首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of the present study was to identify the role of age, nutritional state and some metabolic hormones in control of avian hypothalamic and ovarian ghrelin/ghrelin receptor system. We examined the effect of food restriction, administration of ghrelin 1–18, ghrelin antagonistic analogue (D-Lys-3)-GHRP-6, obestatin and combinations of them on the expression of ghrelin and ghrelin receptor (GHS-R1a) in hypothalamus and ovary of old (23 months of age) and young (7 months of age) chickens. Expression of mRNAs for ghrelin and GHS-R1a in both hypothalamus and largest ovarian follicle was measured by RT-PCR. It was observed that food restriction could promote the expression of ghrelin and GHS-R1a in hypothalamus and ovary of the old chickens, but in the young chickens it reduced expression of ghrelin and did not affect expression of GHS-R1a in the ovary. Administration of ghrelin 1–18 did not affect hypothalamic or ovarian ghrelin mRNA, but significantly increased the expression of GHS-R1a in hypothalamus, but not in ovary. (D-Lys-3)-GHRP-6, significantly stimulated accumulation of ghrelin, but not GHS-R1a mRNA in hypothalamus or ghrelin or GHS-R1a in the ovary. Ghrelin 1–18 and (D-Lys-3)-GHRP-6, when given together, were able either to prevent or to induce effect of these hormones. Obestatin administration increased expression of ghrelin gene in the hypothalamus, but not expression of hypothalamic GHS-R1a, ovarian ghrelin and GHS-R1a. Furthermore, obestatin was able to modify effect of both ghrelin and fasting on hypothalamic and ovarian mRNA for ghrelin GHS-R1a. Our results (1) confirm the existence of ghrelin and its functional receptors GHS-R1a in the chicken hypothalamus and ovary (2) confirm the age-dependent control of ovarian ghrelin by feeding, (3) demonstrate, that nutritional status can influence the expression of both ghrelin and GHS-R1a in hypothalamus and in the ovary (3) demonstrates for the first time, that ghrelin can promote generation of its functional receptor in the hypothalamus, but not in the ovary, (4) show that ghrelin1–18 and (D-Lys-3)-GHRP-6 could not only be antagonists in the action on chicken hypothalamus and ovaries, but also independent regulators and even agonists, and (5) provide first evidence for action of obestatin on hypothalamic ghrelin and on the response of hypothalamic and ovarian ghrelin/GHS-R1a system to food restriction. These data indicate the involvement of both hypothalamic and ovarian ghrelin/GHS-R1 systems in mediating the effects of nutritional status, ghrelin and obestatin on reproductive processes.  相似文献   

2.
3.
4.
5.
6.
7.
It is known that the activity of AMP-activated protein kinase (AMPKα2) was depressed under high glucose conditions. However, whether protein expression of AMPKα2 is also down-regulated or not remains unclear. In this study, we showed that the expression of AMPKα2 was down-regulated in cells cultured under high glucose conditions. Treatment of proteasome inhibitor, MG132, blocked high glucose-induced AMPKα2 down-regulation. Endogenous AMPKα2 ubiquitination was detected by immunoprecipitation of AMPKα2 followed by immunoblotting detection of ubiquitin. The yeast-two hybrid (YTH) approach identified WWP1, an E3 ubiquitin ligase, as the AMPKα2-interacting protein in skeletal muscle cells. Interaction between AMPKα2 and WWP1 was validated by co-immunoprecipitation. Knockdown of WWP1 blocked high glucose-induced AMPKα2 down-regulation. The overexpression of WWP1 down-regulated AMPKα2. In addition, the expression of WWP1 is increased under high glucose culture conditions in both mRNA and protein levels. The level of AMPKα2 was down-regulated in the quadriceps muscle of diabetic animal model db/db mice. Expression of WWP1 blocked metformin-induced glucose uptake. Taken together, our results demonstrated that WWP1 down-regulated AMPKα2 under high glucose culture conditions via the ubiquitin-proteasome pathway.  相似文献   

8.
The link between AMP-activated protein kinase (AMPK) and myogenesis remains poorly defined. AMPK has two catalytic α subunits, α1 and α2. We postulated that AMPK promotes myogenesis in an isoform-specific manner. Primary myoblasts were prepared from AMPK knockout (KO) mice and AMPK conditional KO mice, and knockout of the α1 but not the α2 subunit resulted in downregulation of myogenin and reduced myogenesis. Myogenin expression and myogenesis were nearly abolished in the absence of both AMPKα1 and AMPKα2, while enhanced AMPK activity promoted myogenesis and myotube formation. The AMPKα1-specific effect on myogenesis was likely due to the dominant expression of α1 in myoblasts. These results were confirmed in C2C12 cells. To further evaluate the necessity of the AMPKα1 subunit for myogenesis in vivo, we prepared both DsRed AMPKα1 knockout myoblasts and enhanced green fluorescent protein (EGFP) wild-type myoblasts, which were cotransplanted into tibialis anterior muscle. A number of green fluorescent muscle fibers were observed, showing the fusion of engrafted wild-type myoblasts with muscle fibers; on the other hand, very few or no red muscle fibers were observed, indicating the absence of myogenic capacity of AMPKα1 knockout myoblasts. In summary, these results indicate that AMPK activity promotes myogenesis through a mechanism mediated by AMPKα1.  相似文献   

9.
Preventing pathologic tissue inflammation is key to treating obesity-induced insulin resistance and type 2 diabetes. Previously, we synthesized a series of methylhonokiol analogs and reported that compounds with a carbamate structure had inhibitory function against cyclooxygenase-2 in a cell-free enzyme assay. However, whether these compounds could inhibit the expression of inflammatory genes in macrophages has not been investigated. Here, we found that a new 4-O-methylhonokiol analog, 3′,5-diallyl-4′-methoxy-[1,1′-biphenyl]-2-yl morpholine-4-carboxylate (GS12021) inhibited LPS- or TNFα-stimulated inflammation in macrophages and adipocytes, respectively. LPS-induced phosphorylation of nuclear factor-kappa B (NF-κB)/p65 was significantly decreased, whereas NF-κB luciferase activities were slightly inhibited, by GS12021 treatment in RAW 264.7 cells. Either mitogen-activated protein kinase phosphorylation or AP-1 luciferase activity was not altered by GS12021. GS12021 increased the phosphorylation of AMP-activated protein kinase (AMPK) α and the expression of sirtuin (SIRT) 1. Inhibition of mRNA expression of inflammatory genes by GS12021 was abolished in AMPKα1-knockdown cells, but not in SIRT1 knockout cells, demonstrating that GS12021 exerts anti-inflammatory effects through AMPKα activation. The transwell migration assay results showed that GS12021 treatment of macrophages prevented the cell migration promoted by incubation with conditioned medium obtained from adipocytes. GS12021 suppression of p65 phosphorylation and macrophage chemotaxis were preserved in AMPKα1-knockdown cells, indicating AMPK is not required for these functions of GS12021. Identification of this novel methylhonokiol analog could enable studies of the structure-activity relationship of this class of compounds and further evaluation of its in vivo potential for the treatment of insulin-resistant states and other chronic inflammatory diseases.  相似文献   

10.
11.
12.
13.
The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca2+-imaging revealed a ghrelin-triggered increase of the Ca2+-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10µM) suggesting direct action of ghrelin. Estradiol (1nM) eliminated the ghrelin-evoked rise of Ca2+-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40nM-4μM) administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1) antagonist AM251 (1µM) and the intracellularly applied DAG-lipase inhibitor THL (10µM), indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.  相似文献   

14.
Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKβ activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKβ/NF-κB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKβ/NF-κB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKβ and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.  相似文献   

15.
16.
Leptin, ghrelin and neuropeptide W (NPW) modulate vagal afferent activity, which may underlie their appetite regulatory actions. High fat diet (HFD)-induced obesity induces changes in the plasma levels of these peptides and alters the expression of receptors on vagal afferents. We investigated homologous and heterologous receptor regulation by leptin, ghrelin and NPW. Mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Nodose ganglia were cultured overnight in the presence or absence of each peptide. Leptin (LepR), ghrelin (GHS-R), NPW (GPR7) and cholecystokinin type-1 (CCK1R) receptor mRNA, and the plasma leptin, ghrelin and NPW levels were measured. SLD: leptin reduced LepR, GPR7, increased GHS-R and CCK1R mRNA; ghrelin increased LepR, GPR7, CCK1R, and decreased GHS-R. HFD: leptin decreased GHS-R and GPR7, ghrelin increased GHS-R and GPR7. NPW decreased all receptors except GPR7 which increased with HFD. Plasma leptin was higher and NPW lower in HFD. Thus, HFD-induced obesity disrupts inter-regulation of appetite regulatory receptors in vagal afferents.  相似文献   

17.
Ghrelin, released from the stomach, stimulates food intake through activation of the ghrelin receptor (GHS-R) located on neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons in the hypothalamus. A role for the energy sensor AMP-activated protein kinase (AMPK) and its downstream effector uncoupling protein 2 (UCP2) in the stimulatory effect of exogenous ghrelin on NPY/AgRP expression and food intake has been suggested. This study aimed to investigate whether a rise in endogenous ghrelin levels is able to influence hypothalamic AMPK activity, pACC, UCP2 and NPY/AgRP expression through activation of GHS-R. An increase in endogenous ghrelin levels was established by fasting (24h) or by induction of streptozotocin(STZ)-diabetes (15 days) in GHS-R(+/+) and GHS-R(-/-) mice. GHS-R(+/+) mice showed a significant increase in AgRP and NPY mRNA expression after fasting, which was not observed in GHS-R(-/-) mice. Fasting did not affect AMPK activity nor ACC phosphorylation in both genotypes and increased UCP2 mRNA expression. The hyperghrelinemia associated with STZ-induced diabetes was accompanied by an increased NPY and AgRP expression in GHS-R(+/+) but not in GHS-R(-/-) mice. AMPK activity and UCP2 expression in GHS-R(+/+) mice after induction of diabetes were decreased to a similar extent in both genotypes. Exogenous ghrelin administration tended to decrease hypothalamic AMPK activity. In conclusion, an increase in endogenous ghrelin levels triggered by fasting or STZ-induced diabetes stimulates the expression of AgRP and NPY via interaction with the GHS-R. The changes in AMPK activity, pACC and UCP2 occur independently from GHS-R suggesting that they do not play a major role in the orexigenic effect of endogenous ghrelin.  相似文献   

18.
The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides β-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger β-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function.  相似文献   

19.
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.  相似文献   

20.
AMP-activated protein kinase (AMPK) is a critical sensor of energy status that coordinates cell growth with energy balance. In non-small cell lung cancer (NSCLC) the role of AMPKα is controversial and its contribution to lung carcinogenesis is not well-defined. Furthermore, it remains largely unknown whether long non-coding RNAs (lncRNAs) are involved in the regulation of AMPK-mediated pathways. Here, we found that loss of AMPKα in combination with activation of mutant KRASG12D increased lung tumour burden and reduced survival in KrasLSLG12D/+/AMPKαfl/fl mice. In agreement, functional in vitro studies revealed that AMPKα silencing increased growth and migration of NSCLC cells. In addition, we identified an AMPKα-modulated lncRNA, KIMAT1 (ENSG00000228709), which in turn regulates AMPKα activation by stabilizing the lactate dehydrogenase B (LDHB). Collectively, our study indicates that AMPKα loss promotes KRAS-mediated lung tumorigenesis and proposes a novel KRAS/KIMAT1/LDHB/AMPKα axis that could be exploited for therapeutic purposes.Subject terms: Cancer models, Non-small-cell lung cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号