首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
Focal adhesions are intricate protein complexes that facilitate cell attachment, migration, and cellular communication. Lasp-2 (LIM-nebulette), a member of the nebulin family of actin-binding proteins, is a newly identified component of these complexes. To gain further insights into the functional role of lasp-2, we identified two additional binding partners of lasp-2: the integral focal adhesion proteins vinculin and paxillin. Of interest, the interaction of lasp-2 with its binding partners vinculin and paxillin is significantly reduced in the presence of lasp-1, another nebulin family member. The presence of lasp-2 appears to enhance the interaction of vinculin and paxillin with each other; however, as with the interaction of lasp-2 with vinculin or paxillin, this effect is greatly diminished in the presence of excess lasp-1. This suggests that the interplay between lasp-2 and lasp-1 could be an adhesion regulatory mechanism. Lasp-2’s potential role in metastasis is revealed, as overexpression of lasp-2 in either SW620 or PC-3B1 cells—metastatic cancer cell lines—increases cell migration but impedes cell invasion, suggesting that the enhanced interaction of vinculin and paxillin may functionally destabilize focal adhesion composition. Taken together, these data suggest that lasp-2 has an important role in coordinating and regulating the composition and dynamics of focal adhesions.  相似文献   

2.
Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2), which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.  相似文献   

3.
4.
The motor protein kinesin superfamily proteins (KIFs) are involved in cancer progression. The depletion of one of the KIFs, KIF14, might delay the metaphase-to-anaphase transition, resulting in a binucleated status, which enhances tumor progression; however, the exact correlation between KIF14 and cancer progression remains ambiguous. In this study, using loss of heterozygosity and array comparative genomic hybridization analyses, we observed a 30% loss in the regions surrounding KIF14 on chromosome 1q in lung adenocarcinomas. In addition, the protein expression levels of KIF14 in 122 lung adenocarcinomas also indicated that approximately 30% of adenocarcinomas showed KIF14 down-regulation compared with the expression in the bronchial epithelial cells of adjacent normal counterparts. In addition, the reduced expression of KIF14 mRNA or proteins was correlated with poor overall survival (P = 0.0158 and <0.0001, respectively), and the protein levels were also inversely correlated with metastasis (P<0.0001). The overexpression of KIF14 in lung adenocarcinoma cells inhibited anchorage-independent growth in vitro and xenograft tumor growth in vivo. The overexpression and silencing of KIF14 also inhibited or enhanced cancer cell migration, invasion and adhesion to the extracellular matrix proteins laminin and collagen IV. Furthermore, we detected the adhesion molecules cadherin 11 (CDH11) and melanoma cell adhesion molecule (MCAM) as cargo on KIF14. The overexpression and silencing of KIF14 enhanced or reduced the recruitment of CDH11 in the membrane fraction, suggesting that KIF14 might act through recruiting adhesion molecules to the cell membrane and modulating cell adhesive, migratory and invasive properties. Thus, KIF14 might inhibit tumor growth and cancer metastasis in lung adenocarcinomas.  相似文献   

5.
For most cancer cell types, the acquisition of metastatic ability leads to clinically incurable disease. Twelve metastasis suppressor genes (MSGs) have been identified that reduce the metastatic propensity of cancer cells. If these genes are inactivated in both alleles, metastatic ability is promoted. Here, we develop a mathematical model of the dynamics of MSG inactivation and calculate the expected number of metastases formed by a tumor. We analyse the effects of increased mutation rates and different fitness values of cells with one or two inactivated alleles on the ability of a tumor to form metastases. We find that mutations that are negatively selected in the main tumor are unlikely to be responsible for the majority of metastases produced by a tumor. Most metastases-causing mutations will be present in all (or most) cells in the main tumor.  相似文献   

6.

Background

Compound targeting histone deacetylase (HDAC) represents a new era in molecular cancer therapeutics. However, effective HDAC inhibitors for the treatment of solid tumors remain to be developed.

Methodology/Principal Findings

Here, we propose a novel HDAC inhibitor, N-Hydroxy-4-(4-phenylbutyryl-amino) benzamide (HTPB), as a potential chemotherapeutic drug for solid tumors. The HDAC inhibition of HTPB was confirmed using HDAC activity assay. The antiproliferative and anti-migratory mechanisms of HTPB were investigated by cell proliferation, flow cytometry, DNA ladder, caspase activity, Rho activity, F-actin polymerization, and gelatin-zymography for matrix metalloproteinases (MMPs). Mice with tumor xenograft and experimental metastasis model were used to evaluate effects on tumor growth and metastasis. Our results indicated that HTPB was a pan-HDAC inhibitor in suppressing cell viability specifically of lung cancer cells but not of the normal lung cells. Upon HTPB treatment, cell cycle arrest was induced and subsequently led to mitochondria-mediated apoptosis. HTPB disrupted F-actin dynamics via downregulating RhoA activity. Moreover, HTPB inhibited activity of MMP2 and MMP9, reduced integrin-β1/focal adhesion complex formation and decreased pericellular poly-fibronectin assemblies. Finally, intraperitoneal injection or oral administration of HTPB efficiently inhibited A549 xenograft tumor growth in vivo without side effects. HTPB delayed lung metastasis of 4T1 mouse breast cancer cells. Acetylation of histone and non-histone proteins, induction of apoptotic-related proteins and de-phosphorylation of focal adhesion kinase were confirmed in treated mice.

Conclusions/Significance

These results suggested that intrinsic apoptotic pathway may involve in anti-tumor growth effects of HTPB in lung cancer cells. HTPB significantly suppresses tumor metastasis partly through inhibition of integrin-β1/FAK/MMP/RhoA/F-actin pathways. We have provided convincing preclinical evidence that HTPB is a potent HDAC targeted inhibitor and is thus a promising candidate for lung cancer chemotherapy.  相似文献   

7.
Yoon JH  Choi YJ  Cha SW  Lee SG 《Phytomedicine》2012,19(3-4):284-292
Ginsenoside Rd is a protopanaxadiol-type ginsenoside found in ginseng and is the active ingredient in several Oriental herbal medicines. We investigated the effects of ginsenoside Rd on tumor invasion and metastasis in the human hepatocellular carcinoma HepG2 and its possible mechanism of action. HepG2 cells were treated with ginsenoside Rd at different concentrations. Scratch wound and Boyden chamber assays were used to determine the effects of ginsenoside Rd on the migration and invasiveness of HepG2 cells, respectively. The molecular mechanisms by which ginsenoside Rd inhibited the invasion and migration of HepG2 cells were investigated by RT-PCR, Western blotting, gelatin zymography, promoter assay, and treatment with inhibitors of MAPK signaling. Immunofluorescence analysis was conducted to evaluate the effect of ginsenoside Rd on focal adhesion formation in HepG2 cells. Treatment with ginsenoside Rd dose- and time-dependently inhibited the migration and invasion of HepG2 cells. It achieved this by reducing the expression of MMP-1, MMP-2, and MMP-7, by blocking MAPK signaling by inhibiting the phosphorylation of ERK and p38 MAPK, by inhibition of AP-1 activation, and by inducing focal adhesion formation and modulating vinculin localization and expression. Treatment of HepG2 cells with ginsenoside Rd significantly inhibited metastasis, most likely by blocking MMP activation and MAPK signaling pathways involved in cancer cell migration. These findings may be useful for the development of novel chemotherapeutic agents for the treatment of malignant cancers.  相似文献   

8.
Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal and CXCR4-mediated leukocyte migration. Slit-2 was shown to be frequently inactivated in lung and breast cancers because of hypermethylation of its promoter region. Furthermore, the CXCR4/CXCL12 axis has been reported recently to be actively involved in breast cancer metastasis to target organs such as lymph nodes, lung, and bone. In this study, we sought to characterize the effect of Slit (=Slit-2) on the CXCL12/CXCR4-mediated metastatic properties of breast cancer cells. We demonstrate here that breast cancer cells and tissues derived from breast cancer patients express Robo 1 and 2 receptors. We also show that Slit treatment inhibits CXCL12/CXCR4-induced breast cancer cell chemotaxis, chemoinvasion, and adhesion, the fundamental components that promote metastasis. Slit had no significant effect on the CXCL12-induced internalization process of CXCR4. In addition, characterization of signaling events revealed that Slit inhibits CXCL12-induced tyrosine phosphorylation of focal adhesion components such as RAFTK/Pyk2 at residues 580 and 881, focal adhesion kinase at residue 576, and paxillin. We found that Slit also inhibits CXCL12-induced phosphatidylinositol 3-kinase, p44/42 MAP kinase, and metalloproteinase 2 and 9 activities. However, it showed no effect on JNK and p38 MAP kinase activities. To our knowledge, this is the first report to analyze in detail the effect of Slit on breast cancer cell motility as well as its effect on the critical components of the cancer cell chemotactic machinery. Studies of the Slit-Robo complex may foster new anti-chemotactic approaches to block cancer cell metastasis.  相似文献   

9.
Blood methylated cell-free DNA (cfDNA) as a minimally invasive cancer biomarker has great importance in cancer management. Guanylate binding protein 2 (GBP2) has been considered as a possible controlling factor in tumor development. GBP2 gene expression and its promoter methylation status in both plasma cfDNA and tumor tissues of ductal carcinoma breast cancer patients were analyzed using SYBR green comparative Real-Time RT-PCR and, Methyl-specific PCR techniques, respectively in order to find a possible cancer-related marker. The results revealed that GBP2 gene expression and promoter methylation were inversely associated. GBP2 was down-regulated in tumors with emphasis on triple negative status, nodal involvement and higher cancer stages (p<0.0001). GBP2 promoter methylation on both cfDNA and tumor tissues were positively correlated and was detected in about 88% of breast cancer patients mostly in (Lymph node positive) LN+ and higher stages. Data provided shreds of evidence that GBP2 promoter methylation in circulating DNA may be considered as a possible effective non-invasive molecular marker in poor prognostic breast cancer patients with the evidence of its relation to disease stage and lymph node metastasis. However further studies need to evaluate the involvement of GBP2 promoter methylation in progression-free survival or overall survival of the patients.  相似文献   

10.
Sarsaparilla, also known as Smilax Glabra Rhizome (SGR), was shown to modulate immunity, protect against liver injury, lower blood glucose and suppress cancer. However, its effects on cancer cell adhesion, migration and invasion were unclear. In the present study, we found that the supernatant of water-soluble extract from SGR (SW) could promote adhesion, inhibit migration and invasion of HepG2, MDA-MB-231 and T24 cells in vitro, as well as suppress metastasis of MDA-MB-231 cells in vivo. Results of F-actin and vinculin dual staining showed the enhanced focal adhesion in SW-treated cells. Microarray analysis indicated a repression of TGF-β1 signaling by SW treatment, which was verified by real-time RT-PCR of TGF-β1-related genes and immunoblotting of TGFBR1 protein. SW was also shown to antagonize TGF-β1-promoted cell migration. Collectively, our study revealed a new antitumor function of Sarsaparilla in counteracting invasiveness of a subset of cancer cells by inhibiting TGF-β1 signaling.  相似文献   

11.
CD147 plays a critical role in the invasive and metastatic activity of hepatocellular carcinoma (HCC) cells by stimulating the surrounding fibroblasts to secrete matrix metalloproteinases (MMPs). Tumor cells adhesion to extracellular matrix (ECM) proteins is the first step to the tumor metastasis. MMPs degrade the ECM to promote tumor metastasis. The aim of this research was to investigate the inhibitory effects of stealth small interfering RNA (siRNA) against CD147 on HCC cell line (SMMC-7721) metastatic properties including invasion, adhesion to ECM, gelatinase production, focal adhesion kinase (FAK) and vinculin expression. Flow cytometry (FCM) and western blot assays were employed to detect the transfection efficiency of the stealth siRNA against CD147. Invasion assays and gelatin zymography were also used to detect the effects of stealth siRNA against CD147 on SMMC-7721 cells’ invasion and gelatinase production. The effects of stealth siRNA against CD147 on FAK and vinculiln expression in SMMC-7721 cells were also detected by western blot. The results showed that stealth siRNA against CD147 inhibited SMMC-7721 invasion, adhesion to ECM proteins, MMP-2 production, and FAK and vinculin expression. These findings indicate that CD147 is required for tumor cell invasion and adhesion. Perturbation of CD147 expression may have potential therapeutic uses in the prevention of MMP-2-dependent tumor invasion.  相似文献   

12.
Epidemiologic and experimental evidences support the concept that inflammation promotes the development and progression of cancers. Interleukins (ILs) regulate the expression of several molecules and signaling pathways involved in inflammation. High expression of some ILs in the tumor microenvironment has been associated with a more virulent tumor phenotype. To examine the role of IL-1β, IL-6, and IL-8 in non-small cell lung cancer, we measured mRNA levels and promoter DNA methylation in a panel of cultured human lung cells (n = 23) and in matched pair lung tumor versus adjacent non-tumorous tissues (n = 24). We found that lung cancer cells or tissues had significantly different DNA methylation and mRNA levels than normal human bronchial epithelial cells or adjacent non-tumorous tissues, respectively. High DNA methylation of ILs promoters in lung cancer cells or tissues was associated with low mRNA levels. We found an inverse correlation between DNA methylation of IL1B, IL6, and IL8 gene promoters and their corresponding mRNA levels, such inverse correlation was more significant for IL1B (i.e., all cancer cell lines used in this study had a hypermethylated IL1B promoter which was associated with silencing of the gene). Our results underline for the first time the role of epigenetic modifications in the regulation of the expression of key cytokines involved in the inflammatory response during lung cancer development.  相似文献   

13.
Sialic acid-containing glycosphingolipids, gangliosides are highly expressed in human cancer cells and regulate cell signals transduced via membrane microdomains. Generally, disialyl gangliosides enhance tumor phenotypes, while monosialyl gangliosides suppress them. In particular, gangliosides GD3 and GD2 are highly expressed in melanomas and small cell lung cancer cells, and their expression cause increased cell growth and invasion. In osteosarcomas, expression of GD3 and GD2 also enhanced cell invasion and motility, and caused increased phosphorylation of focal adhesion kinase and paxillin. In addition to focal adhesion kinase, Lyn kinase was also activated by GD3/GD2 expression, leading to the phosphorylation of paxillin. In contrast with melanoma cells, osteosarcomas showed reduced cell adhesion with increased phosphorylation of paxillin. Thus, increased expression of GD3/GD2 caused enhanced activation of signaling molecules, leading to distinct phenotypes between melanomas and osteosarcomas, i.e. increased and decreased adhesion activity. Thus, whole features of glycolipid-enriched microdomain/rafts formed in the individual cancer types seem to determine the main signaling pathway and biological outcome.  相似文献   

14.
15.
MEK Kinase 2 (MEKK2) is a serine/threonine kinase that functions as a MAPK kinase kinase (MAP3K) to regulate activation of Mitogen-activated Protein Kinases (MAPKs). We recently have demonstrated that ablation of MEKK2 expression in invasive breast tumor cells dramatically inhibits xenograft metastasis, but the mechanism by which MEKK2 influences metastasis-related tumor cell function is unknown. In this study, we investigate MEKK2 function and demonstrate that silencing MEKK2 expression in breast tumor cell significantly enhances cell spread area and focal adhesion stability while reducing cell migration. We show that cell attachment to the matrix proteins fibronectin or Matrigel induces MEKK2 activation and localization to focal adhesions. Further, we reveal that MEKK2 ablation enhances focal adhesion size and frequency, thereby linking MEKK2 function to focal adhesion stability. Finally, we show that MEKK2 knockdown inhibits fibronectin-induced Extracellular Signal-Regulated Kinase 5 (ERK5) signaling and Focal Adhesion Kinase (FAK) autophosphorylation. Taken together, our results strongly support a role for MEKK2 as a regulator of signaling that modulates breast tumor cell spread area and migration through control of focal adhesion stability.  相似文献   

16.
17.
Analysis of chromatin-immunoprecipitation followed by sequencing (ChIP-seq) usually disregards sequence reads that do not map within binding positions (peaks). Using an unbiased approach, we analysed all reads, both that mapped and ones that were not included as part of peaks. ChIP-seq experiments were performed in human lung adenocarcinoma and fibrosarcoma cells for the metastasis suppressor non-metastatic 2 (NME2). Surprisingly, we identified sequence reads that uniquely represented human telomere ends in both cases. In vivo presence of NME2 at telomere ends was validated using independent methods and as further evidence we found intranuclear association of NME2 and the telomere repeat binding factor 2. Most remarkably, results demonstrate that NME2 associates with telomerase and reduces telomerase activity in vitro and in vivo, and sustained NME2 expression resulted in reduced telomere length in aggressive human cancer cells. Anti-metastatic function of NME2 has been demonstrated in human cancers, however, mechanisms are poorly understood. Together, findings reported here suggest a novel role for NME2 as a telomere binding protein that can alter telomerase function and telomere length. This presents an opportunity to investigate telomere-related interactions in metastasis suppression.  相似文献   

18.
19.
A precise pH gradient between organelles of the regulated secretory pathway is required for sorting and processing of prohormones. We studied pH regulation in live endocrine cells by targeting biotin-based pH indicators to cellular organelles expressing avidin-chimera proteins. In AtT-20 cells, we found that steady-state pH decreased from the endoplasmic reticulum (ER) (pH(ER) = 7.4 +/- 0.2, mean +/- S.D.) to Golgi (pH(G) = 6.2 +/- 0.4) to mature secretory granules (MSGs) (pH(MSG) = 5.5 +/- 0.4). Golgi and MSGs required active H(+) v-ATPases for acidification. ER, Golgi, and MSG steady-state pH values were also dependent upon the different H(+) leak rates across each membrane. However, neither steady-state pH(MSG) nor rates of passive H(+) leak were affected by Cl(-)-free solutions or valinomycin, indicating that MSG membrane potential was small and not a determinant of pH(MSG). Therefore, our data do not support earlier suggestions that organelle acidification is primarily regulated by Cl(-) conductances. Measurements of H(+) leak rates, buffer capacities, and estimates of surface areas and volumes of these organelles were applied to a mathematical model to determine the H(+) permeability (P(H+)) of each organelle membrane. We found that P(H+) decreased progressively from ER to Golgi to MSGs, and proper acidification of Golgi and MSGs required gradual decreases in P(H+) and successive increases in the active H(+) pump density.  相似文献   

20.
PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号