首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptomycin preferentially perturbs ribosomal proofreading   总被引:20,自引:0,他引:20  
Summary We have studied the influence of streptomycin (Sm) on the kinetics and accuracy of translation by wild-type as well as Ram-mutant ribosomes in an in vitro system that mimics the performance characteristics of ribosomes in bacteria. It can be shown in this system that the accuracy of translation is made up of an initial selection step and one or more proofreading steps. The data show that the antibiotic has only a small influence on the initial selectivity step of wild-type or mutant ribosomes. Streptomycin stimulates the missense rate primarily by suppressing the proofreading of the ribosomes. The kinetic effects of Sm and of Ram alteration are not additive, but seem to be overlapping if not identical.  相似文献   

2.
Multiple effects of kanamycin on translational accuracy   总被引:4,自引:0,他引:4  
Summary We have studied the effects of kanamycin on the accuracy of translation in vitro by wild-type and mutant ribosomes from Escherichia coli. Kanamycin stimulates the leucine missense error of poly(U) translation by wild-type, Ram, and streptomycin-resistant ribosomes in characteristic ways; in particular, the streptomycin-resistant ribosomes are significantly less error-prone than wild-type or Ram ribosomes at all concentrations of the antibiotic. Kinetic analysis of the effects of kanamycin on the translational accuracy of wild-type ribosomes reveals a different concentration dependence for the perturbation of the initial selectivity and for the proofreading. Furthermore, the initial selectivity of streptomycin-resistant ribosomes is not affected by kanamycin; the drug enhances only the error of proofreading by this mutant ribosome. We suggest that the multiple effects of kanamycin on the errors of translation are due to separate effects at different ribosomal sites.Abbreviations N-AcPhe N-acetylphenylalanine - Km Kanamycin (used in the Figures and Tables only) - Str streptomycin (-'-) - EF elongation factor - TCA trichloroacetic acid - Ram ribosome ambiguity mutant  相似文献   

3.
We studied the dissociation rates of peptidyl-tRNA from the P-site of poly(U)-programmed wild-type Escherichia coli ribosomes, hyperaccurate variants altered in S12 (SmD, SmP) and error-prone variants (Ram) altered in S4 or S5. The experiments were carried out in the presence and absence of streptomycin, and the effects of neomycin were tested in the wild-type ribosomes. Binding of peptidyl-tRNA to the P-site of wild-type ribosomes is much stronger than to their A-site. Addition of streptomycin dramatically reduces its affinity for the P-site. The S12 alternations make the P-site binding of peptidyl-tRNA much tighter, and the S4, S5 alterations make it weaker than in the case of the wild-type. We find that when binding of peptidyl-tRNA to the A-site is weak, then the affinity for the P-site is stronger, and vice versa. From these results, we formulate a hypothesis for the actions of streptomycin and neomycin based on deformations of the 16S rRNA tertiary structure. The results are also used to interpret some in vivo experiments on translational processivity.  相似文献   

4.
化学法合成人线粒体野生型与A3243G点突变型tRNALeu(UUR)基因,体外转录生成相应的tRNALeu(UUR),表达并纯化人线粒体亮氨酰tRNA合成酶(mtLeuRS),用mtLeuRS催化野生型与突变型tRNALeu(UUR)与亮氨酸结合,分别检测两种类型tRNALeu(UUR)的氨酰化动力学常数。结果表明,野生型tRNALeu(UUR)的Km/Kcat仅为突变型tRNALeu(UUR)的63.9%,A3243G点突变使tRNALeu(UUR)接受亮氨酸的能力明显下降,提示此为A3243G点突变致病机制之一。 Abstract:The wild-type and mutant-type human mitochondrial tRNALeu(UUR) genes were synthesized and transcribed in vitro with T7 RNA polymerase.The kinetic parameters of human mitochondrial leucyl-tRNA synthetase(mtLeuRS) were determined with wild-type and mutant-type human mitochondrial tRNALeu(UUR) respectively.The results show that the value of Km/Kcat of mtLeuRS for the mutant-type tRNALeu(UUR) is 63.9% as compared with the wild-type.Human mitochondrial tRNALeu(UUR) gene A3243G point mutant can remarkably reduce it′s aminoacylation activity,suggesting it would be one of the mechanisms that the mutation could produce such clinical phenotypes.  相似文献   

5.
Wang ZC  Wang XM  Jin YX  Jiao BH  Xu F  Miao MY  Zhu KJ 《IUBMB life》2003,55(3):139-144
The pathogenetic mechanism of the most extensively investigated A3243G mutated tRNALeu(UUR) gene, which causes the MELAS encephalomyopathy, maternally inherited diabetes, or chronic progressive external ophlthalmoplegia, is still unresolved, despite the numerous investigations on the topic. Previous evidences presented in published work suggested that the mitochondrial DNA harboring A3243G mutation result decreases in the rates of mitochondrial protein synthesis. To search for differences in aminoacylation of mitochondrial DNA-encoded wild-type and mutant human tRNALeu(UUR), we have expressed and purified the two kinds of tRNAsLeu(UUR), and have expressed human mitochondrial leucyl-tRNA synthetase for in vitro assays of aminoacylation of wild-type and mutant human tRNALeu(UUR). The results indicate human mitochondrial tRNALeu(UUR) gene A3243G point mutant can remarkably reduce its aminoacylation, suggesting it could be one of the mechanisms that the mutation can produce in such clinical phenotypes.  相似文献   

6.
Hybrid transfer RNA genes in phage T4   总被引:2,自引:0,他引:2  
W H McClain  K Foss 《Cell》1984,38(1):225-231
We describe the isolation and characterization of two unusual amber suppressor forms of T4 tRNALeu. The sequences of the suppressor tRNAs can be described as hybrids of wild-type tRNALeu and suppressor tRNAGln molecules: the chain lengths and majority of the nucleotide residues corresponded to tRNALeu, but CUA anticodons flanked by 2-14 residues were identical to tRNAGln. The uncertainty as to the exact number of flanking residues correlated with tRNAGln is due to the similarity of the two tRNA sequences in this region. No evidence was found for changes in other T4 tRNAs. We propose that genes for the hybrid tRNAs were produced by mispairing of DNAs at anticodon segments of tRNALeu and tRNAGln with a double crossover flanking those segments.  相似文献   

7.
Codon-specific missense errors in vivo   总被引:8,自引:3,他引:8       下载免费PDF全文
We have developed a simple method for measuring the missense substitution of amino acids at specified positions in proteins synthesized in vivo. We find that the frequency of cysteine substitution for the single arginine in Escherichia coli ribosomal protein L7/L12 is close to 10(-3) for wild-type bacteria, decreases to 4 x 10(-4) in streptomycin-resistant bacteria containing mutant S12 (rpsL), and is virtually unchanged in Ram bacteria containing mutant S4 (rpsD). We have also found that the frequency of the cysteine substitution for the single tryptophan in E. coli ribosomal protein S6 is 3-4 x 10(-3) for wild-type bacteria, decreases to 6 x 10(-4) in streptomycin-resistant bacteria and is elevated to nearly 10(-2) in Ram bacteria.  相似文献   

8.
The cytoplasmic leucyl-tRNA synthetases were purified from a wild-type Neurospora crassa and from a temperature-sensitive leucine-auxotroph (leu-5) mutant. A detailed steady-state kinetic study of the aminoacylation of the tRNALeu from N. crassa by the purified synthetases was carried out. These enzymes need preincubation with dithioerythritol and spermine before the assay in order to become fully active. The Kappm value for leucine was lowered by high ATP concentrations and correspondingly the Kappm,ATP was lowered by high leucine concentrations. The Kappm,Leu was lowered by high pH, a pK value of 6.7 (at 30 degrees C) was calculated for the ionizable group affecting the Km. At the concentrations of 2 mM ATP, 20 microM leucine, 0.3 microM tRNALeu, and pH 7 the apparent Km values were Kappm,ATP = 1.3 mM, Kappm,Leu = 49 microM and Kappm,tRNA = 0.15 microM. No essentially altered cytoplasmic leucyl-tRNA synthetase was produced by the temperature-sensitive mutant strain when kept at 37 degrees C. In none of these experiments could we find any difference between the wild-type enzyme and the enzyme from the mutant strain (whether grown at permissive temperature, 28 degrees C, or grown at permissive temperature for 24 h followed by growth at 37 degrees C). We therefore think that the small difference in the Km value for leucine of the wild-type and mutant enzyme, established in some earlier investigations, is not due to a difference in the kinetic properties of the enzyme molecules but to an external influence. The almost total lack of the mitochondrial leucyl-tRNA synthetase in the mutant strain besides the leucine autotrophy remains the only difference between the wild-type and mutant strains.  相似文献   

9.
The cytoplasmic leucyl-tRNA synthetases of Neurospora crassa wild type (grown at 37 degrees C) and mutant (grown at 28 degrees C) were purified approximately 1770-fold and 1440-fold respectively. Additional enzyme preparations were carried out with mutant cells grown for 24 h at 28 degrees C and transferred then to 37 degrees C for 10-70 h of growth. The mitochondrial leucyl-tRNA synthetase of the wild type was purified approximately 722-fold. The mitochondrial mutant enzyme was found only in traces. The cytoplasmic leucyl-tRNA synthetase from the mutant (grown at 37 degrees C) in vivo is subject of a proteolytic degradation. This leads to an increased pyrophosphate exchange, without altering aminoacylation. Proteolysis in vitro by trypsin or subtilisin of isolated cytoplasmic wild-type and mutant leucyl-tRNA synthetases, however, did not establish and difference in the degradation products and in their catalytic properties. Comparing the cytoplasmic wild-type and mutant enzymes (grown at 28 degrees C) via steady-state kinetics did not show significant differences between these synthetases either. The rate-determining step appears to be after the transfer of the aminoacyl group to the tRNA, e.g. a conformational change or the release of the product. Besides leucine only isoleucine is activated by the enzymes with a discrimination of approximately 1:600; however, no Ile-tRNALeu is released. Similarly these enzymes, when tested with eight ATP analogs, cannot be distinguished. For both enzymes six ATP analogs are neither substrates nor inhibitors. Two analogs are substrates with identical kinetic parameters. The mitochondrial wild-type leucyl-tRNA synthetase is different from the cytoplasmic enzyme, as particularly exhibited by aminoacylating Escherichia coli tRNALeu but not N. crassa cytoplasmic tRNALeu. The presence of traces of the analogous mitochondrial mutant enzyme could be demonstrated. Therefore, the difference between wild-type and mutant leu-5 does not rest in the catalytic properties of the cytoplasmic leucyl-tRNA synthetases. Differences in other properties of these enzymes are not excluded. In contrast the activity of the mitochondrial leucyl-tRNA synthetase of the mutant is approximately 1% of that of the wild-type enzyme.  相似文献   

10.
Summary Three ribosomal ambiguity (Ram) mutants, changed in ribosomal protein S4, have been examined with respect to elongation rate and misreading of translation in vivo and in vitro. Ram mutants increase misreading of nonsense codons in vivo, compared to wild type, between 2–50 times depending on the nature of the nonsense codon, its position, and which rpsD allele is present. Ram ribosomes also show an increased error frequency in vitro. The elongation rate of translation does not seem to be significantly changed, neither in vivo nor in vitro, irrespective of which rpsD allele is present.We suggest that there exists no general relationship between the accuracy and the overall speed of translation in Ram strains.Abbreviations poly U poly(uridylic acid) - IPTG isopropyl B-(scd)-thiogalactopyranoside - ATP adenosine (5) triphosphate - GTP guanosine (5) triphosphate - ONPG o-nitrophenyl-B-d-galactoside - Phe phenylalanine - Leu leucine - EF-G efongation factor G - EF-Tu elongation factor Tu - EF-Ts elongation factor Ts - Tet-R tetracycline resistance  相似文献   

11.
Hyper-accurate ribosomes inhibit growth.   总被引:21,自引:3,他引:18       下载免费PDF全文
We have compared both in vivo and in vitro translation by ribosomes from wild-type bacteria with those from streptomycin-resistant (SmR), streptomycin-dependent (SmD) and streptomycin-pseudo-dependent (SmP) mutants. The three mutant bacteria translate more accurately and more slowly in the absence of streptomycin (Sm) than do wild-type bacteria. In particular, the SmP bacteria grow at roughly half the rate of the wild-type in the absence of Sm. The antibiotic stimulates both the growth rate and the translation rate of SmP bacteria by approximately 2-fold, but it simultaneously increases the nonsense suppression rate quite dramatically. Kinetic experiments in vitro show that the greater accuracy and slower translation rates of mutant ribosomes compared with wild-type ribosomes are associated with much more rigorous proofreading activities of SmR, SmD and SmP ribosomes. Sm reduces the proofreading flows of the mutant ribosomes and stimulates their elongation rates. The data suggest that these excessively accurate ribosomes are kinetically less efficient than wild-type ribosomes, and that this inhibits mutant growth rates. The stimulation of the growth of the mutants by Sm results from the enhanced translational efficiency due to the loss of proofreading, which more than offsets the loss of accuracy caused by the antibiotic.  相似文献   

12.
Ribosomal protein methylation has been well documented but its function remains unclear. We have examined this phenomenon using an Escherichia coli mutant (prmB2), which fails to methylate glutamine residue number 150 of ribosomal protein L3. This mutant exhibits a cold-sensitive phenotype: its growth rate at 22 degrees C is abnormally low in complete medium. In addition, strains with this mutation accumulate abnormal and unstable ribosomal particles; 50-S and 30-S subunits are formed, but at a lower rate. Once assembled, ribosomes with unmethylated L3 are fully active by several criteria. (a) Protein synthesis in vitro with purified 70-S prmB2 ribosomes is as active as wild-type using either a natural (R17) or an artificial [poly(U)] messenger. (b) The induction of beta-galactosidase in vivo exhibits normal kinetics and the enzyme has a normal rate of thermal denaturation. (c) These ribosomes are standard when exposed in vitro to a low magnesium concentration or increasing molarities of LiCl. Efficient methylation of L3 in vitro requires either unfolded ribosomes or a mixture of ribosomal protein and RNA. We suggest that the L3-specific methyltransferase may qualify as one of the postulated 'assembly factors' of the E. coli ribosome.  相似文献   

13.
The kinetics of MS2 ribonucleic acid (RNA) directed protein synthesis have been investigated at seven temperatures between 30 and 47 degrees C by using ribosomes isolated from a wild type strain and seven temperature-sensitive mutants of Escherichia coli. The amount of MS2 coat protein formed at each temperature was determined by gel electrophoresis of the products formed with control ribosomes. With ribosomes from each of the mutant strains, the activation energy required to drive protein synthesis below the maximum temperature (up to 40 degrees C) was increased relative to the control (wild type) activity. Preincubation of the ribosomes at 44 degrees C revealed the kinetics of thermal inactivation, with ribosomes from each of the mutants having a half-life for inactivation less than that of the control ribosomes. A good correlation was observed between the relative activity of the different ribosomes at 44 degrees C and their relative rate of thermal inactivation. Mixing assays allowed the identification of a temperature-sensitive ribosomal subunit for each of the mutants. Defects in one or more of three specific steps in protein synthesis (messenger RNA binding, transfer RNA binding, transfer RNA binding, and subunit reassociation) were identified for the ribosomes from each mutant. The relationship between temperature sensitivity and protein synthesis in these strains is discussed.  相似文献   

14.
Dihydrostreptomycin binds preferentially to chloroplast ribosomes of wild-type Euglena gracilis Klebs var. bacillaris Pringsheim. The K(diss) for the wild-type chloroplast ribosome-dihydrostreptomycin complex is 2 x 10(-7) M, a value comparable with that found for the Escherichia coli ribosome-dihydrostreptomycin complex. Chloroplast ribosomes isolated from the streptomycin-resistant mutant Sm(1) (r)BNgL and cytoplasmic ribosomes from wild-type have a much lower affinity for the antibiotic. The K(diss) for the chloroplast ribosome-dihydrostreptomycin complex of Sm(1) (r) is 387 x 10(-7) M, and the value for the cytoplasmic ribosome-dihydrostreptomycin complex of the wild type is 1,400 x 10(-7) M. Streptomycin competes with dihydrostreptomycin for the chloroplast ribosome binding site, and preincubation of streptomycin with hydroxylamine prevents the binding of streptomycin to the chloroplast ribosome. These results indicate that the inhibition of chloroplast development and replication in Euglena by streptomycin and dihydrostreptomycin is related to the specific inhibition of protein synthesis on the chloroplast ribosomes of Euglena.  相似文献   

15.
We have studied the effects of protein mutations on the higher order structure of 16 S rRNA in Escherichia coli ribosomes, using a set of structure-sensitive chemical probes. Ten mutant strains were studied, which contained alterations in ribosomal proteins S4 and S12, including double mutants containing both altered S4 and S12. Two ribosomal ambiguity (ram) S4 mutant strains, four streptomycin resistant (SmR) S12 mutant strains, one streptomycin pseudodependent (SmP) S12 mutant strain, one streptomycin dependent (SmD) S12 mutant strain and two streptomycin independent (Sm1) double mutants (containing both-SmD and ram mutations) were probed and compared to an isogenic wild-type strain. In ribosomes from strains containing S4 ram mutations, nucleotides A8 and A26 become more reactive to dimethyl sulfate (DMS) at their N-1 positions. In ribosomes from strains bearing the SmD allele, A908, A909, A1413 and G1487 are significantly less reactive to chemical probes. These same effects are observed when the S4 and S12 mutations are present simultaneously in the double mutants. An interesting correlation is found between the reactivity of A908 and the miscoding potential of SmR, SmD, SmP and wild-type ribosomes; the reactivity of A908 increases as the translational error frequency of the ribosomes increases. In the case of ram ribosomes, the reactivity of A908 resembles that of wild-type, unless tRNA is bound, in which case it becomes hyper-reactive. Similarly, streptomycin has little effect on A908 in wild-type ribosomes unless tRNA is bound, in which case its reactivity increases to resemble that of ram ribosomes with bound tRNA. Finally, interaction of streptomycin with SmP and SmD ribosomes causes the reactivity of A908 to increase to near-wild-type levels. A simple model is proposed, in which the reactivity of A908 reflects the position of an equilibrium between two conformational states of the 30 S subunit, one of which is DMS-reactive, and the other DMS-unreactive. In this model, the balance between these two states would be influenced by proteins S4 and S12. Mutations in S12 generally cause a shift toward the unreactive conformer, and in the case of SmD and SmP ribosomes, this shift can be suppressed phenotypically by streptomycin, ram mutations in protein S4 cause a shift toward the reactive conformer, but only when tRNA is bound. This suggests that the opposing effects of these two classes of mutations influence the proof-reading process by somewhat different mechanisms.  相似文献   

16.
Ribosomal RNA and protein mutants resistant to spectinomycin.   总被引:7,自引:0,他引:7       下载免费PDF全文
We have compared the influence of spectinomycin (Spc) on individual partial reactions during the elongation phase of translation in vitro by wild-type and mutant ribosomes. The data show that the antibiotic specifically inhibits the elongation factor G (EF-G) cycle supported by wild-type ribosomes. In addition, we have reproduced the in vivo Spc resistant phenotype of relevant ribosome mutants in our in vitro translation system. In particular, three mutants with alterations at position 1192 in 16S rRNA as well as an rpsE mutant with an alteration of protein S5 were analysed. All of these ribosomal mutants confer a degree of Spc resistance for the EF-G cycle in vitro that is correlated with the degree of growth rate resistance to the antibiotic in culture.  相似文献   

17.
Isolation of yeast tRNALeu genes. DNA sequence of a cloned tRNALeu3 gene.   总被引:7,自引:0,他引:7  
A library of cloned yeast DNA fragments generated by digestion of yeast DNA with the restriction endonuclease Bam HI has been screened by colony hybridization to total yeast [32P]tRNA. Four hundred colonies carrying yeast tRNA genes were isolated. By hybridization to 125I-tRNALeu3, we have isolated from this collection 14 colonies carrying fragments containing yeast tRNALeu genes. The size of the yeast Bam HI inserts ranged from 2.45 x 10(6) to 14 x 10(6) daltons. One of these fragments was mapped in detail by restriction endonuclease digestion and hybridization to 125I-tRNALeu3. The presence of a tRNALeu3 gene was confirmed by DNA sequence. The results indicate that the tRNALeu3 coding region is not co-linear with the tRNALeu3. An intervening tract of 33 base pairs interrupts the coding sequences 1 base pair past the anticodon coding region. The putative structure of a tRNALeu3 precursor is deduced in which the anticodon base pairs with residues from the intervening sequence.  相似文献   

18.
Orthogonal ribosomes (o-ribosomes), also known as specialized ribosomes, are able to selectively translate mRNA not recognized by host ribosomes. As a result, they are powerful tools for investigating translational regulation and probing ribosome structure. To date, efforts directed towards engineering o-ribosomes have involved random mutagenesis-based approaches. As an alternative, we present here a computational method for rationally designing o-ribosomes in bacteria. Working under the assumption that base-pair interactions between the 16S rRNA and mRNA serve as the primary mode for ribosome binding and translational initiation, the algorithm enumerates all possible extended recognition sequences for 16S rRNA and then chooses those candidates that: (i) have a similar binding strength to their target mRNA as the canonical, wild-type ribosome/mRNA pair; (ii) do not bind mRNA with the wild-type, canonical Shine-Dalgarno (SD) sequence and (iii) minimally interact with host mRNA irrespective of whether a recognizable SD sequence is present. In order to test the algorithm, we experimentally characterized a number of computationally designed o-ribosomes in Escherichia coli.  相似文献   

19.
Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.  相似文献   

20.
We describe the cloning and the DNA sequence of the Escherichia coli supH missense suppressor and of the supD60(Am) suppressor genes. supH is a mutant form of serU which codes for tRNASer2. The supH coding sequence differs from the wild-type sequence by a single nucleotide change which corresponds to the middle position of the anticodon. The CGA anticodon of wild-type tRNA and CUA anticodon of supD tRNA is changed to CAA in supH tRNA, which is expected to recognize the UUG leucine codon. We propose that the supH suppressor causes the insertion of serine in response to this codon. The temperature sensitivity caused by supH may be due to a conformation of the CAA anticodon in the supH tRNASer that is slightly different than that in the corresponding tRNALeu species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号