首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
In experiments on the plasma heating and confinement in the GOL-3 multimirror trap, a deuterium plasma with a density of ~1015 cm?3 and an ion temperature of 1–2 keV is confined for more than 1 ms. The plasma is heated by a relativistic electron beam. The ion temperature, which was measured by independent methods, reached 1.5–2 keV after the beginning of the beam injection. Since such a fast ion heating cannot be explained by the classical energy transfer from electrons to ions through binary collisions, a theoretical model of collective energy transfer was proposed. In order to verify this model, a new diagnostics was designed to study the dynamics of neutron emission from an individual mirror cell of the multimirror trap during electron beam injection. Intense neutron bursts predicted by this model were detected experimentally. Periodic neutron flux modulation caused by the macroscopic plasma flow along the solenoid was observed. The revealed mechanism of fast ion heating can be used to achieve fusion temperatures in the multimirror trap.  相似文献   

2.
A short-laser-pulse driven ion flux is examined as a fast ignitor candidate for inertial confinement fusion. Ion ranges in a hot precompressed fuel are studied. The ion energy and the corresponding intensity of a short laser pulse are estimated for the optimum ion range and ion energy density flux. It is shown that a lightion beam triggered by a few-hundreds-kJ laser at intensities of ?1021 W/cm2 is relevant to the fast ignitor scenario.  相似文献   

3.
The properties of microheterogeneous plasma produced by irradiation of a polymer aerogel target with an intense (1014 W/cm3) short (0.5 ps) 1.064-μm laser pulse were studied. It is found that, even at plasma densities exceeding the critical density, a small fraction of the incident laser radiation penetrates through the plasma in which the processes of density and temperature equalization still take place. The intensification (as compared to plasmas produced from denser foams and solid films) of transport processes in such plasma along and across the laser beam can be caused by the initial microheterogeneity of the solid target. The replacement of a small (10% by mass) part of the polymer with copper nanoparticles leads to a nearly twofold increase in the intensity of the plasma X-ray emission.  相似文献   

4.
The ion recombination times, the energy balance characteristics, and the time behavior of the radiation intensity of lead and gallium laser plasmas are determined by analyzing the trailing edges of the waveforms of various spectral lines. Reasons for different decay rates of the spectral lines are analyzed. Experiments on laser erosion of lead and gallium targets under the action of repetitive neodymium laser radiation with a pulse duration of 20 ns, wavelength of 1.06 μm, repetition rate of 12 Hz, and peak intensity on the target surface of 108–109 W/cm2 were carried out at a residual air pressure of 3–12 Pa.  相似文献   

5.
Hot plasmas can be generated by fast and intense laser pulses ablating solids placed in vacuum. A Nd:Yag laser operating at the fundamental and second harmonics with 9-ns pulses (maximum energy of 900 mJ) focused on metallic surfaces produces high ablation yields of the order of μg/pulse and dense plasma that expands adiabatically at supersonic velocity along the normal to the target surface. The plasma emits neutral and charged particles. Charge states up to 10+ have been measured in heavy elements ablated with intensities of the order of 1010 W/cm2. The ion temperature of the plasma is evaluated from the ion energy distributions measured with an ion energy analyzer. The electron temperature is measured through Faraday cups placed at the end of long drift tubes by using time-of-flight technique. The neutral temperature is measured with a special mass quadrupole spectrometer placed along the normal to the target surface. The plasma temperature increases with the laser pulse intensity. The ion temperature reaches values of the order of 400 eV, the electron temperature is of the order of 1 keV for hot electrons and 0.1 eV for thermal electrons, and the neutral temperature is of the order of 200 eV. The experimental apparatus, the diagnostic techniques, and the procedures for the plasma temperature characterization will be presented and discussed in detail. Published in Russian in Fizika Plazmy, 2006, Vol. 32, No. 6, pp. 558–564. The text was submitted by the authors in English.  相似文献   

6.
The formation of craters in targets of various materials under the action of a high-power neodymium-laser pulse at radiation intensities from 1010 to 1014 W/cm2 was studied experimentally and theoretically. The interaction between the laser beam and solid targets is investigated to determine the efficiency of the ablation loading of various materials and the transformation of the laser energy into the energy of a shock wave.  相似文献   

7.
Ion beam acceleration is simulated using a one-dimensional 1D2P PIC code. The dependences of the maximum energy and width of the energy spectrum of the generated ion beams on the duration and intensity of laser radiation, as well as on the target parameters (thickness and number of layers, types and densities of atoms), are investigated. The optimal target configuration at which the energy of the accelerated ions is maximum (5–160 MeV for intensities of 5 × 1018 −5 × 1020 W/cm2) is found. The optimal target configuration is shown to depend on the intensity and be independent of the laser pulse duration.  相似文献   

8.
New experimental data on the laser irradiation of low-density porous materials in the Mishen facility are presented and discussed. A wide set of optical and X-ray diagnostics was used to analyze the physical processes in porous media with different microstructures and specific densities of 1–30 mg/cm3 exposed to laser pulses with λ=1.054 µm, τ=3 ns, and I=1013–1014 W/cm2. The features of laser absorption and scattering and the processes of energy transfer in porous media were investigated for different average densities, thicknesses, and microstructures of the targets and different incidence angles of the laser beam. It was found that the material microstructure (chaotic or quasi-ordered) significantly affected the formation and dynamics of a plasma produced inside the irradiated samples that model the components of the advanced targets used in inertial confinement fusion research.  相似文献   

9.
A comparison between laser ablation of nickel in vacuum by using 532-and 1064-nm Nd:YAG (Yttrium Aluminium Garnet) laser wavelengths, with an intensity of 5 × 109 W/cm2, is reported. Nanosecond pulsed ablation produces high nonisotropic emission of neutrals and ionic species. For 532-nm laser irradiation, mass quadrupole spectrometry, coupled to electrostatic ion deflection and time-of-flight measurements, allows estimation of the energy distributions of the emitted species from plasma. For 1064-nm laser ablation, a cylindrical electrostatic ion analyzer permits one to measure the yield and the charge state of the emitted ions and reconstruct the ion energy and charge state distributions. Neutrals show typical Boltzmann-like distributions, while ions show Coulomb-Boltzmann-shifted distributions depending on their charge state. Surface profiles of the ablated craters permitted study of the ablation threshold and yields of nickel in vacuum versus the laser fluence. The plasma temperature was evaluated using experimental data. Special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated at nonequilibrium plasma conditions and the angular distribution of the emitted species. Published in Russian in Fizika Plazmy, 2008, Vol. 34, No. 7, pp. 598–606. The text was submitted by the authors in English.  相似文献   

10.
Results are presented from experimental studies of ion acceleration under the action of femtosecond laser pulses with an intensity of 1017 W/cm2, incident onto the free surfaces of melted gallium and indium. The effect of the polarization direction of a linearly polarized laser pulse and the amplitude of a short prepulse, which precedes the main pulse by several nanoseconds, on the parameters of accelerated ions is investigated. It is found that, even for such a moderate laser intensity, the characteristic velocity of fast ions ejected along the reflected beam is a factor of 1.5 higher than that of ions ejected along the normal to the target surface. It is shown that, as the prepulse energy increases, the hard X-ray yield and the mean energy of hot electrons increase substantially, whereas the velocity of both fast and slow ions decreases appreciably regard-less of laser polarization.  相似文献   

11.
A repetitively rated microwave oscillator whose frequency can be varied electronically from pulse to pulse in a predetermined manner is created for the first time. The microwave oscillator has a power on the order of 108 W and is based on the Cherenkov interaction of a high-current relativistic electron beam with a plasma preformed before each pulse. Electronic control over the plasma properties allows one to arbitrarily vary the microwave frequency from pulse to pulse at a pulse repetition rate of up to 50 Hz.  相似文献   

12.
The review of the methods for obtaining the runaway electron beams in the gas discharge is performed. The new method is offered, using which the beam is first formed in a narrow gap (∼1 mm) between the cathode and the grid and then it is accelerated by the field of the plasma column of the anomalous self-sustained discharge in the main gap (10–20 mm long). The electron beams with an energy of about 10 keV and current density of 103 A/cm2 at a molecular nitrogen pressure of up to 100 Torr have been obtained experimentally. The results of research of the UV nitrogen laser with an excitation via runaway electron beam and radiation of energy of ∼1 mJ are given. The UV nitrogen laser generation with the energy of ∼1 mJ has been obtained by the runaway electron beams.  相似文献   

13.
Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11.Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps).Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators.  相似文献   

14.
An injector of hydrogen atoms for plasma diagnostics in modern tokamaks has been developed at the Budker Institute of Nuclear Physics (Novosibirsk). The ion source of the injector produces a proton (helium ion) beam with a current of up to 2 A (1 A), an ion energy of up to 55 keV, a beam divergence of ~0.6\deg, and a pulse duration of up to 10 s. An RF discharge-based plasma emitter, which is one of the main parts of the ion source, is described. The emitter diameter is 72 mm, the ion current density is 120 mA/cm2, and the inhomogeneity of the current density is ±6%. The beam is formed by a four-electrode ionoptical system with 163 round apertures. At a current of 2 A, the ion beam consists of 67% protons, 18% H 2 + ions, and 15% H 3 + ions, the total content of heavier ions in the beam being no higher than 2–3%.  相似文献   

15.
Experiments on the transverse injection of intense (5–20 A/cm2), wide cross-section (10-cm), neutralized, ~100-eV H+ plasma and 100-keV H+ ion beams into a preformed B-field reversed configuration (FRC) are described. The FRC background plasma temperature was ~5 eV with densities of ~1013 cm?3. In contrast to earlier experiments, the background plasma was generated by separate plasma gun arrays. For the startup of the FRC, a betatron-type “slow” coaxial source was used. Injection of the plasma beam into the preformed FRC resulted in a 30–40% increase of the FRC lifetime and the amplitude of the reversed magnetic field. As for the ion beam injection experiment into the preformed FRC, there was evidence of beam capture within the configuration.  相似文献   

16.
The development of a preformed constriction in cylindrical agar-agar loads at currents of up to 3 MA is studied experimentally. The loads 3–5 mm in diameter have a mass density of 0.1 g/cm3 and are filled with different materials. Due to the implosion of the constriction to a minimum size of 40–70 μm, a hot dense plasma (with the electron density n e=1022 cm−3, electron temperature T e=0.8–1.5 keV, and ion temperature T i=3–12 keV) is produced. It is found that the ion temperature substantially exceeds the electron temperature. The lifetime of the high-temperature plasma determined from the FWHM of a soft X radiation (SXR) pulse is shorter than 5 ns, the radiation power of photons with energies of ≥1 keV is higher than 0.5×1010 W, and their total energy attains 50 J. High-speed photography in the VUV, SXR, and optical spectral regions indicates the protracted generation of the high-temperature plasma. Calculations by the two-dimensional ideal MHD model of the Z-pinch show that the most important consequence of the protracted plasma generation in the constriction region is that the current is intercepted by a freshly produced plasma. In the course of plasma generation, the current near the axis inside the region of radius 50 μm is at most one-half of the total current. After the plasma generation comes to an end, almost the entire current is concentrated in this region for several nanoseconds; this process is accompanied by a sharp increase in the plasma temperature. __________ Translated from Fizika Plazmy, Vol. 27, No. 12, 2001, pp. 1101–1110. Original Russian Text Copyright ? 2001 by Bakshaev, Blinov, Vikhrev, Gordeev, Dan’ko, Korolev, Medovshchikov, Nedoseev, Smirnova, Tumanov, Chernenko, Shashkov.  相似文献   

17.
The spectra of a plasma relativistic maser are measured. It is shown that the microwave frequency can be varied from 4 to 28 GHz by varying the plasma density from 4×1012 to 7×1013 cm?3 at a power of 30–50 MW. The relative width of the emission spectrum is within 50–80% for low plasma densities and 15–30% for high densities. Experimental results are compared with calculations.  相似文献   

18.
When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.  相似文献   

19.
A model of dust grain charging is constructed using the method of moments. The dust grain charging process in a weakly ionized helium plasma produced by a 100-keV electron beam at atmospheric pressure is studied theoretically. In simulations, the beam current density was varied from 1 to 106 μA/cm2. It is shown that, in a He plasma, dust grains of radius 5 μm and larger perturb the electron temperature only slightly, although the reduced electric field near the grain reaches 8 Td, the beam current density being 106 μA/cm2. It is found that, at distances from the grain that are up to several tens or hundreds of times larger than its radius, the electron and ion densities are lower than their equilibrium values. Conditions are determined under which the charging process may be described by a model with constant electron transport coefficients. The dust grain charge is shown to be weakly affected by secondary electron emission. In a beam-produced helium plasma, the dust grain potential calculated in the drift-diffusion model is shown to be close to that calculated in the orbit motion limited model. It is found that, in the vicinity of a body perturbing the plasma, there may be no quasineutral plasma presheath with an ambipolar diffusion of charged particles. The conditions for the onset of this presheath in a beam-produced plasma are determined. __________ Translated from Fizika Plazmy, Vol. 29, No. 3, 2003, pp. 214–226. Original Russian Text Copyright ? 2003 by Filippov, Dyatko, Pal’, Starostin.  相似文献   

20.
Results are presented from studies of the emission from an erosion gallium laser plasma at a moderate intensity (W=(1–5)×108 W/cm2) of a 1.06-μm laser radiation. It is shown that, under these conditions, the lower excited states of gallium atoms are populated most efficiently. Among the ions, only the most intense GaII lines are observed in the emission spectrum. The populations of GaI and GaII excited states are not related to direct electron excitation, but are determined by the recombination of gallium ions with slow electrons. The recombination times of GaIII and GaII ions in the core of the plasma jet are determined from the waveforms of emission in the GaII and GaI spectral lines and are equal to 10 and 140 ns, respectively. The results obtained are of interest for spectroscopic diagnostics of an erosion plasma produced from gallium-containing layered crystals during the laser deposition of thin films. __________ Translated from Fizika Plazmy, Vol. 27, No. 1, 2001, pp. 85–88. Original Russian Text Copyright ? 2001 by Shuaibov, Shimon, Dashchenko, Shevera, Chuchman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号