首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and specific analytical method for a potent antitumor agent, TZT-1027, in plasma has been developed using liquid chromatography–mass spectrometry (LC–MS) with [2H4]TZT-1027 as an internal standard (I.S.). A plasma sample was purified by solid-phase extraction on a C18 cartridge, followed by solvent extraction with diethyl ether. The extract was then injected into the LC–MS system. Chromatography was carried out on a C18 reversed-phase column using acetonitrile–0.05% trifluoroacetic acid (TFA) (55:45) as a mobile phase. Mass spectrometric analysis was performed in atmospheric pressure chemical ionization (APCI) mode with positive ion detection, and the protonated molecular ions ([M+H]+) of TZT-1027 and I.S. were monitored to allow quantitation. The method was applied to the determination of TZT-1027 in human, monkey, dog, rat and mouse plasma. As far as the sample preparation was concerned, good recoveries (73.5–99.1%) were obtained. The calibration curves were linear over the range of 0.25–100 ng per 1 ml of human, dog and rat plasma, per 0.5 ml of monkey plasma, and per 0.1 ml of mouse plasma. From the intra- and inter-day accuracy and precision, the present method satisfies the accepted criteria for bioanalytical method validation. TZT-1027 was stable when stored below −15°C for 6 months in human plasma and for 3 weeks in plasma from other species. TZT-1027 was also stable in plasma through at least three freeze–thaw cycles.  相似文献   

2.
A high-performance liquid chromatographic method is described for the determination of paroxetine in human plasma. Dibucaine was used as the internal standard. Paroxetine was isolated by solid phase extraction using a Bond-Elut C18 extraction column. Separation was obtained using a reversed-phase column under isocratic conditions with fluorescence detection. The sample volume was 500 μl of plasma. The intra- and inter-assay accuracy and precision, determined as relative error and relative standard deviation, respectively, were less than 10%. The lower limit of quantitation, based on standards with acceptable relative error and relative standard deviation, was 10 ng ml−1. No endogenous compounds were found to interfere. The linearity was assessed in the range 5–100 ng ml−1. Stability of paroxetine during processing (autosampler) and in plasma was checked. This method proved suitable for bioequivalence studies following multiple doses in healthy volunteers.  相似文献   

3.
Plasma phenobarbital (PB) concentrations in rat offspring were determined using a 9 μl capillary by high-performance liquid chromatography (HPLC). Capillary plasma which was put into a Bond Elut® cartridge column by using 1 ml of 0.01 M KH2PO4 was applied to the column with 50 μl of 2 μg/ml of acetanilide (internal standard, I.S.). After washing the column, PB and I.S. were eluted with methanol and injected into the HPLC system. There were excellent linear correlation between the amount of PB and length of the capillary at three different concentrations. Calibration for PB was linear in the range of 0–50 μg/ml. The coefficients of variation were 3.4–5.0% and 5.9–7.5% in the within-day and between-day assays, respectively. The extraction recovery rates were 87.5–105.4%. By this method, it was possible to measure plasma PB concentrations in rat offspring without killing. These results suggested that this method is very useful to determine the plasma PB concentration derived from mother’s milk in newborn rats.  相似文献   

4.
A reversed-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry (HPLC–APCI-MS–MS) assay was developed to simultaneously determine monkey urinary free cortisol (C) and 6β-hydroxycortisol (6β-OHC) in 8 min. Urine sample (0.5 ml) containing fludrocortisone acetate (F-C) as the internal standard was extracted with ethyl acetate for 5 min with an extraction efficiency of 90% and 75% for C and 6β-OHC, respectively. A Perkin-Elmer Sciex API 3000 triple quadruple instrument was used for mass spectrometric detection and the column eluent was directed to a heated nebulizer probe. The assay was linear over the range 0.25–10 μM for each analyte. The intra- and inter-day relative standard deviation (RSD) over the entire concentration range for both analytes was less than 10%. Accuracy determined at three concentrations (0.8, 2.0 and 8.0 μM) ranged between 95.5 and 108%. The method described herein is suitable for the rapid and efficient measurement of 6β-OHC/C ratio in Rhesus monkey urine following administration of known hepatic CYP3A inducers and can be used to estimate potential CYP3A induction by drug candidates in the process of early drug development.  相似文献   

5.
Extraction of DMP 450 from plasma was performed with C2 solid-phase extraction columns, using 0.1 M ammonium acetate in 90% methanol to elute DMP 450. The extraction recovery over the range of 10 to 10 000 ng/ml averaged 81.0, 96.2, 77.4, 95.2 and 68.0% from rat, dog, monkey, chimpanzee (25–10 000 ng/ml) and human plasma, respectively. HPLC analysis was carried out with a C18 column and a mobile phase of acetonitrile, methanol and 30 mM potassium phosphate (pH 3), the composition dependent on the type of plasma being analyzed, and monitored at a wavelength of 229 nm. Intra-day and inter-day coefficients of variation were less than 9.9 and 12.9%, respectively. Absolute differences were less than 11.5%.  相似文献   

6.
An analytical method for the detection in biological samples of the novel tricyclic compound adosupine (10-acetoamido-5-methyl-5,6-dihydro-11H-dibenzo[b,e]azepin-6,11-dione), which is capable of influencing various forms of urinary bladder hyperreflexia has been developed using high-performance liquid chromatography with UV detection. Liquid—liquid extraction was used to isolate the parent compound, three metabolites and an analogue (added as internal standard) from plasma and brain of rat. Adosupine was well separated from its three metabolites with 0.01 M disodium hydrogenphosphate—acetonitrile—methanol—nonylamine (59.986:38:2:0.014) at pH 4.5 as mobile phase using a C18 reversed-phase column. The standard curves were linear in the range 50–5000 ng/ml (or ng/g) for adosupine and metabolites in both plasma and brain. The between- and within-assay variations for high and low concentrations of the parent compound and the three metabolites were 8.2–14%. In the range 50–5000 ng/ml (or ng/g) the accuracy of the method was satisfactory, with the relative error always lower than 10%. Analytical recoveries of added adosupine and the three metabolites were higher than 82%. The method has been applied successfully, to investigate the pharmacokinetics of the drug and its distribution in the central nervous system of rats.  相似文献   

7.
Methods for the determination of celecoxib in human plasma and rat microdialysis samples using liquid chromatography tandem mass spectrometry are described. Celecoxib and an internal standard were extracted from plasma by solid-phase extraction with C18 cartridges. Thereafter compounds were separated on a short narrow bore RP C18 column (30×2 mm). Microdialysis samples did not require extraction and were injected directly using a narrow bore RP C18 column (70×2 mm). The detection was by a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface. The compounds were detected in the negative ion mode using the mass transitions m/z 380→316 and m/z 366→302 for celecoxib and internal standard, respectively. The assay was validated for human plasma over a concentration range of 0.25–250 ng/ml using 0.2 ml of sample. The assay for microdialysis samples (50 μl) was validated over a concentration range of 0.5–20 ng/ml. The method was utilised to determine pharmacokinetics of celecoxib in human plasma and in rat spinal cord perfusate.  相似文献   

8.
A fully automated analytical system based on liquid—solid extraction combined with column liquid chromatography is described for the determination of diclofenac in plasma. After addition of pH 5 buffer and the internal standard solution to the plasma sample, both sample preparation via a C18 disposable extraction column and injection were performed by a Gilson ASPEC system. Diclofenac and the internal standard were separated on a reversed-phase column, using methanol—pH 7.2 phosphate buffer (56:44, v/v) as mobile phase at a flow-rate of 0.4 ml/min. The reproducibility and accuracy of the method were acceptable over the concentration range 31–3140 nmol/l in plasma.  相似文献   

9.
Celecoxib is a cyclooxygenase-2 specific inhibitor, that has been recently and intensively prescribed as an anti-inflammatory drug in rheumatic osteoarthiritis. A robust, highly reliable and reproducible liquid chromatographic–mass spectrometric assay is developed for the determination of celecoxib in human plasma using sulindac as an internal standard. The run cycle-time is <4 min. The assay method involved extraction of the analytes from plasma samples at pH 5 with ethyl acetate and evaporation of the organic layer. The reconstituted solution of the residue was injected onto a Shim Pack GLC-CN, C18 column and chromatographed with a mobile phase comprised of acetonitrile–1% acetic acid solution (4:1) at a flow-rate of 1 ml/min. The mass spectrometer (LCQ Finnigan Mat) was programmed in the positive single-ion monitoring mode to permit the detection and quantitation of the molecular ions of celecoxib and sulindac at m/z 382 and 357, respectively. The peak area ratio of celecoxib/sulindac and concentration are linear (r2>0.994) over the concentration range 50–1000 ng/ml with a lowest detection limit of 20 ng/ml of celecoxib. Within- and between-day precision are within 1.58–4.0% relative standard deviation and the accuracy is 99.4–107.3% deviation of the nominal concentrations. The relative recoveries of celecoxib from human plasma ranged from 102.4 to 103.3% indicating the suitability of the method for the extraction of celecoxib and I.S. from plasma samples. The validated LC–MS method has been utilized to establish various pharmacokinetic parameters of celecoxib following a single oral dose administration of celecoxib capsules in two selected volunteers.  相似文献   

10.
Two high-performance liquid chromatographic (HPLC) methods are described for determination of (±)-ethopropazine (ET) in rat plasma. After deproteination and liquid–liquid extraction, assay of (±)-ET was performed using either a C18 column (non-stereospecific assay) or an (α-R-naphthyl)ethylurea column (stereospecific assay). The UV detection was at 250 nm. Mean recovery was >85%. Both assays demonstrated excellent linear relationships between peak height ratios and plasma concentrations; quantitation limits were ≤25 ng/ml, based on 100 μl rat plasma. Accuracy and precision were <17% with both methods. Both methods were applied successfully to the measurement of ET plasma concentrations in rats given the drug intravenously.  相似文献   

11.
A high-performance liquid chromatographic (HPLC) method with fluorescence detection for the determination of total (unconjugated and conjugated) 71α-dihydroequilenin in male and female rat rabbit and male rhesus monkey plasma is described here. Plasma sample preparation involved hydrolysis with enzyme (Glusulase), addition of internal standard (14β-equilenin) and solvent extraction. The extracts were chromatographed on a C6, 5-μm reversed-phase HPLC column and detection was accomplished with a fluorescence detector operated at an excitation wavelength of 210 nm and an emission wavelength of 370 nm. The assay was linear over a range of 2.5 to 100 ng/ml in male and female rat plasma, and 5 to 500 ng/ml in female rabbit and male and female monkey plasma. The method was specific, accurate and reproducible (percent differences <14.5; coefficients of variation <9.5%) in all matrices examined. The applicability of this method was successfully tested by quantifying total plasma concentrations of 17α-dihydroequilenin in ovariectomized female rats, ovariectomized female rabbits and a normal female rhesus monkey receiving 2.0, 8.3 and 0.1 mg/kg, respectively, of 17α-dihydroequilenin sulfate intragastrically.  相似文献   

12.
A sensitive method for the enantioselective high-performance liquid chromatography (HPLC) determination of nicardipine in human plasma is described. (+)-Nicardipine, (−)-nicardipine and (+)-barnidipine as an internal standard are detected by an ultraviolet detector at 254 nm. Racemic nicardipine in human plasma was extracted by a rapid and simple procedure based on C18 bonded-phase extraction. The extraction samples were purified and concentrated on a pre-column using a C1 stationary phase and the enantiomers of nicardipine are quantitatively separated by HPLC on a Sumichiral OA-4500 column, containing a chemically modified Pirkle-type stationary phase. Determination of (+)- and (−)-nicardipine was possible in a concentration range of 5–100 ng ml−1 and the limit of detection in plasma was 2.5 ng ml−1. The recoveries of (+)- and (−)-nicardipine added to plasma were 91.4–98.4% and 93.3–96.7%, respectively, with coefficients of variation of less than 9.0 and 9.4% respectively. The method was applied to low level monitoring of (+)- and (−)-nicardipine in plasma from healthy volunteers.  相似文献   

13.
A highly sensitive and selective liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry assay was developed and validated for simultaneous determination of epimeric budesonide (BUD) and fluticasone propionate (FP) in plasma. The drugs were isolated from human plasma using C18 solid-phase extraction cartridges, and epimeric BUD was acetylated with a mixture of 12.5% acetic anhydride and 12.5% triethylamine in acetonitrile to form the 21-acetyl derivatives following the solid-phase extraction. Deuterium-labelled BUD acetate with an isotopic purity >99% was synthesized and used as the internal standard. The assay was linear over the ranges 0.05–10.0 ng/ml for epimeric BUD, and 0.02–4.0 ng/ml for FP. The inter- and intra-day relative standard deviations were <14.3% in the assay concentration range.  相似文献   

14.
A simple and fast yet highly sensitive and specific method based on HPLC coupled to electrospray ionization mass spectrometry has been developed for the quantitation of corticosterone in rat plasma. After extraction of rat plasma (100 μl) with diethyl ether using 5-pregnen-3β-ol-20-one-16α-carbonitrile (Sigma) as internal standard, HPLC was performed on a short C8 column (Zorbax-Eclipse, 50×4.6 mm I.D.) using a steep methanol–water gradient (methanol 54% to 90% in 6 min). Detection was performed on a single quadruple mass spectrometer in selected ion monitoring mode (m/z 369 for corticosterone and 364 for the internal standard). The detection limit of the assay was 9 fmol (3 pg) of corticosterone on column. In vitro data were subjected to curve fitting (cubic, r2=0.9999). Recovery of corticosterone after extraction ranged from 81 to 93%. The relative standard deviations for intra- and inter-assay precision ranged from 0.8 to 3.6% and 5.2 to 12.9%, respectively. Corticosterone did not undergo any appreciable degradation when stored in plasma at −20°C for 2 months. The assay is routinely used in our laboratory to examine corticosterone levels as a marker of stress in rats and may also be used for the determination of 18-hydroxy-11-deoxycorticosterone.  相似文献   

15.
A HPLC–UV determination of loratadine in human plasma is presented. After simple liquid–liquid extraction with 2-methylbutane–hexane (2:1) and evaporation of organic phase the compounds were re-dissolved in 0.01 M HCl, evaporated again and finally separated on a Supelcosil LC-18-DB column. The analyses were done at ambient temperature under isocratic conditions using the mobile phase: CH3CN–water–0.5 M KH2PO4–H3PO4 (440:480:80:1, v/v). UV detection was performed at 200 nm with a limit of quantification of 0.5 ng/ml. The precision was found to be satisfactory over the whole range tested (0.5–50 ng/ml) with relative standard deviations of 2.3–6.3 and 5.2–14.1% for intra- and inter-assays, respectively.  相似文献   

16.
A selective and sensitive high-performance liquid chromatographic assay with ultraviolet detection for the determination of the antidepressant drug etoperidone and two active metabolites in plasma is described. The drug, metabolites and internal standard are isolated from plasma using a two-step liquid—liquid extraction procedure. The resulting sample is chromatographed on a C18 column (10 cm × 2.1 mm I.D.) with ultraviolet detection at 254 nm. Standard curves are linear for each compound over the concentration range 2–1000 ng/ml. The accuracy and precision of the assay, expressed as the percentage deviation of measured values from the true value and the relative standard deviation (inter-run), are ≤ 10% at all concentrations except the minimum quantification limit. Using an automated injector and computerized data acquisition, eighty samples can be routinely processed in one day. The assay has been successfully used for the analysis of plasma samples from pharmacokinetic studies in mice, rats, dogs and humans.  相似文献   

17.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of metronidazole in small volumes of rat plasma, gastric aspirate and gastric tissue. The extraction procedure involves liquid–liquid extraction and a protein precipitation step. A microbore Hypersil ODS 3 μm (150×2.1 mm I.D.) column was used with a mobile phase consisting of acetonitrile–aqueous 0.05 M potassium phosphate buffer (pH 7) containing 0.1% triethylamine (10:90). The column temperature was at 25°C and the detection was by UV absorbance at 317 nm. The limit of detection was 0.015 μg ml−1 for gastric juice aspirate and plasma and 0.010 μg g−1 for gastric tissue (equivalent to 0.75 ng on-column). The method was linear up to a concentration of 200 μg ml−1 for plasma and gastric juice aspirate and up to 40 μg g−1 for tissue, with inter- and intra-day relative standard deviations less than 14%. The measured recovery was at least 78% in all sample matrices. The method proved robust and reliable when applied to the measurement of metronidazole in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

18.
A specific, accurate, precise and reproducible assay for the quantitation of a novel indolylpiperazine anti-migraine agent (I) in plasma from various animal species is described. The method involves addition of internal standard (I.S.) and 1.0 M sodium carbonate to the plasma sample, vortex-mixing and extraction with ethylene dichloride. The organic layer is then back-extracted in a buffer consisting of 0.1 M tetramethylammonium hydroxide (TMAH), pH 3.0 and 0.1 M (NH4)2HPO4, pH 3.0, in water. The aqueous layer is injected on to a Zorbax cyano analytical column with a mobile phase consisting of acetonitrile, methanol and water (15:5:80, v/v/v) with 0.01 M TMAH, pH 3.0 and 0.01 M (NH4)2HPO4, pH 3.0. The eluate is monitored by electrochemical detection at 0.9 V (guard cell), 0.5 V (detector 1) and 0.8 V (detector 2). The retention times of I and I.S. were 7 and 10 min, respectively. In drug-free control plasma, there were no interfering peaks seen at the retention times of I or I.S. The standard curve was linear over the concentration range of 5–500 ng/ml in rat, monkey, mouse and rabbit plasma. The lower limit of quantitation in all four matrices was 5.0 ng/ml. Within- and between-assay variability of quality control samples was less than 9% relative standard deviation and the predicted concentration of the quality control samples deviated by less than 15% from the nominal concentration. The stability of I was established for up to 36 h in the autosampler tray, up to 10 months in plasma at −20°C and up to 2 h in plasma at room temperature. The assay is validated for determination of I in plasma.  相似文献   

19.
A high-performance liquid chromatographic assay with UV detection has been developed for the determination of ketoconazole in human plasma. Quantitative extraction was achieved by a single solvent extraction involving a mixture of acetonitrile–n-butyl chloride (1:4, v/v). Ketoconazole and the internal standard (clotrimazole) were separated on a column packed with Inertsil ODS-80A material and a mobile phase composed of water–acetonitrile–tetrahydrofuran–ammonium hydroxide–triethylamine (45:50.2:2.5:0.1:0.1, v/v). The column effluent was monitored at a wavelength of 206 nm with a detector range set at 0.5. The calibration graph was linear in the range of 20–2000 ng/ml, with a lower limit of quantitation of 20.0 ng/ml. The extraction recoveries for ketoconazole and clotrimazole in human plasma were 93±9.7% and 83±10.0%, respectively. The developed method has been successfully applied to a clinical study to examine the pharmacokinetics of ketoconazole in a cancer patient.  相似文献   

20.
A high-performance liquid chromatographic method for the determination of a new thymidine phosphorylase inhibitor, TPI, in dog and rat plasma is described. TPI was isolated from biological samples by solid-phase extraction on Bond Elut PRS columns. Chromatographic separation was achieved on a C18 column using a mobile phase consisting of acetonitrile–10 mM acetate buffer (pH 4.3) including hexanesulfonate, with UV detection at 276 nm. This method has been validated across the range of 50–50 000 ng/ml using a 0.1-ml plasma volume. The mean recoveries from spiked plasma were 93% for dog and 94% for rat, respectively. The accuracy, precision and specificity of the method were demonstrated to be acceptable, and it was applied to the toxicokinetic study of TPI in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号