protein kinase required for pheromone signal transduction, has recently been identified in a genetic screen for high-gene-dosage suppressors of a partly defective G mutation. The same genetic screen identifiedBEM1, which encodes an SH3 domain protein required for polarized morphogenesis in response to pheromone, and a novel gene, designatedMDG1 (multicopy suppressor ofdefectiveG-protein). TheMDG1 gene was independently isolated in a search for multicopy suppressors of abem1 mutation. TheMDG1 gene encodes a predicted hydrophilic protein of 364 amino acids with a molecular weight of 41 kDa that has no homology with known proteins. A fusion of Mdg1p with the green fluorescent protein fromAequorea victoria localizes to the plasma membrane, suggesting that Mdg1p is an extrinsically bound membrane protein. Deletion ofMDG1 causes sterility in cells in which the wild-type G has been replaced by partly defective G derivatives but does not cause any other obvious phenotypes. The mating defect of cells deleted forSTE20 is partially suppressed by multiple copies ofBEM1 andCDC42, which encodes a small GTP-binding protein that binds to Ste20p and is necessary for the development of cell polarity. Elevated levels ofSTE20 andBEM1 are capable of suppressing a temperature-sensitive mutation inCDC42. This complex network of genetic interactions points to a role for Bem1p and Mdg1p in G-protein mediated signal transduction and indicates a functional linkage between components of the pheromone signalling pathway and regulators of cell polarity during yeast mating.  相似文献   

14.
Analyses of wheat/rye addition lines by Southern blotting confirmed the presence of sequences related to theSec 1, Sec 2, andSec 3 loci on chromosomes 1R and 2R. Comparison of the 1R and 2R addition lines allowed the identification of -secalin genes atSec 1 andSec 2, respectively, while -secalin and -secalin genes atSec 1 were discriminated by comparative hybridization with three probes: -secalin, total -secalin, and 3 -secalin. The high molecular weight (HMW) secalin genes atSec 3 were identified using a homologous HMW subunit probe from wheat. Gene copy numbers were estimated as about 40–60 for -secalins, 5–10 for -secalins, and 2 for HMW secalins. Comparison of individual plants of cv. Gazelle showed a high degree of polymorphism, particularly for sequences related to -secalins and HMW secalins.  相似文献   

15.
New molecular forms of human liver alcohol dehydrogenase (ADH), collectively designated ADHIndianapolis (ADHInd), were recently discovered in 29% of liver specimens from Black Americans [Bosron, W. F., Li, T.-K., and Vallee, B. L. (1981). Proc. Natl. Acad. Sci. USA 77:5784]. Three different ADHInd phenotypes have now been identified by starch gel electrophoresis, and four ADHInd enzyme forms isolated by affinity and ion-exchange chromatography. The most cathodic ADHInd form has a single pH optimum at 7.0 for ethanol oxidation and is a homodimer of a newly discovered subunit, as evidenced by dissociation-recombination studies. The remaining three purified ADHInd forms have dual pH optima for ethanol oxidation at 7.0 and 10.0 and generate two new bands on starch gel electrophoresis after dissociation-recombination. They appear to be heterodimers of this new subunit with the known subunits, , 1, and 1. Based on the occurrence of these four ADHInd isozymes and isozymes containing 1 subunits in the homogenate supernatants of 135 livers, we conclude that ADHInd results from polymorphism at the ADH 2locus, with the variant ADH 2 Ind allele coding for the Ind subunit. The frequency of ADH 2 Ind was 0.16 in Black Americans, and this allele was not observed in any of the 63 livers from White Americans. The frequency of the ADH 3 1 and ADH 3 2 alleles also differed in these two populations.This study was supported by U.S. Public Health Service, Grant AA 02342.  相似文献   

16.
Summary The non-tandem inverted duplication in the 2-m DNA of Saccharomyces cerevisiae has a length of 0.19 m and is located asymmetrically along the molecule. The majority of the dumb-bell structures that are formed upon denaturation and selfannealing of the 2-m monomer consists of the renatured inverted duplication sequences as double stranded stem and two single stranded loops of 0.67 m±0.06 m (S-loop) and 0.86 m±0.05 m (L-loop) length. Two additional size classes which comprised 5–10% of the measured molecules had contour lengths of around 1.7 m and 2.1 m. The smaller dumb-bells contained two S-loops and the larger dumb-bells contained two L-loops as was shown by heteroduplex mapping with an HindIII fragment from the L-loop. Two models which assume illegitimate or site specific recombination, are presented to explain the generation of double S-loop and double L-loop molecules. At least part of the 4-m and 6- circular molecules present in the yeast supercoiled DNA fraction are shown to be dimers and trimers of 2-m monomers, but often with inverted loop segments most probably due to intramolecular recombination between sequences of the inverted duplication.2-m DNA is used to indicate the supercoiled DNA fraction although in our measurements the average monomeric length is 1.9 mPart of this work has been presented at the Conference: The Genetics and Biogenesis of Chloroplasts and Mitochondria, Munich, August, 1976  相似文献   

17.
    
The ability of the human DNA topoisomerase II and II isozymes to complement functional defects conferred by conditionaltop2 mutations inSaccharomyces cerevisiae has been investigated. At the restrictive temperature,top2 strains show multiple abnormalities, including an inability to complete mitotic and meiotic division owing to a defect in chromosome segregation, and hyper-recombination within the repetitive rDNA gene cluster. We show that the human topoisomerases II and II can each support both vegetative growth and the production of viable spores in atop2-4 mutant at the restrictive temperature. Similarly, both human isozymes can rescue a strain carrying atop2 gene disruption, and suppress hyper-recombination within the rDNA gene cluster. We conclude that the human topoisomerase II and II isozymes are functionally interchangeable with yeast topoisomerase II and suggest that any isozyme-specific roles in human cells are likely to be dependent upon factors other than inherent differences in catalytic ability between the and isozymes.  相似文献   

18.
Summary Clostridium stercorarium cultures grown on cellobiose contain both an extracellular and a cell-bound -glucosidase activity. A substantial portion of the cell-bound enzyme could be extracted by osmotic shock, suggesting a periplasmic localization. The -glucosidase present in culture supernatants was purified to homogeneity. It was found to be identical in all aspects tested with the cell-bound -glucosidase. The enzyme exists as a monomer with an apparent molecular weight of 85.000 (SDS-PAGE) and a pI of 4.8. It shows optimal activity as pH 5.5 and 65° C. Thiol groups are essential for enzyme activity. In the presence of reducing agents and divalent cations the half-life of the purified enzyme was more than 5 h at 60°C. The enzyme hydrolyses at different rates a wide range of substrates including aryl--glucosides, cellobiose, and disordered cellulose. K m values were determined as 0.8 mM for p-nitrophenyl--glucoside (PNPG) and 33 mM for cellobiose. The cellular localization and the substrate specificity pattern are consistent with a dual role of the C. stercorarium -glucosidase in cellulose saccharification: (1) Cleavage of cellobiose formed by exoglucanase and (2) degradation of cellodextrins produced by endoglucanase action.  相似文献   

19.
Kang NY  Choi YL  Cho YS  Kim BK  Jeon BS  Cha JY  Kim CH  Lee YC 《Biotechnology letters》2003,25(14):1165-1170
A gene (pagA) encoding -agarase from Pseudomonas sp. SK38 was cloned and expressed in Escherichia coli. The structural gene consists of 1011 bp encoding 337 amino acids with a predicted molecular weight of 37326 and has a signal peptide of 18 amino acids. The deduced amino acid sequence showed 57% and 58% homology to -agarase from Pseudoalteromonas atalntica and Aeromonas sp., respectively. The recombinant enzyme was purified and biochemically characterized. The enzyme had maximum activity at pH 9 and 30 °C. It was stable at pHs from 8 to 9 and below 37 °C.  相似文献   

20.
    
In vitro folding studies of several proteins revealed the formation, within 2–4 msec, of transient intermediates with a large far-UV ellipticity but no amide proton protection. To solve the contradiction between the secondary structure contents estimated by these two methods, we characterized the isolated C-terminal fragment F2 of the tryptophan synthase 2 subunit. In 2, F2 forms its tertiary interactions with the F1 N-terminal region. Hence, in the absence of F1, isolated F2 should remain at an early folding stage with no long-range interactions. We shall show that isolated F2 folds into, and remains in, a state called the pre-molten globule, that indeed corresponds to a 2- to 4-msec intermediate. This condensed, but not compact, state corresponds to an array of conformations in rapid equilibrium comprising native as well as nonnative secondary structures. It fits the new view on the folding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号