首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiencey virus, type 1 (HIV-1) encodes three proteins, Nef, Vpu, and gp160, that down-modulate surface expression of the CD4 receptor during viral infection. In the present study, we have investigated the role of CD4 down-modulation in the HIV-1 infection cycle, primarily from the perspective of Vpu function. We report here that, like Nef, Vpu-mediated CD4 degradation modulates positively HIV-1 infectivity. Our data reveal that accumulation of CD4 at the cell surface of Vpu-deficient HIV-1-producing cells leads to an efficient recruitment of CD4 into virions and to an impairment of viral infectivity. This CD4-mediated inhibition of viral infectivity was not observed when a CD4 mutant unable to bind Env gp120 was used or when VSV-G glycoprotein was utilized to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. Indeed, protein analysis of Vpu-defective viral particles reveals that CD4 recruitment is associated with an increased formation of gp120-CD4 complexes at the virion surface. Interestingly, we did not detect any difference at the level of total virion-associated Env glycoproteins between wild-type and Vpu-defective virus, indicating that accumulation of CD4 at the cell surface and recruitment of CD4 into Vpu-defective HIV-1 particles exert a negative effect on viral infectivity, most likely by promoting the formation of nonfunctional gp120-CD4 complexes at the virion surface. Finally, we show that both Vpu- and Nef-induced CD4 down-modulation activities are required for production of fully infectious particles in CD4+ T cell lines and primary cells, an observation that has clear implications for viral spread in vivo.  相似文献   

2.
Interactions between the viral envelope glycoprotein gp120 and the cell surface receptor CD4 are responsible for the entry of human immunodeficiency virus type 1 (HIV-1) into host cells in the vast majority of cases. HIV-1 replication is commonly followed by the disappearance or receptor downmodulation of cell surface CD4. This potentially renders cells nonsusceptible to subsequent infection by HIV-1, as well as by other viruses that use CD4 as a portal of entry. Disappearance of CD4 from the cell surface is mediated by several different viral proteins that act at various stages through the course of the viral life cycle, and it occurs in T-cell lines, peripheral blood CD4+ lymphocytes, and monocytes of both primary and cell line origin. At the cell surface, gp120 itself and in the form of antigen-antibody complexes can trigger cellular pathways leading to CD4 internalization. Intracellularly, the mechanisms leading to CD4 downmodulation by HIV-1 are multiple and complex; these include degradation of CD4 by Vpu, formation of intracellular complexes between CD4 and the envelope precursor gp160, and internalization by the Nef protein. Each of the above doubtless contributes to the ultimate depletion of cell surface CD4, although the relative contribution of each mechanism and the manner in which they interact remain to be definitively established.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) utilizes Vpu, Env, and Nef to down-modulate its primary CD4 receptor from the cell surface, and this function seems to be critical for the pathogenesis of AIDS. The physiological relevance of CD4 down-modulation, however, is currently not well understood. In the present study, we analyzed the kinetics of CD4 down-modulation and the susceptibility of HIV-1-infected T cells to superinfection using proviral HIV-1 constructs containing individual and combined defects in vpu, env, and nef and expressing red or green fluorescent proteins. T cells infected with HIV-1 mutants containing functional nef genes expressed low surface levels of CD4 from the first moment that viral gene expression became detectable. In comparison, Vpu and Env had only minor to moderate effects on CD4 during later stages of infection. Consistent with these quantitative differences, Nef inhibited superinfection more efficiently than Vpu and Env. Notably, nef alleles from AIDS patients were more effective in preventing superinfection than those derived from a nonprogressor of HIV-1 infection. Our data suggest that protection against X4-tropic HIV-1 superinfection involves both CD4-independent and CD4-dependent mechanisms of HIV-1 Nef. X4 was effectively down-regulated by simian immunodeficiency virus and HIV-2 but not by HIV-1 Nef proteins. Thus, maximal protection seems to involve an as-yet-unknown mechanism that is independent of CD4 or coreceptor down-modulation. Finally, we demonstrate that superinfected primary T cells show enhanced levels of apoptosis. Accordingly, one reason that HIV-1 inhibits CD4 surface expression and superinfection is to prevent premature cell death in order to expand the period of effective virus production.  相似文献   

4.
The CD4 receptor is required for the entry of human immunodeficiency virus (HIV) into target cells. It has long been known that Nef, Env, and Vpu participate in the removal of the viral receptor from the cell surface. Recently, it has been proposed that the HIV type 1 (HIV-1) Vpr protein may also play a role in the downmodulation of CD4 from the surfaces of infected cells (L. Conti, B. Varano, M. C. Gauzzi, P. Matarrese, M. Federico, W. Malorani, F. Belardelli, and S. Gessani, J. Virol. 74:10207-10211, 2000). To investigate the possible role of Vpr in the downregulation of the viral receptor Vpr alleles from HIV-1 and simian immunodeficiency virus were transiently expressed in transformed T cells and in 293T fibroblasts, and their ability to modulate surface CD4 was evaluated. All Vpr alleles efficiently arrested cells in the G(2) stage of the cell cycle. However, none of the tested Vpr proteins altered the expression of CD4 on the cell surface. In comparison, HIV-1 Nef efficiently downmodulated surface CD4 in all the experimental settings. Transformed T cells and primary lymphocytes were challenged with wild-type, Nef-defective, and Vpr-defective viruses. A significant reduction in the HIV-induced downmodulation of surface CD4 was observed in viruses lacking Nef. However, Vpr-deletion-containing viruses showed no defect in their ability to remove CD4 from the surfaces of infected cells. Our results indicate that Vpr does not play a role in the HIV-induced downmodulation of the CD4 receptor.  相似文献   

5.
Vpu is a 16-kDa membrane-associated phosphoprotein that is expressed from the same, singly spliced message as the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein precursor, gp160. Previous studies suggest that Vpu functions in the late stages of viral replication, possibly in virus egression from the cell. Recently, it has been demonstrated that Vpu functions to allow gp160 to be more efficiently processed by disrupting CD4-gp160 complexes generated by transfection of HeLa cells. We show here that the lack of expression of intact Vpu results in a 90% reduction in infectious virus produced over a single round of replication from HeLa cells in the absence of CD4 expression. This reduction persists when HIV-1 particles are pseudotyped with the HIV-2 or amphotropic murine leukemia virus envelope glycoprotein. Pulse-chase analysis of HIV-1 capsid protein (p24) in the absence of CD4 and envelope glycoprotein demonstrates that the rate of virus release is reduced when Vpu is not expressed. Our findings indicate that Vpu has a function involving particle release not dependent on CD4 or envelope glycoprotein expression.  相似文献   

6.
Vpu is an accessory viral protein almost unique to HIV-1 among primate immunodeficiency viruses, and has two major functions: degradation of the CD4 molecule in endoplasmic reticulum and enhancement of virion release from cells. Recent identification of a novel host restriction factor, tetherin, as a Vpu-antagonist suggests that Vpu contributes to virus spread by facilitating progeny virion production. This review focuses on the two distinct functions of Vpu and summarizes current knowledge on its virological role in the HIV-1 life cycle.  相似文献   

7.
Viral protein U (Vpu) is a type 1 membrane-associated accessory protein that is unique to human immunodeficiency virus type 1 (HIV-1) and a subset of related simian immunodeficiency virus (SIV). The Vpu protein encoded by HIV-1 is associated with two primary functions during the viral life cycle. First, it contributes to HIV-1-induced CD4 receptor downregulation by mediating the proteasomal degradation of newly synthesized CD4 molecules in the endoplasmic reticulum (ER). Second, it enhances the release of progeny virions from infected cells by antagonizing Tetherin, an interferon (IFN)-regulated host restriction factor that directly cross-links virions on host cell-surface. This review will mostly focus on recent advances on the role of Vpu in CD4 downregulation and Tetherin antagonism and will discuss how these two functions may have impacted primate immunodeficiency virus cross-species transmission and the emergence of pandemic strain of HIV-1.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) evades the immune responses of natural killer (NK) cells through mechanisms that have been partially deciphered. Here we show that in HIV-1-infected T lymphocytes, the early viral Nef protein downmodulates PVR (CD155, Necl-5), a ligand for the activating receptor DNAM-1 (CD226) expressed by all NK cells, CD8(+) T cells, and other cell types. This novel Nef activity is conserved by Nef proteins of laboratory HIV-1 strains (NL4-3, SF2) and of a patient-derived virus, but it is not maintained by HIV-2. Nef uses the same motifs to downregulate PVR and HLA-I molecules, likely by the same mechanisms. Indeed, as previously demonstrated for HLA-I, Nef reduces the total amounts of cell-associated PVR. Optimal downregulation of cell surface PVR by Nef also requires the presence of the late viral factor Vpu. In line with PVR reduction, the NK cell-mediated lysis of T cells infected by a wild-type but not Nef-deficient virus is virtually abrogated upon blocking of both DNAM-1 and another activating receptor, NKG2D, previously shown to mediate killing of HIV-infected cells. Together, these data demonstrate that the PVR downmodulation by Nef and Vpu is a strategy evolved by HIV-1 to prevent NK cell-mediated lysis of infected cells. The PVR downregulation reported here has the potential to affect the immune responses of other DNAM-1-positive cells besides NK cells and to alter multiple PVR-mediated cellular processes, such as adhesion and migration, and may thus greatly influence HIV-1 pathogenesis.  相似文献   

9.
BACKGROUND: Human immunodeficiency virus-1 (HIV-1) infection decreases the cell-surface expression of its cellular receptor, CD4, through the combined actions of Nef, Env and Vpu. Such functional convergence strongly suggests that CD4 downregulation is critical for optimal viral replication, yet the significance of this phenomenon has so far remained a puzzle. RESULTS: We show that high levels of CD4 on the surface of HIV-infected cells induce a dramatic reduction in the infectivity of released virions by the sequestering of the viral envelope by CD4. CD4 is able to accumulate in viral particles while at the same time blocking incorporation of Env into the virion. Nef and Vpu, through their ability to downregulate CD4, counteract this effect. CONCLUSIONS: The CD4-mediated 'envelope interference' described here probably explains the plurality of mechanisms developed by HIV to downregulate the cell-surface expression of its receptor.  相似文献   

10.
One of the hallmarks of human immunodeficiency virus type I (HIV-1) infection is the rapid removal of the viral receptor CD4 from the cell surface. This remarkably efficient receptor interference requires the activity of three separate viral proteins: Env, Vpu, and Nef. We have investigated whether this unusually tight interference on cell surface CD4 expression had a more essential function during the viral life cycle than simply preventing superinfection. We now report that the removal of cell surface CD4 is required for optimal virus production by HIV-1. Indeed, maintenance of CD4 surface expression in infected cells lead to a 3-5-fold decrease in viral particle production. This effect was not due to the formation of intracellular complexes between CD4 and the gp160 viral envelope precursor but instead required the presence of CD4 at the cell surface and was specifically mediated by CD4 but not closely related plasma membrane receptors. The finding that CD4 had no significant effect on particle release by a Vpu-deficient variant indicates that CD4 acts by inhibiting the particle release-promoting activity of Vpu. Co-immunoprecipitation experiments further showed that CD4 and Vpu physically interact at the cell surface, suggesting that CD4 might inhibit Vpu activity by disrupting its oligomeric structure.  相似文献   

11.
CD4 down-modulation is essential for the production of human immunodeficiency virus (HIV) infectious particles. Disease progression correlates with enhanced viral induced CD4 down-modulation, and a subset of long-term nonprogressors carry viruses defective in this function. Despite multiple pieces of evidence highlighting the importance of this function in viral pathogenesis in vivo, to date, HIV-induced CD4 down-modulation has not been used as a target for intervention. We describe here HIV-based vectors that deliver truncated CD4 molecules resistant to down-modulation by the viral products Nef and Vpu. Infection of cells previously transduced with these vectors proceeded normally, and viral particles were released in normal amounts. However, the infectivity of the released virions was reduced 1,000-fold. Lentiviral vectors expressing truncated CD4 molecules were efficient at blocking HIV-1 infectivity and replication in several cell lines and in CD4-positive primary lymphocytes. The findings presented here provide proof-of-principle that approaches targeting the virus-induced CD4 down-modulation may constitute the basis for novel anti-HIV therapies.  相似文献   

12.
Adult rhesus macaques infected with nef-defective simian immunodeficiency virus (SIV) exhibit extremely low levels of steady-state virus replication, do not succumb to immunodeficiency disease, and are protected from experimental challenge with pathogenic isolates of SIV. Similarly, rare humans found to be infected with nef-defective human immunodeficiency virus type 1 (HIV-1) variants display exceptionally low viral burdens and do not show evidence of disease progression after many years of infection. HIV-1 Nef induces the rapid endocytosis and lysosomal degradation of cell surface CD4 and enhances virus infectivity in primary human T cells and macrophages. Although expression of SIV Nef also leads to down-modulation of cell surface CD4 levels, no evidence for SIV Nef-induced enhancement of virus infectivity was observed in earlier studies. Thus, it remains unclear whether fundamental differences exist between the activities of HIV-1 and SIV Nef. To establish more clearly whether the SIV and HIV-1 nef gene products are functionally analogous, we compared the replication kinetics and infectivity of variants of SIVmac239 that either do (SIVnef+) or do not (SIV delta nef) encode intact nef gene products. SIVnef+ replicates more rapidly than nef-defective viruses in both human and rhesus peripheral blood mononuclear cells (PBMCs). As previously described for HIV-1 Nef, SIV Nef also enhances virus infectivity within each cycle of virus replication. As a strategy for evaluating the in vivo contribution of HIV-1 nef alleles and long terminal repeat regulatory sequences to the pathogenesis of immunodeficiency disease, we constructed SIV-HIV chimeras in which the nef coding and U3 regulatory regions of SIVmac239 were replaced by the corresponding regions from HIV-1/R73 (SIVR7nef+). SIVR7nef+ displays enhanced infectivity and accelerated replication kinetics in primary human and rhesus PBMC infections compared to its nef-defective counterpart. Converse chimeras, containing SIV Nef in an HIV-1 background (R7SIVnef+) also exhibit greater infectivity than matched nef-defective viruses (R7SIV delta nef). These data indicate that SIV Nef, like that of HIV-1, does enhance virus replication in primary cells in tissue culture and that HIV-1 and SIV Nef are functionally interchangeable in the context of both HIV-1 and SIV.  相似文献   

13.
Zhou J  Aiken C 《Journal of virology》2001,75(13):5851-5859
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef stimulates viral infectivity by facilitating an early event in the HIV-1 life cycle. Although no structural or biochemical defects in Nef-defective HIV-1 particles have been demonstrated, the Nef protein is incorporated into HIV-1 particles. To localize the function of Nef within the virus particle, we developed a novel technology involving fusion of enveloped donor HIV-1 particles bearing core defects with envelope-defective target virions bearing HIV-1 receptors. Although neither virus alone was capable of infecting CD4(+) target cells, the incubation of donor and target virions prior to addition to target cells resulted in infection. This effect, termed "virion transcomplementation," required a functional Env protein on the donor virus and CD4 and an appropriate coreceptor on target virions. To provide evidence for intervirion fusion as the mechanism of complementation, experiments were performed using dual-enveloped HIV-1 particles bearing both HIV-1 and ecotropic murine leukemia virus (E-MLV) Env proteins as donor virions. Infection of CD4-negative target cells bearing E-MLV receptors was prevented by HIV-1 entry inhibitors when added before, but not after, incubation of donor and target virions prior to the addition to cells. When we used Nef(+) and Nef(-) donor and target virions, Nef enhanced infection when present in donor virions. In contrast, no effect of Nef was detected when present in the target virus. These results reveal a potential mechanism for enhancing HIV-1 diversity in vivo through the rescue of defective viral genomes and provide a novel genetic system for the functional analysis of virion-associated proteins in HIV-1 infection.  相似文献   

14.
Qi M  Aiken C 《Journal of virology》2007,81(3):1534-1536
The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) infectivity by facilitating an early postentry step in the virus life cycle. We report here that the addition of MG132 or lactacystin, each a specific inhibitor of cellular proteasome activity, preferentially enhances cellular permissiveness to infection by Nef-defective versus wild-type HIV-1. Pseudotyping by the glycoprotein of vesicular stomatitis virus rendered Nef-defective HIV-1 particles minimally responsive to the enhancing effects of proteasome inhibitors. These results suggest that Nef enhances the infectivity of HIV-1 particles by reducing their susceptibility to proteasomal degradation in target cells.  相似文献   

15.
Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.  相似文献   

16.
The nef gene products encoded by human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus type 1 (SIV-1) increase viral loads in infected hosts and accelerate clinical progression to AIDS. Nef exhibits a spectrum of biological activities, including the ability to downregulate surface expression of CD4 and major histocompatibility complex (MHC) class I antigens, to alter the state of T-cell activation, and to enhance the infectivity of viral particles. To determine which of these in vitro functions most closely correlates with the pathogenic effects of Nef in vivo, we constructed recombinant HIV-1 NL4-3 viruses carrying mutations within the nef gene that selectively impair these functions. These mutant viruses were evaluated for pathogenic potential in severe combined immunodeficiency (SCID) mice implanted with human fetal thymus and liver (SCID-hu Thy/Liv mice), in which virus-mediated depletion of thymocytes is known to be Nef dependent. Disruption of the polyproline type II helix (Pxx)4 within Nef (required for binding of Hck and p21-activated kinase-like kinases, downregulation of MHC class I, and enhancement of HIV-1 infectivity in vitro but dispensable for CD4 downregulation) did not impair thymocyte depletion in virus-infected Thy/Liv human thymus implants. Conversely, three separate point mutations in Nef that compromised its ability to downregulate CD4 attenuated thymocyte depletion while not diminishing viral replication. These findings indicate that the functional ability of Nef to downregulate CD4 and not MHC class I downregulation, Hck or PAK binding, or (Pxx)4-associated enhancement of infectivity most closely correlates with Nef-mediated enhancement of HIV-1 pathogenicity in vivo. Nef-mediated CD4 downregulation merits consideration as a new target for the development of small-molecule inhibitors.  相似文献   

17.
The accessory protein Nef plays a crucial role in primate lentivirus pathogenesis. Nef enhances human immunodeficiency virus type 1 (HIV-1) infectivity in culture and stimulates viral replication in primary T cells. In this study, we investigated the relationship between HIV-1 replication efficiency in CD4(+) T cells purified from human blood and two various known activities of Nef, CD4 downregulation and single-cycle infectivity enhancement. Using a battery of reporter viruses containing point mutations in nef, we observed a strong genetic correlation between CD4 downregulation by Nef during acute HIV-1 infection of activated T cells and HIV-1 replication efficiency in T cells. In contrast, HIV-1 replication ability was not significantly correlated with the ability of Nef to enhance single-cycle virion infectivity, as determined by using viruses produced in cells lacking CD4. These results demonstrate that CD4 downregulation by Nef plays a crucial role in HIV-1 replication in activated T cells and underscore the potential for the development of therapies targeting this conserved activity of Nef.  相似文献   

18.
C Aiken 《Journal of virology》1997,71(8):5871-5877
Human immunodeficiency virus type 1 (HIV-1) normally enters cells by direct fusion with the plasma membrane. In this report, HIV-1 particles capable of infecting cells through an endocytic pathway are described. Chimeric viruses composed of the HIV-1 core and the envelope glycoprotein of vesicular stomatitis virus (VSV-G) were constructed and are herein termed HIV-1(VSV) pseudotypes. HIV-1(VSV) pseudotypes were 20- to 130-fold more infectious than nonpseudotyped HIV-1. Infection by HIV-1(VSV) pseudotypes was markedly diminished by ammonium chloride and concanamycin A, a selective inhibitor of vacuolar H+ ATPases, demonstrating that these viruses require endosomal acidification to achieve productive infection. HIV-1 is thus capable of performing all of the viral functions necessary for infection when entry is targeted to an endocytic route. Maximal HIV-1 infectivity requires the presence of the viral Nef protein and the cellular protein cyclophilin A (CyPA) during virus assembly. Pseudotyping by VSV-G markedly suppressed the requirement for Nef. HIV-1(VSV) particles were also resistant to inhibition by cyclosporin A; however, the deleterious effect of a gag mutation inhibiting CyPA incorporation was not relieved by VSV-G. These results suggest that Nef acts at a step of the HIV-1 life cycle that is either circumvented or facilitated by targeting virus entry to an endocytic pathway. The findings also support the hypothesis that Nef and CyPA enhance HIV-1 infectivity through independent processes and demonstrate a mechanistic difference between reduction of HIV-1 infectivity by cyclosporin A and gag mutations that decrease HIV-1 incorporation of CyPA.  相似文献   

19.
The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) replication through an unknown mechanism. We and others have previously reported that efficient HIV-1 replication in activated primary CD4(+) T cells depends on the ability of Nef to downregulate CD4 from the cell surface. Here we demonstrate that Nef greatly enhances the infectivity of HIV-1 particles produced in primary T cells. Nef-defective HIV-1 particles contained significantly reduced quantities of gp120 on their surface; however, Nef did not affect the levels of virion-associated gp41, indicating that Nef indirectly stabilizes the association of gp120 with gp41. Surprisingly, Nef was not required for efficient replication of viruses that use CCR5 for entry, nor did Nef influence the infectivity or gp120 content of these virions. Nef also inhibited the incorporation of CD4 into HIV-1 particles released from primary T cells. We propose that Nef, by downregulating cell surface CD4, enhances HIV-1 replication by inhibiting CD4-induced dissociation of gp120 from gp41. The preferential requirement for Nef in the replication of X4-tropic HIV-1 suggests that the ability of Nef to downregulate CD4 may be most important at later stages of disease when X4-tropic viruses emerge.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) Vpu protein is an integral membrane phosphoprotein that induces CD4 degradation in the endoplasmic reticulum and enhances virus release from the cell surface. CD4 degradation is specific, requires phosphorylation of Vpu, and involves the interaction between Vpu and the CD4 cytoplasmic domain. In contrast, regulation of virus release is less specific and not restricted to HIV-1 and may be mechanistically-distinct from CD4 degradation. We show here that a mutant of Vpu, Vpu35, lacking most of its cytoplasmic domain has residual biological activity for virus release but is unable to induce CD4 degradation. This finding suggests that the N terminus of Vpu encoding the transmembrane (TM) anchor represents an active domain important for the regulation of virus release but not CD4 degradation. To better define the functions of Vpu's TM anchor and cytoplasmic domain, we designed a mutant, VpuRD, containing a scrambled TM sequence with a conserved amino acid composition and alpha-helical structure. The resulting protein was integrated normally into membranes, was able to form homo-oligomers, and exhibited expression levels, protein stability, and subcellular localization similar to those of wild-type Vpu. Moreover, VpuRD was capable of binding to CD4 and to induce CD4 degradation with wild-type efficiency, confirming proper membrane topology and indicating that the alteration of the Vpu TM domain did not interfere with this function of Vpu. However, VpuRD was unable to enhance the release of virus particles from infected or transfected cells, and virus encoding VpuRD had replication characteristics in T cells indistinguishable from those of a Vpu-deficient HIV-1 isolate. Mutation of the phosphorylation sites in VpuRD resulted in a protein which was unable to perform either function of Vpu. The results of our experiments suggest that the two biological activities of Vpu operate via two distinct molecular mechanisms and involve two different structural domains of the Vpu protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号