首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product of the p-side quinol oxidation. Although the transmembrane core and the chemistry of quinone redox reactions are conserved in bc complexes, the rate of superoxide generation is an order of magnitude greater in the b6f complex, implying that functionally significant differences in structure exist between the b6f and bc1 complexes on the p-side. A unique structure feature of the b6f p-side quinol oxidation site is the presence of a single chlorophyll-a molecule whose function is unrelated to light harvesting. This study describes a cocrystal structure of the cytochrome b6f complex with the quinol analog stigmatellin, which partitions in the Qp portal of the bc1 complex, but not effectively in b6f. It is inferred that the Qp portal is partially occluded in the b6f complex relative to bc1. Based on a discrete molecular-dynamics analysis, occlusion of the Qp portal is attributed to the presence of the chlorophyll phytyl tail, which increases the quinone residence time within the Qp portal and is inferred to be a cause of enhanced superoxide production. This study attributes a novel (to our knowledge), structure-linked function to the otherwise enigmatic chlorophyll-a in the b6f complex, which may also be relevant to intracellular redox signaling.  相似文献   

2.
Intracytoplasmic vesicles (chromatophores) in the photosynthetic bacterium Rhodobacter sphaeroides represent a minimal structural and functional unit for absorbing photons and utilising their energy for the generation of ATP. The cytochrome bc1 complex (cytbc1) is one of the four major components of the chromatophore alongside the reaction centre-light harvesting 1-PufX core complex (RC-LH1-PufX), the light-harvesting 2 complex (LH2), and ATP synthase. Although the membrane organisation of these complexes is known, their local lipid environments have not been investigated. Here we utilise poly(styrene-alt-maleic acid) (SMA) co-polymers as a tool to simultaneously determine the local lipid environments of the RC-LH1-PufX, LH2 and cytbc1 complexes. SMA has previously been reported to effectively solubilise complexes in lipid-rich membrane regions whilst leaving lipid-poor ordered protein arrays intact. Here we show that SMA solubilises cytbc1 complexes with an efficiency of nearly 70%, whereas solubilisation of RC-LH1-PufX and LH2 was only 10% and 22% respectively. This high susceptibility of cytbc1 to SMA solubilisation is consistent with this complex residing in a locally lipid-rich region. SMA solubilised cytbc1 complexes retain their native dimeric structure and co-purify with 56 ± 6 phospholipids from the chromatophore membrane. We extended this approach to the model cyanobacterium Synechocystis sp. PCC 6803, and show that the cytochrome b6f complex (cytb6f) and Photosystem II (PSII) complexes are susceptible to SMA solubilisation, suggesting they also reside in lipid-rich environments. Thus, lipid-rich membrane regions could be a general requirement for cytbc1/cytb6f complexes, providing a favourable local solvent to promote rapid quinol/quinone binding and release at the Q0 and Qi sites.  相似文献   

3.
Raul Covian 《BBA》2008,1777(9):1079-1091
The dimeric cytochrome bc1 complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc1 complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

4.
One of the less understood parts of the catalytic cycle of cytochrome bc1/b6f complexes is the mechanism of electronic bifurcation occurring within the hydroquinone oxidation site (Qo site). Several models describing this mechanism invoke a phenomenon of formation of an unstable semiquinone. Recent studies with isolated cytochrome bc1 or b6f revealed that a relatively stable semiquinone spin-coupled to the reduced Rieske cluster (SQ-FeS) is generated at the Qo site during the oxidation of ubi- or plastohydroquinone analogs under conditions of continuous turnover. Here, we identified the EPR transition of SQ-FeS formed upon oxidation of ubihydroquinone in native photosynthetic membranes from purple bacterium Rhodobacter capsulatus. We observed a significant amount of SQ-FeS generated when the antimycin-inhibited enzyme experiences conditions of non-equilibrium caused by the continuous light activation of the reaction center. We also noted that SQ-FeS cannot be detected under equilibrium redox titrations in dark. The non-equilibrium redox titrations of SQ-FeS indicate that this center has a higher apparent redox midpoint potential when compared to the redox midpoint potential of the quinone pool. This suggests that SQ-FeS is stabilized, which corroborates a recently proposed mechanism in which the SQ-FeS state is metastable and functions to safely hold electrons at the local energy minimum during the oxidation of ubihydroquinone and limits superoxide formation. Our results open new possibilities to study the formation and properties of this state in cytochromes bc under close to physiological conditions in which non-equilibrium is attained by the light activation of bacterial reaction centers or photosystems.  相似文献   

5.
The interaction of the inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) with the Rieske protein of the chloroplast b6f complex has been studied by EPR. All three redox states of DBMIB were found to interact with the iron-sulphur cluster. The presence of the oxidised form of DBMIB altered the equilibrium distribution of the Rieske protein’s conformational substates, strongly favouring the proximal position close to heme bL. In addition to this conformational effect, DBMIB shifted the pK-value of the redox-linked proton involved in the iron-sulphur cluster’s redox transition by about 1.5 pH units towards more acidic values. The implications of these results with respect to the interaction of the native quinone substrate and the Rieske cluster in cytochrome bc complexes are discussed.  相似文献   

6.
MOA-stilbene is known to be a specific inhibitor of the Qo site of mammalian cytochrome bc 1 complex. We show that it also binds to the chloroplast cytochrome bf complex. Binding to the reduced enzyme induces a red-shift of the Soret and visible absorption bands of the haems b. Steady state and single turnover experiments with thylakoid membranes show that MOA-stilbene promotes additional oxidant-induced reduction of the b haems and slows their subsequent dark reoxidation. In single turnover experiments, the associated slow phase of the carotenoid bandshift at 518 nm is only partially decreased in apparent extent and rate. These and other effects are similar to those produced by NQNO, a Qi site effector, and by analogy indicate that MOA-stilbene should also be primarily a Qi-site effector of the cytochrome bf complex. MOA-stilbene has less effect on other parts of the photosynthetic chain. This confers an important advantage on MOA-stilbene in that its effects on the cytochrome bf complex can be studied by using Photosystem II to activate turnover. Myxothiazol displays effects on the cytochrome bf complex which are similar to, but much weaker than, those of MOA-stilbene.A Q cycle-based model of turnover of the cytochrome bf complex is presented, which can account for several unusual features of kinetic behaviour.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - duroquinol 2,3,5,6-tetramethyl-p-benzohydroquinone - Ehx Ambient potential at pHx versus SHE - Emx Midpoint potential at pH x versus SHE - haem b H the higher potential haem b of cytochrome b, thought to be associated with the quinone reduction site, Qi, and sometimes termed haem b n - haem b L the lower potential haem of cytochrome b, thought to be associated with the quinol oxidation site, Qo, and sometimes termed haem b p - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - MOA-stilbene E--methoxyacrylate-stilbene or (E,E)-methyl 3-methoxy-2-(styrylphenyl)propenoate - NQNO 2-n-nonyl-4-hydroxyquinoline-N-oxide - QB (site) the (binding site of the) secondary quinone acceptor of Photosystem II - Qo site the quinol oxidation site and site of proton output of the bc and bf complexes (also termed the Qz or Qp site) - Qi site the quinone reduction site and site of proton input of the bc and bf complexes (also termed the Qc, Qr or Qn site) - SHE Standard Hydrogen Electrode  相似文献   

7.
Raul Covian  Bernard L. Trumpower 《BBA》2008,1777(7-8):1044-1052
Energy transduction in the cytochrome bc1 complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c1 reduction at varying quinol/quinone ratios in the isolated yeast bc1 complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the bH heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c1 reduction indicated that the bH hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of bH heme reduction of 33%–55% depending on the quinol/quinone ratio. The extent of initial cytochrome c1 reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the bH hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the bH hemes was explained using kinetics in terms of the dimeric structure of the bc1 complex which allows electrons to equilibrate between monomers.  相似文献   

8.
Lipid-binding sites and properties were compared in the hetero-oligomeric cytochrome (cyt) b6f and the yeast bc1 complexes that function, respectively, in photosynthetic and respiratory electron transport. Seven lipid-binding sites in the monomeric unit of the dimeric cyanobacterial b6f complex overlap four sites in the Chlamydomonas reinhardtii algal b6f complex and four in the yeast bc1 complex. The proposed lipid functions include: (i) interfacial–interhelix mediation between (a) the two 8-subunit monomers of the dimeric complex, (b) between the core domain (cyt b, subunit IV) and the six trans membrane helices of the peripheral domain (cyt f, iron–sulphur protein (ISP), and four small subunits in the boundary ‘picket fence’); (ii) stabilization of the ISP domain-swapped trans-membrane helix; (iii) neutralization of basic residues in the single helix of cyt f and of the ISP; (iv) a ‘latch’ to photosystem I provided by the β-carotene chain protruding through the ‘picket fence’; (v) presence of a lipid and chlorophyll a chlorin ring in b6f in place of the eighth helix in the bc1 cyt b polypeptide. The question is posed of the function of the lipid substitution in relation to the evolutionary change between the eight and seven helix structures of the cyt b polypeptide. On the basis of the known n-side activation of light harvesting complex II (LHCII) kinase by the p-side level of plastoquinol, one possibility is that the change was directed by the selective advantage of p- to n-side trans membrane signalling functions in b6f, with the lipid either mediating this function or substituting for the trans membrane helix of a signalling protein lost in crystallization.  相似文献   

9.
The reduction by sulfide of exogenous ubiquinone is compared to the reduction of cytochromes in chromatophores of Rhodobacter capsulatus. From titrations with sulfide values for Vmax of 300 and 10 moles reduced/mg bacteriochlorophyll a·h, and for Km of 5 and 3 M were estimated, for decyl-ubiquinone-and cytochrome c-reduction, respectively. Both reactions are sensitive to KCN, as has been found for sulfide-quinone reductase (SQR) in Oscillatoria limnetica, which is a flavoprotein. Effects of inhibitors interfering with quinone binding sites suggest that at least part of the electron transport from sulfide in R. capsulatus employs the cytochrome bc 1-complex via the ubiquinone pool.Abbreviations BChl a bacteriochlorophyll a - DAD diaminodurene - decyl-UQ decyl-ubiquinone - LED light emitting diode - NQNO 2-n-nonyl-4-hydroxyquinoline-N-oxide - PQ-1 plastoquinone 1 - SQR sulfide-quinone reductase (E.C. 1.8.5.'.) - UQ ubiquinone 10 - Qc the quinone reduction site on the cytochrome b 6 f/bc 1, complex (also termed Qi or Qr or Qn) - Qs the quinone reduction site on SQR - Qz quinol oxidation site on the b 6 f/bc 1, complex (also termed Qo or Qp)  相似文献   

10.
Dimeric cytochromes bc are central components of photosynthetic and respiratory electron transport chains. In their catalytic core, four hemes b connect four quinone (Q) binding sites. Two of these sites, Qi sites, reduce quinone to quinol (QH2) in a step-wise reaction, involving a stable semiquinone intermediate (SQi). However, the interaction of the SQi with the adjacent hemes remains largely unexplored. Here, by revealing the existence of two populations of SQi differing in paramagnetic relaxation, we present a new mechanistic insight into this interaction. Benefiting from a clear separation of these SQi species in mutants with a changed redox midpoint potential of hemes b, we identified that the fast-relaxing SQi (SQiF) corresponds to the form magnetically coupled with the oxidized heme bH (the heme b adjacent to the Qi site), while the slow-relaxing SQi (SQiS) reflects the form present alongside the reduced (and diamagnetic) heme bH. This so far unreported SQiF calls for a reinvestigation of the thermodynamic properties of SQi and the Qi site. The existence of SQiF in the native enzyme reveals a possibility of an extended electron equilibration within the dimer, involving all four hemes b and both Qi sites. This substantiates the predicted earlier electron transfer acting to sweep the b-chain of reduced hemes b to diminish generation of reactive oxygen species by cytochrome bc1. In analogy to the Qi site, we anticipate that the quinone binding sites in other enzymes may contain yet undetected semiquinones which interact magnetically with oxidized hemes upon progress of catalytic reactions.  相似文献   

11.
The Q cycle mechanism of thebc 1 complex requires two quinone reaction centers, the hydroquinone oxidation (QP) and the quinone reduction (QN) center. These sites can be distinguished by the specific binding of inhibitors to either of them. A substantial body of information about the hydroquinone oxidation site has been provided by the analysis of the binding of QP site inhibitors to thebc 1 complex in different redox states and to preparations depleted of lipid or protein components as well as by functional studies with mutantbc 1 complexes selected for resistance toward the inhibitors. The reaction site is formed by at least five protein segments of cytochromeb and parts of the iron-sulfur protein. At least two different binding sites for QP site inhibitors could be detected, one for the methoxyacrylate-type inhibitors binding predominantly to cytochromeb, the other for the chromone-type inhibitors and hydroxyquinones binding predominantly to the iron-sulfur protein. The interactions with the protein segments, between different protein segments, and between protein and ligands (substrate, inhibitors) are discussed in detail and a working model of the QP pocket is proposed.  相似文献   

12.
The respiratory chain cytochrome bc 1 complex (cyt bc 1) is a major target of numerous antibiotics and fungicides. All cyt bc 1 inhibitors act on either the ubiquinol oxidation (QP) or ubiquinone reduction (QN) site. The primary cause of resistance to bc 1 inhibitors is target site mutations, creating a need for novel agents that act on alternative sites within the cyt bc 1 to overcome resistance. Pyrimorph, a synthetic fungicide, inhibits the growth of a broad range of plant pathogenic fungi, though little is known concerning its mechanism of action. In this study, using isolated mitochondria from pathogenic fungus Phytophthora capsici, we show that pyrimorph blocks mitochondrial electron transport by affecting the function of cyt bc 1. Indeed, pyrimorph inhibits the activities of both purified 11-subunit mitochondrial and 4-subunit bacterial bc 1 with IC50 values of 85.0 μM and 69.2 μM, respectively, indicating that it targets the essential subunits of cyt bc 1 complexes. Using an array of biochemical and spectral methods, we show that pyrimorph acts on an area near the QP site and falls into the category of a mixed-type, noncompetitive inhibitor with respect to the substrate ubiquinol. In silico molecular docking of pyrimorph to cyt b from mammalian and bacterial sources also suggests that pyrimorph binds in the vicinity of the quinol oxidation site.  相似文献   

13.
Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b6f and bc1 complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b6f complex with those in bc1 shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b6f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc1 complex. The specific identity of lipids is different in b6f and bc1 complexes: b6f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc1 complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b6f, as well as eicosane in C. reinhardtii, are unique to the b6f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b6f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex.  相似文献   

14.
Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which “semireverse” electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P.  相似文献   

15.
In photosynthetic organisms, membrane pigment-protein complexes [light-harvesting complex 1 (LH1) and light-harvesting complex 2 (LH2)] harvest solar energy and convert sunlight into an electrical and redox potential gradient (reaction center) with high efficiency. Recent atomic force microscopy studies have described their organization in native membranes. However, the cytochrome (cyt) bc1 complex remains unseen, and the important question of how reduction energy can efficiently pass from core complexes (reaction center and LH1) to distant cyt bc1 via membrane-soluble quinones needs to be addressed. Here, we report atomic force microscopy images of entire chromatophores of Rhodospirillum photometricum. We found that core complexes influence their molecular environment within a critical radius of ∼ 250 Å. Due to the size mismatch with LH2, lipid membrane spaces favorable for quinone diffusion are found within this critical radius around cores. We show that core complexes form a network throughout entire chromatophores, providing potential quinone diffusion pathways that will considerably speed the redox energy transfer to distant cyt bc1. These long-range quinone pathway networks result from cooperative short-range interactions of cores with their immediate environment.  相似文献   

16.
The cytochrome (cyt) b6f complex is involved in the transmembrane redox signaling that triggers state transitions in cyanobacteria and chloroplasts. However, the components and molecular mechanisms are still unclear. In an attempt to solve this long-standing problem, we first focused on the unknown role of a single chlorophyll a (Chla) in cyt b6f with a new approach based on Chla structural properties. Various b6f X-ray crystal structures were analyzed to identify their differences, which correlate with differences in Chla molecular volume. We found that the distance of the Rieske [2Fe-2S] cluster to Chla correlates with the distance between a pair of residues at the Qo-site and the distance between a pair of residues at the opposite membrane side. These correlations were accompanied by the rotation of a key peripheral residue and by changes in the hydrophobic thickness of cyt b6f. Parallel analysis of cyt bc1 crystal structures allowed us to conclude that Chla acts as the crucial redox sensor and transmembrane signal transmitter in b6f for changes in the plastoquinone pool redox state. The hydrophobic mismatch induced by the changed hydrophobic thickness of cyt b6f is the driving force for the structural reorganizations of the photosynthetic apparatus during induction and the progression of state transitions in cyanobacteria and chloroplasts. A mechanism for LHCII kinase activation in chloroplasts is also proposed. Our understanding of the dynamic structural changes in bc-complexes during turnover at the Qo-site and state transitions is augmented by the time-sequence ordering of 56 bc crystal structures.  相似文献   

17.
Chang-An Yu  Xiaowei Cen  He-Wen Ma  Ying Yin  Linda Yu  Lothar Esser  Di Xia 《BBA》2008,1777(7-8):1038-1043
Intensive biochemical, biophysical and structural studies of the cytochrome (cyt) bc1 complex in the past have led to the formulation of the “protonmotive Q-cycle” mechanism for electron and proton transfer in this vitally important complex. The key step of this mechanism is the separation of electrons during the oxidation of a substrate quinol at the QP site with both electrons transferred simultaneously to ISP and cyt bL when the extrinsic domain of ISP (ISP-ED) is located at the b-position. Pre-steady state fast kinetic analysis of bc1 demonstrates that the reduced ISP-ED moves to the c1-position to reduce cyt c1 only after the reduced cyt bL is oxidized by cyt bH. However, the question of how the conformational switch of ISP-ED is initiated remains unanswered. The results obtained from analysis of inhibitory efficacy and binding affinity of two types of QP site inhibitors, Pm and Pf, under various redox states of the bc1 complex, suggest that the electron transfer from heme bL to bH is the driving force for the releasing of the reduced ISP-ED from the b-position to c1-position to reduce cyt c1.  相似文献   

18.
Succinate:quinone oxidoreductase (SQR) from Bacillus subtilis consists of two hydrophilic protein subunits comprising succinate dehydrogenase, and a di-heme membrane anchor protein harboring two putative quinone binding sites, Qp and Qd. In this work we have used spectroelectrochemistry to study the electronic communication between purified SQR and a surface modified gold capillary electrode. In the presence of two soluble quinone mediators the midpoint potentials of both hemes were revealed essentially as previously determined by conventional redox titration (heme bH, Em = + 65 mV, heme bL, Em = − 95 mV). In the absence of mediators the enzyme still communicated with the electrode, albeit with a reproducible hysteresis, resulting in the reduction of both hemes occurring approximately at the midpoint potential of heme bL, and with a pronounced delay of reoxidation. When the specific inhibitor 2-n-heptyl-4 hydroxyquinoline N-oxide (HQNO), which binds to Qd in B. subtilis SQR, was added together with the two quinone mediators, rapid reductive titration was still possible which can be envisioned as an electron transfer occurring via the HQNO insensitive Qp site. In contrast, the subsequent oxidative titration was severely hampered in the presence of HQNO, in fact it completely resembled the unmediated reaction. If mediators communicate with Qp or Qd, either event is followed by very rapid electron redistribution within the enzyme. Taken together, this strongly suggests that the accessibility of Qp depended on the redox state of the hemes. When both hemes were reduced, and Qd was blocked by HQNO, quinone-mediated communication via the Qp site was no longer possible, revealing a redox-dependent conformational change in the membrane anchor domain.  相似文献   

19.
Marcin Sarewicz 《BBA》2010,1797(11):1820-31372
In addition to its bioenergetic function of building up proton motive force, cytochrome bc1 can be a source of superoxide. One-electron reduction of oxygen is believed to occur from semiquinone (SQo) formed at the quinone oxidation/reduction Qo site (Qo) as a result of single-electron oxidation of quinol by the iron-sulfur cluster (FeS) (semiforward mechanism) or single-electron reduction of quinone by heme bL (semireverse mechanism). It is hotly debated which mechanism plays a major role in the overall production of superoxide as experimental data supporting either reaction exist. To evaluate a contribution of each of the mechanisms we first measured superoxide production under a broad range of conditions using the mutants of cytochrome bc1 that severely impeded the oxidation of FeS by cytochrome c1, changed density of FeS around Qo by interfering with its movement, or combined these two effects together. We then compared the amount of generated superoxide with mathematical models describing either semiforward or semireverse mechanism framed within a scheme assuming competition between the internal reactions at Qo and the leakage of electrons on oxygen. We found that only the model of semireverse mechanism correctly reproduced the experimentally measured decrease in ROS for the FeS motion mutants and increase in ROS for the mutants with oxidation of FeS impaired. This strongly suggests that this mechanism dominates in setting steady-state levels of SQo that present a risk of generation of superoxide by cytochrome bc1. Isolation of this reaction sequence from multiplicity of possible reactions at Qo helps to better understand conditions under which complex III might contribute to ROS generation in vivo.  相似文献   

20.
Illumination of intact cells of Rhodobacter sphaeroides under anaerobic conditions has a dual effect on the redox state of the quinone pool. A large oxidation of the quinone pool is observed during the first seconds following the illumination. This oxidation is suppressed by the addition of an uncoupler in agreement with a light-induced reverse electron transfer at the level of the complex I, present both in the non-invaginated part of the membrane and in the chromatophores. At longer dark times, this illumination increases the reducing power of the cells leading to a significant reduction of the others reaction centers (RCs). From the observation that a significant proportion of RCs could be reduced by the preillumination without affecting the numbers of charge separation for the RCs, we conclude that there is no rapid thermodynamic equilibrium between the quinones present in the non-invaginated part of the membrane and those localized in the chromatophores. Under anaerobic conditions where the chromatophores quinone pool is fully reduced, we deduce, on the basis of flash-induced fluorescence kinetics, that the reduced RCs are exclusively reoxidized by the quinone generated at the Q o site of the cyt bc 1 complex. The supramolecular association between a dimeric RC-LHI complex and one cyt bc 1 complex allows the confinement of a quinone between the RC-LHI directly associated to the cyt bc 1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号