首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The definition of human MHC class I haplotypes through association of HLA-A, HLA-Cw and HLA-B has been used to analyze ethnicity, population migrations and disease association.

Results

Here, we present HLA-E allele haplotype association and population linkage disequilibrium (LD) analysis within the ~1.3 Mb bounded by HLA-B/Cw and HLA-A to increase the resolution of identified class I haplotypes. Through local breakdown of LD, we inferred ancestral recombination points both upstream and downstream of HLA-E contributing to alternative block structures within previously identified haplotypes. Through single nucleotide polymorphism (SNP) analysis of the MHC region, we also confirmed the essential genetic fixity, previously inferred by MHC allele analysis, of three conserved extended haplotypes (CEHs), and we demonstrated that commercially-available SNP analysis can be used in the MHC to help define CEHs and CEH fragments.

Conclusion

We conclude that to generate high-resolution maps for relating MHC haplotypes to disease susceptibility, both SNP and MHC allele analysis must be conducted as complementary techniques.  相似文献   

2.
The major histocompatibility complex (MHC) consists of polymorphic frozen blocks (PFBs) that are linked to form megabase haplotypes. These blocks consist of polymorphic sequences and define regions where recombination appears to be inhibited. We have been able to show, using a highly polymorphic sequence centromeric of HLA-B (within the beta block), that PFBs are conserved and contain specific insertions/deletions and substitutions that are the same for individuals with the same MHC haplotype but that differ between at least most different haplotypes. A sequence comparison between ethnic-specific haplotypes shows that these sequences have remained stable and predate the formation of these haplotypes. To determine whether the same conserved block has been involved in the generation of multiple haplotypes, we compared the block typing profiles of different ethnic specific haplotypes. Block typing profiles have previously been shown to be identical in individuals with the same MHC haplotype but, generally, to differ between different haplotypes. It was found that some PFBs are common to more than one haplotype, implying a common ancestry. Subsequently, haplotypes have been generated by the shuffling and exchange of these PFBs. The regions between these PFBs appear to permit the recombination sites and therefore could be expected to exhibit either low polymorphism or a localized ``hotspot.' Received: 20 January 1997 / Accepted: 11 March 1997  相似文献   

3.
Smith WP  Vu Q  Li SS  Hansen JA  Zhao LP  Geraghty DE 《Genomics》2006,87(5):561-571
We carried out a resequencing project that examined 552 kb of sequence from each of 46 individual HLA haplotypes representing a diversity of HLA allele types, generating nearly 27 Mb of fully phased genomic sequence. Haplotype blocks were defined extending from telomeric of HLA-F to centromeric of HLA-DP including in total 5186 MHC SNPs. To investigate basic questions about the evolutionary origin of common HLA haplotypes, and to obtain an estimate of rare variation in the MHC, we similarly examined two additional sets of samples. In 19 independent HLA-A1, B8, DR3 chromosomes, the most common HLA haplotype in Northern European Caucasians, variation was found at 11 SNP positions in the 3600-kb region from HLA-A to DR. Partial resequencing of 282 individuals in the gene-dense class III region identified significant variability beyond what could have been detected by linkage to common SNPs.  相似文献   

4.
A panel of 15 carefully selected microsatellites (short tandem repeats, STRs) has allowed us to study segregation and haplotype stability in various macaque species. The STRs span the major histocompatibility complex (MHC) region and map in more detail from the centromeric part of the Mhc-A to the DR region. Two large panels of Indian rhesus and Indonesian/Indochinese cynomolgus macaques have been subjected to pedigree analysis, allowing the definition of 161 and 36 different haplotypes and the physical mapping of 10 and 5 recombination sites, respectively. Although most recombination sites within the studied section of the Indian rhesus monkey MHC are situated between the Mhc-A and Mhc-B regions, the resulting recombination rate for this genomic segment is low and similar to that in humans. In contrast, in Indonesian/Indochinese macaques, two recombination sites, which appear to be absent in rhesus macaques, map between the class III and II regions. As a result, the mean recombination frequency of the core MHC, Mhc-A to class II, is higher in Indonesian/Indochinese cynomolgus than in Indian rhesus macaques, but as such is comparable to that in humans. The present communication demonstrates that the dynamics of recombination ‘hot/cold spots’ in the MHC, as well as their frequencies, may differ substantially between highly related macaque species.  相似文献   

5.
The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation.  相似文献   

6.
T H Lam  M Shen  J-M Chia  S H Chan  E C Ren 《Heredity》2013,111(2):131-138
Genetic rearrangement by recombination is one of the major driving forces for genome evolution, and recombination is known to occur in non-random, discreet recombination sites within the genome. Mapping of recombination sites has proved to be difficult, particularly, in the human MHC region that is complicated by both population variation and highly polymorphic HLA genes. To overcome these problems, HLA-typed individuals from three representative populations: Asian, European and African were used to generate phased HLA haplotypes. Extended haplotype homozygosity (EHH) plots constructed from the phased haplotype data revealed discreet EHH drops corresponding to recombination events and these signatures were observed to be different for each population. Surprisingly, the majority of recombination sites detected are unique to each population, rather than being common. Unique recombination sites account for 56.8% (21/37 of total sites) in the Asian cohort, 50.0% (15/30 sites) in Europeans and 63.2% (24/38 sites) in Africans. Validation carried out at a known sperm typing recombination site of 45 kb (HLA-F-telomeric) showed that EHH was an efficient method to narrow the recombination region to 826 bp, and this was further refined to 660 bp by resequencing. This approach significantly enhanced mapping of the genomic architecture within the human MHC, and will be useful in studies to identify disease risk genes.  相似文献   

7.
We have mapped and sequenced the region immediately centromeric of the human major histocompatibility complex (MHC). A cluster of 13 genes/pseudogenes was identified in a 175 kb PAC linking the TAPASIN locus with the class II region. It includes two novel human genes (BING4 and SACM2L) and a thus far unnoticed human leucocyte antigen (HLA) class II pseudogene, termed HLA-DPA3. Analysis of the G+C content revealed an isochore boundary which, together with the previously reported telomeric boundary, defines the MHC class II region as one of the first completely sequenced isochores in the human genome. Comparison of the sequence with limited sequence from other cell lines shows that the high sequence variation found within the classical class II region extends beyond the identified isochore boundary leading us to propose the concept of an "extended MHC". By comparative analysis, we have precisely identified the mouse/human synteny breakpoint at the centromeric end of the extended MHC class II region between the genes HSET and PHF1.  相似文献   

8.
Sporophytic self-incompatibility (SSI) in the genus Ipomoea (Convolvulaceae) is controlled by a single polymorphic S locus. We have previously analyzed genomic sequences of an approximately 300 kb region spanning the S locus of the S 1 haplotype and characterized the genomic structure around this locus. Here, we further define the physical size of the S locus region by mapping recombination breakpoints, based on sequence analysis of PCR fragments amplified from the genomic DNA of recombinants. From the recombination analysis, the S locus of the S 1 haplotype was delimited to a 0.23 cM region of the linkage map, which corresponds to a maximum physical size of 212 kb. To analyze differences in genomic organization between S haplotypes, fosmid contigs spanning approximately 67 kb of the S 10 haplotype were sequenced. Comparison with the S 1 genomic sequence revealed that the S haplotype-specific divergent regions (SDRs) spanned 50.7 and 34.5 kb in the S 1 and S 10 haplotypes, respectively and that their flanking regions showed a high sequence similarity. In the sequenced region of the S 10 haplotype, five of the 12 predicted open reading frames (ORFs) were found to be located in the divergent region and showed co-linear organization of genes between the two S haplotypes. Based on the size of the SDRs, the physical size of the S locus was estimated to fall within the range 34–50 kb in Ipomoea.  相似文献   

9.
The major histocompatibility complex (MHC) is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC) cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2) and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2), that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs). Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II-related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations). These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of ancestral blocks via recombination is a potential mechanism whereby certain DR-DQ allelic combinations, which presumably have favoured immunological functions, can spread across haplotypes and populations.  相似文献   

10.
Genes of the major histocompatibility complex (MHC) that underlie the adaptive immune system may allow vertebrates to recognize their kin. True kin-recognition genes should produce signalling products to which organisms can respond. Allelic variation in the peptide-binding region (PBR) of MHC molecules determines the pool of peptides that can be presented to trigger an immune response. To examine whether these MHC peptides also might underlie assessments of genetic similarity, we tested whether Xenopus laevis tadpoles socially discriminate between pairs of siblings with which they differed in PBR amino acid sequences. We found that tadpoles (four sibships, n = 854) associated preferentially with siblings with which they were more similar in PBR amino acid sequence. Moreover, the strength of their preference for a conspecific was directly proportional to the sequence similarity between them. Discrimination was graded, and correlated more closely with functional sequence differences encoded by MHC class I and class II alleles than with numbers of shared haplotypes. Our results thus suggest that haplotype analyses may fail to reveal fine-scale behavioural responses to divergence in functionally expressed sequences. We conclude that MHC–PBR gene products mediate quantitative social assessment of immunogenetic similarity that may facilitate kin recognition in vertebrates.  相似文献   

11.

Background

Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan.

Methods/Principal Findings

Sequence diversity in the DNA barcode region (mtCOI-5′) was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3′ to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage “Pakistan”. The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and “Pakistan” were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan.

Conclusions

DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.  相似文献   

12.
Studies of the major histocompatibility complex (MHC) in mouse indicate that the recombination sites are not randomly distributed and their occurrence is haplotype-dependent. No data concerning haplotype-specific recombination sites in human are available due to the low number of informative families. To investigate haplotype-specific recombination sites in human MHC, we here describe an approach based on identification of recombinant haplotypes derived from one conserved haplotype at the population level. The recombination sites were mapped by comparing polymorphic markers between the recombinant and assumed original haplotypes. We tested this approach on the extended haplotype HLA A3; B47; Bf * F; C4A * 1; C4B * Q0; DR7, which is most suitable for this analysis. First, it carries a number of rare markers, and second, the haplotype, albeit rare in the general population, is frequent in patients with 21-hydroxylase (21OH) defect. We observed recombinants derived from this haplotype in patients with 21OH defect. All these haplotypes had the centromeric part (from Bf to DR) identical to the original haplotype, but they differed in HLA A and B. We therefore assumed that they underwent recombinations in the segment that separates the Bf and HLA B genes. Polymorphic markers indicated that all break points mapped to two segments near the TNF locus. This approach makes possible the mapping of preferential recombination sites in different haplotypes.  相似文献   

13.
DNA variants in the tumor necrosis factor-α (TNF) and linked lymphotoxin-α genes, and specific alleles of the highly polymorphic human leukocyte antigen B (HLA-B) gene have been implicated in a plethora of immune and infectious diseases. However, the tight linkage disequilibrium characterizing the central region of the human major histocompatibility complex (MHC) containing these gene loci has made difficult the unequivocal interpretation of genetic association data. To alleviate these difficulties and facilitate the design of more focused follow-up studies, we investigated the structure and distribution of HLA-B-specific MHC haplotypes reconstructed in a European population from unphased genotypes at a set of 25 single nucleotide polymorphism sites spanning a 66-kilobase long region across TNF. Consistent with the published data, we found limited genetic diversity across the so-called TNF block, with the emergence of seven common MHC haplotypes, termed TNF block super-haplotypes. We also found that the ancestral haplotype 8.1 shares a TNF block haplotype with HLA-B*4402. HLA-B*5701, a known protective allele in HIV-1 pathogenesis, occurred in a unique TNF block haplotype.  相似文献   

14.
Meiotic recombination is not random in the proximal region of the mouse major histocompatibility complex (MHC). It is clustered at four restricted positions, so-called hotspots. Some of the MHC haplotypes derived from Asian wild mice enhance recombination at the hotspots in genetic crosses with standard MHC haplotypes of laboratory mouse strains. In particular, the wm7 haplotype derived from Japanese wild mouse indicated an approximately 2% recombination frequency within a 1.2 kb fragment of DNA in the interval between the Pb and Ob genes. Interestingly, this enhancement of recombination was observed only in female meiosis but not in male meiosis. Mating experiments demonstrated that the wm7 haplotype carries a genetic factor in the region proximal to the hotspot, which instigates recombination. In addition, the wm7 haplotype has a genetic factor located in the region distal to the hotspot, which suppresses recombination. From the molecular characterization of the two hotspots located in the Eb gene and the Pb-Ob interval, it appeared that there are several common molecular elements, the consensus of the middle repetitive MT-family, TCTG or CCTG tetramer repeats, and the solitary long terminal repeat (LTR) of mouse retrovirus.  相似文献   

15.
The Major Histocompatibility Complex (MHC, 6p21) codes for traditional HLA and other host response related genes. The polymorphic HLA-DRB1 gene in MHC Class II has been associated with several complex diseases. In this study we focus on MHC haplotype structures in the Finnish population. We explore the variability of extended HLA-DRB1 haplotypes in relation to the other traditional HLA genes and a selected group of MHC class III genes. A total of 150 healthy Finnish individuals were included in the study. Subjects were genotyped for HLA alleles (HLA-A, -B, -DRB1, -DQB1, and -DPB1). The polymorphism of TNF, LTA, C4, BTNL2 and HLA-DRA genes was studied with 74 SNPs (single nucleotide polymorphism). The C4A and C4B gene copy numbers and a 2-bp silencing insertion at exon 29 in C4A gene were analysed with quantitative genomic realtime-PCR. The allele frequencies for each locus were calculated and haplotypes were constructed using both the traditional HLA alleles and SNP blocks. The most frequent Finnish A∼B∼DR -haplotype, uncommon in elsewhere in Europe, was A*03∼B*35∼DRB1*01∶01. The second most common haplotype was a common European ancestral haplotype AH 8.1 (A*01∼B*08∼DRB1*03∶01). Extended haplotypes containing HLA-B, TNF block, C4 and HLA-DPB1 strongly increased the number of HLA-DRB1 haplotypes showing variability in the extended HLA-DRB1 haplotype structures. On the contrary, BTNL2 block and HLA-DQB1 were more conserved showing linkage with the HLA-DRB1 alleles. We show that the use of HLA-DRB1 haplotypes rather than single HLA-DRB1 alleles is advantageous when studying the polymorphisms and LD patters of the MHC region. For disease association studies the HLA-DRB1 haplotypes with various MHC markers allows us to cluster haplotypes with functionally important gene variants such as C4 deficiency and cytokines TNF and LTA, and provides hypotheses for further assessment. Our study corroborates the importance of studying population-specific MHC haplotypes.  相似文献   

16.
Tapasin is a Mr 48,000 glycoprotein and has a specialized role in MHC class I-restricted antigen presentation. It is encoded by a gene which maps centromeric to the MHC class II region of human Chromosome 6 within 200 kb of HLA-DP. There is variable dependence upon tapasin for MHC class I expression among different MHC class I alleles. HLA-B*4402 and to a lesser extent HLA-A1 and B8 are tapasin dependent, whereas HLA-B27, A2 and to a lesser extent B7 and A3 are tapasin independent. We investigated whether tapasin is polymorphic and whether these Tapasin alleles are in linkage with any MHC class I alleles. We identified three new mutations within intron 4, which are in a particular linkage with the previously described exon 4 (G16003C) dimorphism. The intronic mutations are G16146T, G16232A, and T16317A (numbering according to cosmid clone F0811; GenBank accession number Z97184). The allele frequency of Tapasin*01 (G16003) was 0.47 and Tapasin*02 (C16003) was 0.53 in this UK population. Four of the eight possible intronic haplotypes were identified and their cis linkage with the tapasin dimorphism ascertained. Tapasin*01 was associated with all the identified haplotypes, while Tapasin*02 was only associated with the wild-type intronic sequence (GGT). There was no significant linkage (P>0.01) of the Tapasin dimorphism or new Tapasin alleles to any of the MHC class I A, B, or C alleles studied or to the extended A1 B8 DR3 haplotype.  相似文献   

17.
We have cloned and sequenced a meiotic recombinational hotspot between the A beta 3 and A beta 2 genes in the major histocompatibility complex (MHC) of the mouse. This recombinational hotspot in the Mus musculus castaneus cas3 haplotype was previously localized to a region of 9.5 kb of DNA in which five independent crossing-over events occurred at the unusually high frequency of 0.6%. Aside from cas3, the hotspot appears to be absent in many other MHC haplotypes. We have now confined the five recombinational breakpoints to a stretch of 3.5 kb of DNA. From the nucleotide sequence around the recombinational breakpoints, determined in the parental cas3 and b haplotypes as well as for two recombinant haplotypes, we show that the two recombinant haplotypes were generated by homologous equal crossing-over and place the breakpoints within two non-overlapping stretches of 10 and 36 bp, respectively. Comparison of the DNA sequences of the hotspot-positive cas3 and the hotspot-negative b haplotypes reveals a number of differences, in particular, a CAGA-repeat sequence which is present in CAS3 in six, but only four copies in C57BL/6 DNA. This repeat sequence is reminiscent of one in a previously characterized hotspot in the E beta gene.  相似文献   

18.
Genomic probes from the HLA-B region of the major histocompatibility complex (MHC) were used to study the association of restriction fragment length polymorphisms (RFLPs) with various MHC alleles, complotypes, and extended haplotypes. The two DNA probes, M20A and R5A, were derived from previously cloned cosmids and are located 38 and 110 kilobases (kb) centromeric to HLa-B, respectively. Five different RFLP variants occuring in five different haplotypic combinations were detected within a panel of 40 homozygous-typing cells and cells from 21 families using Bst EII. In two informative families with HLA-B/DR recombinations the inheritance of the RFLP variants was consistent with their mapping between HLA-B and complotypes. The R5A/M20A haplotypic pattern 6.5 kb/3.0 kb (A) had a normal Caucasian frequency of approximately 0.43 and was found in all independent examples of the extended haplotypes [HLA-B8,SC01,DR3], [HLA-B18,F1C30, DR3], [HLa-Bw62,SC33,Dr4], [HLa-B44,SC30,Dr4], and [HLA-Bw47,FC91,0DR7]. The patterns of 6.9 kb/ 3.0 kb (B), 6.5 kb/4.7 kb (C), 1.45 kb/3.0 kb (D), and 6.9 kb/4.7 kb (E) had normal Caucasian frequencies of approximately 0.23, 0.15, 0.15, and 0.04 and were found on all independent examples of [HLA-B38,SC21, DR4], [HLA-Bw57,SC61,DR7], [HLA-B7,SC31,DR2], and [HLA-B44,FC31,DR7], respectively. Individual complotypes or HLA-B alleles which were markers of extended haplotypes showed variable associations. For example, HLA-B7 and the complotype SC31 were associated with all R5A/M20A RFLP haplotypes except haplotype E, although [HLA-B7,SC31,DR7] was associated exclusively with haplotype D. HLA-B27, not known to be part of an extended haplotype, was suprisingly exclusively associated with the 6.5 kb/4.7 kb or C haplotypic pattern in all five instances tested. These findings support the concept of regional conservation of DNA on independent examples of extended haplotypes. The results also further characterize these haplotypes.  相似文献   

19.
20.
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号