首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 895 毫秒
1.
Mouse neuroblastoma X embryonic Chinese hamster brain explant hybrid cell line (NCB-20) forms functional synapses when intracellular cyclic AMP levels are elevated for a prolonged period of time. NCB-20 cells were labeled with [32P]orthophosphate under conditions where 2-chloroadenosine gave maximum increases of 32P incorporation into tyrosine hydroxylase in nerve growth factor dibutyryl cyclic AMP-differentiated PC12 (pheochromocytoma) cells. When NCB-20 cells were exposed to activators [5-hydroxytryptamine (5-HT), prostaglandin E1, or forskolin], resulting in activation of cyclic AMP-dependent protein kinase, increased 32P incorporation into two major proteins [130 kilodaltons (kDa) and 90 kDa] occurred. 5-HT (in the presence of phosphodiesterase inhibitor, isobutylmethylxanthine) gave a three- to fourfold increase, and forskolin a four- to sevenfold increase in 32P incorporation into the 90-kDa protein. [D-Ala2,D-Leu5]-enkephalin, which decreased cyclic AMP levels and reversed the 2-chloroadenosine-stimulated phosphorylation of tyrosine hydroxylase in differentiated PC12 cells, also reversed the stimulation of phosphorylation of the 90-kDa protein in NCB-20 cells. Pretreatment of NCB-20 cells with a calcium ionophore, A23187, gave increased phosphorylation of the 90- and 130-kDa proteins, but phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (tumor promoting agent), cell depolarization with high K+, or pretreatment with dibutyryl cyclic GMP had no effect on phosphorylation of these proteins. In contrast, phosphorylation of an 80-kDa protein was decreased by forskolin, but increased following activation of the calcium/phospholipid-dependent kinase with tumor promoting agent. Neither the 90-kDa nor the 80-kDa protein showed any immunological cross-reactivity with synapsin, a major synaptic protein known to be phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase, but not calcium/phospholipid-dependent protein kinase. This suggests that in NCB-20 cells, several unique proteins can be phosphorylated by cyclic AMP-dependent protein kinase in response to hormonal elevation of cyclic AMP levels. In contrast, an 80-kDa protein is the primary substrate for calcium/phospholipid-dependent protein kinase, and its phosphorylation is inhibited by agents that elevate cyclic AMP levels and thereby activate cyclic AMP-dependent protein kinase.  相似文献   

2.
Incubation of rat pheochromocytoma PC12 cells with dibutyryl cyclic AMP or 56 mM K+ is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase in situ. Following incubation of the PC12 cells with 32Pi, rapid isolation of the tyrosine hydroxylase, and tryptic digestion of the enzyme, two distinct 32P-peptides can be identified after paper electrophoresis. 56 mM K+ increases 32Pi incorporation into both of these peptides, whereas dibutyryl cyclic AMP increases 32Pi incorporation into only one of these peptides. The rate of increase in the incorporation of 32Pi into these two peptides in cells treated with 56 mM K+ is similar. The phosphorylation of tyrosine hydroxylase in PC12 cells occurs exclusively on serine residues. These results suggest that tyrosine hydroxylase in PC12 cells is phosphorylated on serine residues at two or more distinct sites after 56 mM K+ -induced depolarization. Since only one of these sites is phosphorylated by cyclic AMP-dependent protein kinase, activation of tyrosine hydroxylase by 56 mM K+ may involve phosphorylation by multiple protein kinases in rat pheochromocytoma PC12 cells.  相似文献   

3.
We have identified a 56-kilodalton protein in cultured bovine adrenal chromaffin cells that is phosphorylated when catecholamine secretion is stimulated. Immunodetection on Western blots from both one- and two-dimensional polyacrylamide gels indicated that this protein was tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis. Two-dimensional polyacrylamide gel electrophoresis of proteins from unstimulated cells revealed small amounts of phosphorylated protein with a molecular weight of 56K and pI values of 6.37 and 6.27 which were subunits of tyrosine hydroxylase. Nicotinic stimulation of chromaffin cells caused the phosphorylation of three proteins of 56 kilodaltons with pI values of approximately 6.37, 6.27, and 6.15 which were tyrosine hydroxylase. The immunochemical analysis also revealed that there was unphosphorylated tyrosine hydroxylase 56 kilodaltons with a pI of 6.5 which may have decreased on nicotinic stimulation. The phosphorylation of tyrosine hydroxylase was associated with an increase in in situ conversion of [3H]tyrosine to [3H]dihydroxyphenylalanine ([3H]DOPA). Muscarinic stimulation also caused phosphorylation of tyrosine hydroxylase, but to a smaller extent than did nicotinic stimulation. The secretagogues, elevated K+ and Ba2+, stimulated phosphorylation of tyrosine hydroxylase and [3H]DOPA production. The effects of nicotinic stimulation and elevated K+ on tyrosine hydroxylase phosphorylation and [3H]DOPA production were Ca2+-dependent. Nicotinic agonists also raised cyclic AMP levels in chromaffin cells after 2 min. Dibutyryl cyclic AMP and forskolin, which have little effect on catecholamine secretion, also caused phosphorylation of tyrosine hydroxylase. These stimulators of cyclic AMP-dependent processes caused the appearance of two phosphorylated subunits of tyrosine hydroxylase with pI values of 6.37 and 6.27. There was also a small amount of phosphorylated subunit with a pI of 6.15. Both agents stimulated [3H]DOPA production. The experiments indicate that tyrosine hydroxylase is phosphorylated and activated when chromaffin cells are stimulated to secrete. The data suggest that the earliest phosphorylation of tyrosine hydroxylase induced by a nicotinic agonist occurs through stimulation of a Ca2+-dependent protein kinase. After 2 min phosphorylation by a cyclic AMP-dependent protein kinase may also occur. Phosphorylation of tyrosine hydroxylase is associated with an increase in in situ tyrosine hydroxylase activity.  相似文献   

4.
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells.  相似文献   

5.
Under phosphorylating conditions, addition of Ca2+ or cyclic AMP to the 100,000 g supernatant of purified bovine adrenal chromaffin cells increases both the incorporation of 32P into tyrosine hydroxylase and the activity of the enzyme. Combining maximally effective concentrations of each of these stimulating agents produces an additive increase in both the level of 32P incorporation into tyrosine hydroxylase and the degree of activation of the enzyme. The increased phosphorylation by Ca2+ is due to stimulation of endogenous Ca2+-dependent protein kinase activity and not inhibition of phosphoprotein phosphatases. When the chromaffin cell supernatant is subjected to diethylaminoethyl (DEAE) chromatography to remove calmodulin and phospholipids, tyrosine hydroxylase is no longer phosphorylated or activated by Ca2+; on the other hand, phosphorylation and activation of tyrosine hydroxylase by cyclic AMP are not affected. Subsequent replacement of either Ca2+ plus calmodulin or Ca2+ plus phosphatidylserine to the DEAE-fractionated cell supernatant restores the phosphorylation, but not activation of the enzyme. Reverse-phase HPLC peptide mapping of tryptic digests of tyrosine hydroxylase from the 100,000 g supernatant shows that the Ca2+-dependent phosphorylation occurs on three phosphopeptides, whereas the cyclic AMP-dependent phosphorylation occurs on one of these peptides. In the DEAE preparation, either cyclic AMP alone or Ca2+ in the presence of phosphatidylserine stimulates the phosphorylation of only a single phosphopeptide peak, the same peptide phosphorylated by cyclic AMP in the crude supernatant. In contrast, Ca2+ in the presence of calmodulin stimulates the phosphorylation of three peptides having reverse-phase HPLC retention times that are identical to peptides phosphorylated by Ca2+ addition to the crude unfractionated 100,000 g supernatant. Rechromatography of the peaks from each of the in vitro phosphorylations, either in combination with each other or in combination with each of the seven peaks generated from phosphorylation of tyrosine hydroxylase in situ, established that cyclic AMP, Ca2+/phosphatidylserine, and Ca2+/calmodulin all stimulate the phosphorylation of the same reverse-phase HPLC peptide: in situ peptide 6. Ca2+/calmodulin stimulates the phosphorylation of in situ peptides 3 and 5 as well. Thus, tyrosine hydroxylase can be phosphorylated in vitro by protein kinases endogenous to the chromaffin cell. Phosphorylation occurs on a maximum of three of the seven in situ phosphorylated sites, and all three of these sites can be phosphorylated by a Ca2+/calmodulin-dependent protein kinase.  相似文献   

6.
Abstract: The mechanism for carbachol (CCh)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled pheochromocytoma PC12 cells with respect to the involvement of protein tyrosine phosphorylation and Ca2+. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol in the presence of 0.3% butanol. Pretreatment of cells with the tyrosine kinase inhibitors herbimycin A, genistein, and tyrphostin inhibited PLD activation by CCh. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands (111, 91, 84, 74, 65–70, 44, and 42 kDa) in PC12 cells treated with CCh. Phosphorylation of the 111-, 91-, 84-, and 65–70-kDa proteins peaked within 1 min, and their time-dependent changes seemingly correlated with that of PLD activation. Others (74, 44MAPK, and 42MAPK kDa) were phosphorylated rather slowly, and maximal tyrosine phosphorylation was observed at 2 min. Herbimycin A inhibited PLD activity and tyrosine phosphorylation of four proteins (111, 91, 84, and 65–70 kDa) in a preincubation time- and concentration-dependent fashion. In Ca2+-free buffer, CCh-induced [3H]phosphatidylbutanol formation and protein tyrosine phosphorylation were abolished. A Ca2+ ionophore, A23187, caused PLD activation and tyrosine phosphorylation of four proteins of 111, 91, 84, and 65–70 kDa only in the presence of extracellular Ca2+. Extracellular Ca2+ dependency for CCh-induced PLD activation was well correlated with that for tyrosine phosphorylation of the four proteins listed above, especially the 111-kDa protein. These results suggest that Ca2+-dependent protein tyrosine phosphorylation is closely implicated in CCh-induced PLD activation in PC12 cells.  相似文献   

7.
We examined the importance of tyrosine kinase(s) on the ATP-evoked Ca2+ entry and DNA synthesis of thyroid FRTL-5 cells. ATP rapidly and transiently tyrosine phosphorylated a 72-kDa protein(s). This phosphorylation was abolished by pertussis toxin and by the tyrosine kinase inhibitor genistein, and was dependent on Ca2+ entry. Pretreatment of the cells with genistein did not affect the release of sequestered Ca2+, but the capacitative Ca2+ or Ba2+ entry evoked by ATP or thapsigargin was attenuated. Pretreatment of the cells with orthovanadate enhanced the increase in intracellular free Ca2+ ([Ca2+]i), whereas the Ba2+ entry was not increased. Phorbol 12-myristate 13-acetate (PMA) phosphorylated the same protein(s) as did ATP. Genistein inhibited the ATP-evoked phosphorylation of MAP kinase and attenuated both the ATP- and the PMA-evoked DNA synthesis. However, genistein did not inhibit the ATP-evoked expression of c-fos. Furthermore, genistein enhanced the ATP-evoked release of arachidonic acid. Thus, ATP activates a tyrosine kinase via a Ca2+-dependent mechanism. A genistein-sensitive mechanism participates, in part, in the ATP-evoked activation of DNA synthesis. Genistein inhibits only modestly capacitative Ca2+ entry in FRTL-5 cells. J. Cell. Physiol. 175:211–219, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Abstract: We have previously demonstrated that neuropeptide Y (NPY) inhibits depolarization-stimulated catecholamine synthesis in rat pheochromocytoma (PC12) cells differentiated to a sympathetic neuronal phenotype with nerve growth factor (NGF). The present study uses multiple selective Ca2+ channel and protein kinase agonists and antagonists to elucidate the mechanisms by which NPY modulates catecholamine synthesis as determined by in situ measurement of DOPA production in the presence of the decarboxylase inhibitor m-hydroxybenzylhydrazine (NSD-1015). The L-type Ca2+ channel blocker nifedipine inhibited the depolarization-induced stimulation of DOPA production by ~90% and attenuated the inhibitory effect of NPY. In contrast, the N-type Ca2+ channel blocker ω-conotoxin GVIA inhibited neither the stimulation of DOPA production nor the effect of NPY. Antagonism of Ca2+/calmodulin-dependent protein kinase (CaM kinase) greatly inhibited the stimulation of DOPA production by depolarization and prevented the inhibitory effect of NPY, whereas alterations in the cyclic AMP-dependent protein kinase pathway modulated DOPA production but did not prevent the effect of NPY. Stimulation of Ca2+/phospholipid-dependent protein kinase (PKC) with phorbol 12-myristate 13-acetate (PMA) did not affect the basal rate of DOPA production in NGF-differentiated PC12 cells but did produce a concentration-dependent inhibition of depolarization-stimulated DOPA production. In addition, NPY did not produce further inhibition of DOPA production in the presence of PMA, and the inhibition by both PMA and NPY was attenuated by the specific PKC inhibitor chelerythrine. These results indicate that NPY inhibits Ca2+ influx through L-type voltage-gated Ca2+ channels, possibly through a PKC-mediated pathway, resulting in attenuation of the activation of CaM kinase and inhibition of depolarization-stimulated catecholamine synthesis.  相似文献   

9.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is subject to regulation by a variety of agents. Previous workers have found that cyclic AMP-dependent protein kinase and calcium-stimulated protein kinases activate tyrosine hydroxylase. We wanted to determine whether cyclic GMP might also be involved in the regulation of tyrosine hydroxylase activity. We found that treatment of rat PC12 cells with sodium nitroprusside (an activator of guanylate cyclase), 8-bromocyclic GMP, forskolin (an activator of adenylate cyclase), and 8-bromocyclic AMP all produced an increase in tyrosine hydroxylase activity measured in vitro or an increased conversion of [14C]tyrosine to labeled catecholamine in situ. Sodium nitroprusside also increased the relative synthesis of cyclic GMP in these cells. In the presence of MgATP, both cyclic GMP and cyclic AMP increased tyrosine hydroxylase activity in PC12 cell extracts. The heat-stable cyclic AMP-dependent protein kinase inhibitor failed to attenuate the activation produced in the presence of cyclic GMP. It eliminated the activation produced in the presence of cyclic AMP. Sodium nitroprusside also increased tyrosine hydroxylase activity in vitro in rat corpus striatal synaptosomes and bovine adrenal chromaffin cells. In all cases, the cyclic AMP-dependent activation of tyrosine hydroxylase was greater than that of the cyclic GMP-dependent second messenger system. These results indicate that both cyclic GMP and cyclic AMP and their cognate protein kinases activate tyrosine hydroxylase activity in PC12 cells.  相似文献   

10.
Neural stem cells (NSC) with self-renewal and multilineage potential are considered good candidates for cell replacement of damaged nervous tissue. In vitro experimental conditions can differentiate these cells into specific neuronal phenotypes. In the present study, we describe the combined effect of basic fibroblast growth factor (bFGF) and dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP) on the differentiation of fetal rat striatal NSC into tyrosine hydroxylase-positive cells. Tyrosine hydroxylase induction was accompanied by the activation of ERK1/ERK2 mitogen-activated protein kinase and was inhibited by the ERK1/ERK2 pathway blocker PD98059, suggesting that ERK activation may be important for this process. In addition, protein kinase C (PKC) was shown to be required for tyrosine hydroxylase protein expression. The inhibition of PKC by staurosporin, as well as its downregulation, decreased the ability of bFGF+dbcAMP to generate tyrosine hydroxylase-positive cells. Moreover, the PKC activator phorbol 12-myristate 13-acetate (PMA) together with bFGF and dbcAMP led to a significant increase in phospho-ERK1/ERK2 levels, and the percentage of beta-tubulin III-positive cells that expressed tyrosine hydroxylase increased by 3.5-fold. PMA also promoted the phosphorylation of the cyclic AMP response element binding protein that might contribute to the increase in tyrosine hydroxylase-positive cells observed in bFGF+dbcAMP+PMA-treated cultures. From these results, we conclude that the manipulation in vitro of NSC from rat fetal striatum with bFGF, cyclic AMP analogs, and PKC activators promotes the generation of tyrosine hydroxylase-positive neurons.  相似文献   

11.
Cyclic AMP-Elevating Agents Prevent Oligodendroglial Excitotoxicity   总被引:1,自引:0,他引:1  
Abstract: Previously, we have demonstrated that cells of the oligodendroglial lineage express non-NMDA glutamate receptor genes and are damaged by kainate-induced Ca2+ influx via non-NMDA glutamate receptor channels, representing oligodendroglial excitotoxicity. We find in the present study that agents that elevate intracellular cyclic AMP prevent oligodendroglial excitotoxicity. After oligodendrocyte-like cells, differentiated from the CG-4 cell line established from rat oligodendrocyte type-2 astrocyte progenitor cells, were exposed to 2 mM kainate for 24 h, cell death was evaluated by measuring activity of lactate dehydrogenase released into the culture medium. Released lactate dehydrogenase increased about threefold when exposed to 2 mM kainate. Kainate-induced cell death was prevented by one of the following agents: adenylate cyclase activator (forskolin), cyclic AMP analogues (dibutyryl cyclic AMP and 8-bromo-cyclic AMP), and cyclic AMP phosphodiesterase inhibitors (3-isobutyl-1-methylxanthine, pentoxifylline, propentofylline, and ibudilast). Simultaneous addition of both forskolin and phosphodiesterase inhibitors prevented the kainate-induced cell death in an additive manner. A remarkable increase in Ca2+ influx (~5.5-fold) also was induced by kainate. The cyclic AMP-elevating agents caused a partial suppression of the kainate-induced increase in Ca2+ influx, leading to a less prominent response of intracellular Ca2+ concentration to kainate. The suppressing effect of forskolin on the kainate-induced Ca2+ influx was partially reversed by H-89, an inhibitor of cyclic AMP-dependent protein kinase. In contrast to this, okadaic acid, an inhibitor of protein phosphatases 1 and 2A, brought about a decrease in the kainate-induced Ca2+ influx. We therefore concluded that cyclic AMP-elevating agents prevented oligodendroglial excitotoxicity by cyclic AMP-dependent protein kinase-dependent protein phosphorylation, resulting in decreased kainate-induced Ca2+ influx.  相似文献   

12.
Abstract: The systems responsible for phosphorylating tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis, were investigated in situ in adrenal medullary cells made permeable to solutes of up to 1,000 dalton by exposure to brief intense electric fields. Two different phosphorylation systems were found. One is dependent on Ca2+, the other on cyclic AMP. The Ca2+-dependent system is half-maximally activated by 1-2 μ M Ca2+ and 0.5 m M ATP, and follows a time course similar to that of secretion of catecholamines. Trifluoperazine (0.1 m M ) does not inhibit significantly Ca2+-dependent phosphorylation of tyrosine hydroxylase in situ. The cyclic AMP-dependent system is half-maximally activated by addition of 0.5 μ M cyclic AMP and about 0.3 m M ATP. Ca2+-dependent and cyclic AMP-dependent phosphorylations of tyrosine hydroxylase have roughly the same time course and are additive under conditions where one system is already saturated. Peptide maps of immunoprecipitated tyrosine hydroxylase, after in situ phosphorylation of the enzyme either in the presence of 10−8 M Ca2+ plus 2 × 10−5 M cyclic AMP or of 10−5 M Ca2+, show a marked difference indicating that the enzyme contains several phosphorylation sites. At least one of these sites is phosphorylated only by the Ca2+-dependent system, whereas the other site(s) are phosphorylated by both the Ca2+- and cyclic AMP-dependent systems. The effect of in situ phosphorylation of tyrosine hydroxylase on its enzymatic activity was also investigated.  相似文献   

13.
The mechanisms by which phorbol 12-myristate 13-acetate (PMA) and cAMP attenuate the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5-P2) induced by ligation of the T-cell antigen receptor complex (TCR) was studied in the human Jurkat T-cell line. It has previously been shown that stimulation of Jurkat cells with antibodies to CD3, components of the TCR, elicits a rapid and transient phosphorylation of phospholipase C (PLC)-gamma 1, the predominant PLC isozyme in Jurkat cells, at multiple tyrosine residues and that such tyrosine phosphorylation leads to activation of PLC-gamma 1. Prior incubation of Jurkat cells with PMA or forskolin, which increases intracellular cAMP concentrations, prevented tyrosine phosphorylation of PLC-gamma 1 as well as the hydrolysis of PtdIns 4,5-P2 induced by ligation of CD3. Dose-response curves of PMA and of forskolin for the inhibition of PLC-gamma 1 tyrosine phosphorylation and of PtdIns 4,5-P2 hydrolysis were similar. These results suggest that the inhibition of PtdIns 4,5-P2 hydrolysis by PMA and cAMP is attributable to reduced tyrosine phosphorylation of PLC-gamma 1. Treatment of Jurkat cells with PMA or forskolin stimulated the phosphorylation of PLC-gamma 1 at serine 1248. PMA treatment also elicited the phosphorylation of PLC-gamma 1 at an unidentified serine site. Phosphopeptide map analysis indicated that the sites of PLC-gamma 1 phosphorylated in Jurkat cells treated with PMA and forskolin are the same as those phosphorylated in vitro by protein kinase C (PKC) and cAMP-dependent protein kinase (PKA), respectively. Stimulation of Jurkat cells with antibodies to CD3 also elicited phosphorylation of PLC-gamma 1 at serine 1248 and at the unidentified serine site phosphorylated in PLC-gamma 1 from PMA-treated cells. Thus, phosphorylation of PLC-gamma 1 by PKC or PKA at serine 1248 may modulate the interaction of PLC-gamma 1 with the protein tyrosine kinase or the protein tyrosine phosphatase; this altered interaction may, at least in part, be responsible for the decreased tyrosine phosphorylation of PLC-gamma 1 seen in PMA- and forskolin-treated Jurkat cells. Furthermore, in the absence of PMA, activation of PKC by diacylglycerol provides a negative feedback signal responsible for reducing the phosphotyrosine contents of PLC-gamma 1.  相似文献   

14.
Previous work from these laboratories has shown that in PC12 cells the phosphorylation of a specific soluble protein is decreased by treatment with nerve growth factor. This protein, designated Nsp100, and its kinase have been separated and partially purified from PC12 cells. The present studies have been designed to investigate the role of calcium in this action of nerve growth factor. It is shown here, using PC12h cells, that A23187, a calcium ionophore, and high levels of K+, a depolarizing stimulus, also decrease phosphorylation of Nsp100. Furthermore, the actions of nerve growth factor as well as those of A23187 and high levels of K+ are prevented by treatment of the cells with the calcium chelator EGTA. It is also shown that agents that raise levels of cyclic AMP in the cells, specifically dibutyryl cyclic AMP and cholera toxin, also decrease phosphorylation of Nsp100 but, in addition, increase phosphorylation of tyrosine hydroxylase. The action of these latter agents on Nsp100 is blocked by EGTA, but their action on tyrosine hydroxylase is not, indicating that even agents such as cholera toxin act on Nsp100 through a Ca2+-dependent mechanism.  相似文献   

15.
Cardiac sarcoplasmic reticulum is phosphorylated by a cytosolic Ca2+-activated, phospholipid-dependent protein kinase. This phosphorylation is independent of cyclic nucleotides and enhanced by unsaturated diacylglycerols; saturated diacylglycerols, mono- and tri-glycerides are ineffective. Diacylglycerol stimulation is due to increased Ca2+ sensitivity of the kinase reaction. Protein kinase catalyzed phosphorylation results in enhanced Ca2+-transport ATPase activity and may be an important determinant of cardiac sarcoplasmic reticulum function.  相似文献   

16.
The protein kinase C activator, phorbol-12-myristate-13-acetate (PMA), augments the cyclic AMP accumulation induced by forskolin in pheochromocytoma (PC 12) cells with an EC50 value of 14 nM, while having no effect on basal values. At a concentration of 100 nM PMA markedly augmented the magnitude of the forskolin response and, in addition, caused a slight increase in the potency of forskolin. PMA also enhanced the maximal cyclic AMP accumulation produced by 2-chloroadenosine, and caused a slight increase in potency of the adenosine analog. Since PMA mimics the effect of diacylglycerols that form during the turnover of the membrane lipid, phosphatidylinositol, the results suggest an interrelationship between the systems involved in phosphatidylinositol turnover and cyclic AMP generation in PC 12 cells.  相似文献   

17.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Soluble tyrosine hydroxylase from human pheochromocytoma, bovine adrenal medulla and rat striatum can be activated by Mg2+, ATP and cyclic AMP. In pheochromocytoma, this activation is due to a decreased Km for the pterin cofactor, whereas in adrenal medulla, it is a result of an increase in the Vmax. Norepinephrine increases the Km for pterin cofactor for tyrosine hydroxylase from both of these tissues. The Ki for norepinephrine is not altered by the presence of Mg2+, ATP and cyclic AMP with enzyme from pheochromocytoma or adrenal medulla. On the other hand, striatal tyrosine hydroxylase shows a two-fold increase in the Ki for dopamine after exposure to Mg2+, ATP and cyclic AMP.  相似文献   

19.
Abstract: This study explores the role of cyclic AMP in electrically evoked [3H]noradrenaline release and in the α2-adrenergic modulation of this release in chick sympathetic neurons. Along with an increase in stimulation-evoked tritium overflow, applications of forskolin enhanced the formation of intracellular cyclic AMP. Both effects of forskolin were potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. The forskolin-induced increase in overflow was abolished by the Rp-diastereomer of cyclic AMP-thioate, an antagonist at cyclic AMP-dependent protein kinases, and 1,9-dideoxy-forskolin, an inactive analogue at adenylyl cyclase, had no effect on the evoked overflow. A 24-h pretreatment with either cholera toxin or forskolin reduced the subsequent forskolin-induced accumulation of cyclic AMP and inhibited the stimulation-evoked release. Basal cyclic AMP production, however, remained unaltered after forskolin treatment and was enhanced after 24 h of cholera toxin exposure. The α2-adrenergic agonist bromoxidine did not affect the formation of cyclic AMP stimulated by forskolin but reduced electrically evoked release. However, effects of bromoxidine on 3H overflow were attenuated by forskolin as well as by 8-bromo-cyclic AMP. Effects of bromoxidine on [3H]noradrenaline release were paralleled by an inhibition of voltage-activated Ca2+ currents, primarily through a delayed time course of current activation. This effect was abolished when either forskolin or 8-bromo-cyclic AMP was included in the pipette solution. Both substances, however, failed to affect Ca2+ currents in the absence of bromoxidine. These results suggest that the signaling cascade of the α2-adrenergic inhibition of noradrenaline release involves voltage-activated Ca2+ channels but not cyclic AMP. Elevated levels of cyclic AMP, however, antagonize this α2-adrenergic reduction, apparently through a disinhibition of Ca2+ channels.  相似文献   

20.
Nerve growth factor (NGF) mediates the phosphorylation of tyrosine hydroxylase in PC12 cells on two distinct peptide fragments, separable by two-dimensional tryptic phosphopeptide mapping (phosphopeptides T1 and T3). Phorbol diester derivatives capable of activating Ca+2/phospholipid-dependent protein kinase (C-kinase) cause a specific phosphorylation of peptide T3 in a dose-dependent, saturable manner. Derivatives of the endogenous C-kinase activator diacylglycerol, also cause the phosphorylation of tyrosine hydroxylase on peptide T3. The C-kinase inhibitors chlorpromazine and trifluoperazine inhibit the phorbol diester stimulated phosphorylation of site T3 in a dose-dependent manner. These agents inhibit the phosphorylation of T3 in response to NGF, but have no effect on NGF's ability to cause T1 phosphorylation. In a PC12 mutant deficient in cAMP-dependent protein kinase activity, NGF mediates the phosphorylation of tyrosine hydroxylase on peptide T3 but not on T1. We conclude that NGF mediates the activation of both the cAMP-dependent protein kinase and the C-kinase to phosphorylate substrate proteins. These kinases can act independently to phosphorylate tyrosine hydroxylase, each at a different site, and each of which results in the enzyme activation. A molecular framework is thus provided for events underlying NGF action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号