首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water stress is one of the main environmental stresses that affect plant growth and development. Salicylic acid (SA) induces water stress tolerance in plants. In this study, the effect of exogenous SA on physiological and biochemical process in Red bayberry (Myric rubra) seedlings, of three different genotypes, that were grown under water stress (soil ranging from 20 to 50 % of field capacity) was evaluated. Results showed that water stress severely affected the relative water content (RWC), photosynthesis, stomatal conductance and enzymes activities. Genotypes differed in RWC, Chlorophyll content, gas exchange parameter, antioxidant enzymes activities and proline, and the genotype Biqi had the RWC, photosynthesis, stomatal conductance and enzymes activities greater than the other two genotypes Wangdao and Shenhong. SA treated plants showed, in general, a higher RWC, chlorophyll content, photosynthetic rate, stomatal conductance, superoxide dismutase activity and proline content, and a lower relative electrolyte conductivity, methane dicarboxylic aldehyde content and catalase activity compared to those of untreated seedlings. These results signified the role of SA in diminishing the negative effects of drought on Red bayberry plants and suggest that SA could be used as a potential growth regulator, for improving plant growth under water stress.  相似文献   

2.
3.
Ain-Lhout  F.  Zunzunegui  M.  Diaz Barradas  M.C.  Tirado  R.  Clavijo  A.  Garcia Novo  F. 《Plant and Soil》2001,230(2):175-183
The effect of water stress on proline accumulation was tested in two contrasted species of Mediterranean scrub: Halimium halimifolium (L.) Willk and Pistacia lentiscus L. Leaf water potential, stomatal resistance and proline content have been measured both in experimental and in natural water stress conditions. Both species accumulated proline in their leaves when leaf water potential dropped below a threshold value of –3.0 MPa, under natural as well as under experimental conditions. In the field, however, a time-lag between decrease of leaf water potential and proline accumulation could be observed. In Halimium halimifolium, proline accumulation appeared to be associated with severe stress conditions as most plants with high proline contents suffered irreversible wilting, especially in the greenhouse. P. lentiscus showed a different pattern, accumulating proline at two different times of the year, as a response to cold or to drought. The results of our study indicated that the role of proline in this species, rather than an osmotic agent, seems to be more related to a protective action in cases of severe stress conditions.  相似文献   

4.
Arabidopsis thaliana grown in a light regime that included ultraviolet-B (UV-B) radiation (6 kJ m−2 d−1) had similar light-saturated photosynthetic rates but up to 50% lower stomatal conductance rates, as compared to plants grown without UV-B radiation. Growth responses of Arabidopsis to UV-B radiation included lower leaf area (25%) and biomass (10%) and higher UV-B absorbing compounds (30%) and chlorophyll content (52%). Lower stomatal conductance rates for plants grown with UV-B radiation were, in part, due to lower stomatal density on the adaxial surface. Plants grown with UV-B radiation had more capacity to down regulate photochemical efficiency of photosystem II (PSII) as shown by up to 25% lower φPSII and 30% higher non-photochemical quenching of chlorophyll fluorescence under saturating light. These contributed to a smaller reduction in the maximum photochemical efficiency of PSII (F v/F m), greater dark-recovery of F v/F m, and higher light-saturated carbon assimilation and stomatal conductance and transpiration rates after a four-hour high light treatment for plants grown with UV-B radiation. Plants grown with UV-B were more tolerant to a 12 day drought treatment than plants grown without UV-B as indicated by two times higher photosynthetic rates and 12% higher relative water content. UV-B-grown plants also had three times higher proline content. Higher tolerance to drought stress for Arabidopsis plants grown under UV-B radiation may be attributed to both increased proline content and decreased stomatal conductance. Growth of Arabidopsis in a UV-B-enhanced light regime increased tolerance to high light exposure and drought stress.  相似文献   

5.
硅对干旱胁迫下玉米水分代谢的影响   总被引:2,自引:0,他引:2  
李清芳  马成仓  季必金 《生态学报》2009,29(8):4163-4168
利用盆栽试验研究了施硅(K2SiO3)对玉米植株水分代谢的影响.结果表明:施硅降低了干旱胁迫下玉米植株的气孔导度,降低了干旱胁迫早期到中期的蒸腾速率,保持了干旱胁迫后期较高的蒸腾速率,从而导致施硅玉米植株的叶片含水量和水势高于对照.由于植株的水分状况改善,施硅玉米植株生物量高于对照.硅增强玉米植株的抗旱性,而提高植株保水能力是硅提高抗旱性的重要原因.  相似文献   

6.
Cen Y.  Liu M.-Z. 《植物生态学报》2017,(11):1199-1207
Aims: To investigate the effects of dew on plants, we conducted the experiment to determine the physiological characteristics and leaf structures of Leymus chinensis and Agropyron cristatum in response to increasing dew under drought stress. Methods: Four treatments (no dew, three times dew and five times dew per week under drought stress, and well-watering) were designed to examine leaf relative water content, water potential, net photosynthetic rate, water use efficiency, biomass, and leaf structures of L. chinensis and A. cristatum. Important findings: There was a significant increase in the relative water content and water potential by simulated dew increase for two plants species under drought stress (p < 0.05). For A. cristatum, simulated dew increase significantly enhanced the net photosynthetic rate, stomatal conductance, and transpiration rate of plants under drought stress (p < 0.05). On the other hand, there was no significant difference in the stomatal conductance and transpiration rate for L. chinensis among treatments. Simulated dew increase improved the aboveground biomass and root biomass of two species. The ratio of yellow leaves to the total leaves was decreased by simulated dew increase for two species. Dew increase also protected leaf structures against the drought stress, suggesting that the dew increase can slow down the death process of leaves resulted from drought stress. Therefore, the study demonstrated that dew increased the available water for the leaves of L. chinensis and A. cristatum grown in the drought stress and thus had positive effects on the photosynthesis, water physiology and plant development.  相似文献   

7.
《植物生态学报》2017,41(11):1199
Aims To investigate the effects of dew on plants, we conducted the experiment to determine the physiological characteristics and leaf structures of Leymus chinensis and Agropyron cristatum in response to increasing dew under drought stress.Methods Four treatments (no dew, three times dew and five times dew per week under drought stress, and well-watering) were designed to examine leaf relative water content, water potential, net photosynthetic rate, water use efficiency, biomass, and leaf structures of L. chinensis and A. cristatum. Important findings There was a significant increase in the relative water content and water potential by simulated dew increase for two plants species under drought stress (p < 0.05). For A. cristatum, simulated dew increase significantly enhanced the net photosynthetic rate, stomatal conductance, and transpiration rate of plants under drought stress (p < 0.05). On the other hand, there was no significant difference in the stomatal conductance and transpiration rate for L. chinensis among treatments. Simulated dew increase improved the aboveground biomass and root biomass of two species. The ratio of yellow leaves to the total leaves was decreased by simulated dew increase for two species. Dew increase also protected leaf structures against the drought stress, suggesting that the dew increase can slow down the death process of leaves resulted from drought stress. Therefore, the study demonstrated that dew increased the available water for the leaves of L. chinensis and A. cristatum grown in the drought stress and thus had positive effects on the photosynthesis, water physiology and plant development.  相似文献   

8.
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the Fv/Fm in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.  相似文献   

9.
五种高速公路边坡绿化植物的生理特性及抗旱性综合评价   总被引:10,自引:0,他引:10  
谭雪红  高艳鹏  郭小平  赵廷宁  王亮 《生态学报》2012,32(16):5076-5086
采用盆栽控制土壤水分,测定不同程度水分胁迫梯度下5种高速公路边坡绿化植物的叶水势、光合作用参数及叶绿素荧光参数,并以水分胁迫下各生理指标的平均变化速率为原始数据进行抗旱性综合评价。结果表明:(1)随着水分胁迫的加强,5种植物的ΨL、Pn、Tr、GS、Fv、Fm、Fv/Fm、Fv/Fo均逐渐下降,Fo逐渐升高,WUE先升后降,Ci先降后升,不同生理指标的变化幅度及拐点有一定差异;平均变化速率相对较小的是八宝景天和马蔺,较大的是肥皂草和太行菊;(2)根据水分胁迫下Gs和Ci变化方向的差异判断八宝景天、马蔺以W2作为Pn降低由气孔限制转为非气孔因素的分界线,五叶地锦、肥皂草和太行菊以W1为分界线,八宝景天、马蔺在W2时WUE最高,五叶地锦、肥皂草和太行菊在W1时最高;(3)5种植物抗旱性大小排序为:八宝景天>马蔺>五叶地锦>太行菊>肥皂草,聚类分析结果为:八宝景天、马蔺为强抗旱植物,五叶地锦为中抗旱植物,太行菊、肥皂草为弱抗旱植物。  相似文献   

10.
Effects of water stress on plants have been well-documented. However, the combined responses to drought and rewatering and their underlying mechanisms are relatively unknown. The present study attempts to describe spatiotemporal alterations in the physiology and cellular status of Medicago truncatula tissues that result from and subsequently follow a period of moderate water deficit. Physiological processes and cellular damage levels were monitored in roots and leaves by determining lipid peroxidation levels, as well as nitric oxide and hydrogen peroxide content, further supported by stomatal conductance and chlorophyll fluorescence measurements in leaves. During water stress, cells in both organs displayed increased damage levels and reactive oxygen and nitrogen species content, while leaves showed reduced stomatal conductance. Furthermore, both tissues demonstrated increased proline content. Upon rewatering, plants recovered displaying readings similar to pre-stress control conditions. Furthermore, molecular analysis of antioxidant gene expression by quantitative real-time RT-PCR revealed differential spatiotemporal regulation in a number of genes examined (including catalase, cytosolic ascorbate peroxidase, copper/zinc and iron superoxide dismutase and alternative oxidase). Overall, M. truncatula plants demonstrated increased sensitivity to drought-induced oxidative damage; however, this was reversed following rewatering indicating a great elasticity in the plant''s capacity to cope with free oxygen and nitrogen radicals.Key words: drought stress, antioxidants, cellular damage, medicago, proline, hydrogen peroxide, nitric oxide, reactive oxygen species, reactive nitrogen species  相似文献   

11.
Our experiment was conducted in order to find out effects of paclobutrazol (PBZ; 30 μl l–1) on morphology, photosynthetic process, and stress markers under water surplus and deficit conditions in several wheat genotypes. Study revealed that relative water content (RWC), photosynthetic rate, and maximal quantum yield of PSII (FV/FM) was improved after a PBZ application both under irrigation and water deficit across the genotypes, while the stomatal conductance was reduced. Further, the application of PBZ led to reduced leaf area in wheat genotypes. Moreover, a proline content was higher in the wheat genotypes under water stress as compared to the irrigated plants. The application of PBZ led to downregulation of the proline content under water deficit, while there was no significant change in the content and activity under irrigation with or without the PBZ treatment. These findings indicated that due to the application of PBZ the wheat genotypes might sense a lower stress level (indicated by the proline content) and better drought tolerance (according to RWC and photosynthetic characteristics).  相似文献   

12.
Reproductive success largely defines the fitness of plant species. Understanding how heat and drought affect plant reproduction is thus key to predicting future plant fitness under rising global temperatures. Recent work suggests reproductive tissues are highly vulnerable to water stress in perennial plants where reproductive sacrifice could preserve plant survival. However, most crop species are annuals where such a strategy would theoretically reduce fitness. We examined the reproductive strategy of tomato (Solanum lycopersicum var. Rheinlands Ruhm) to determine whether water supply to fruits is prioritized above vegetative tissues during drought. Using optical methods, we mapped xylem cavitation and tissue shrinkage in vegetative and reproductive organs during dehydration to determine the priority of water flow under acute water stress. Stems and peduncles of tomato showed significantly greater xylem cavitation resistance than leaves. This maintenance of intact water supply enabled tomato fruit to continue to expand during acute water stress, utilizing xylem water made available by tissue collapse and early cavitation of leaves. Here, tomato plants prioritize water supply to reproductive tissues, maintaining fruit development under drought conditions. These results emphasize the critical role of water transport in shaping life history and suggest a broad relevance of hydraulic prioritization in plant ecology.  相似文献   

13.
干旱胁迫对降香黄檀幼苗光合生理特性的影响   总被引:2,自引:0,他引:2  
采用温室盆栽方法,设置对照(CK)、轻度(LS)、中度(MS)和重度(HS)干旱胁迫4个水分条件,研究不同水分条件对降香黄檀幼苗光合和生理特性的影响。结果表明:(1)随着干旱胁迫程度增加,降香黄檀幼苗叶片叶绿素总含量总体呈现出下降趋势。(2)降香黄檀幼苗叶片净光合速率、气孔导度、胞间CO2浓度和蒸腾速率随着干旱胁迫强度增加均呈现出先增加后降低趋势,且MS和HS处理下的气孔导度和胞间CO2浓度同时降低,此时幼苗光合能力的下降主要受气孔因素限制。(3)随着干旱胁迫强度的增加,降香黄檀幼苗叶片细胞膜相对透性、丙二醛含量、游离脯氨酸含量和POD活性均呈现出增加趋势,而同期SOD和CAT活性呈现出先升高后降低趋势。可见,降香黄檀幼苗在轻度干旱胁迫下可通过增加叶片保护酶活性来清除活性氧对其组织造成的伤害,但胁迫超过一定程度后保护酶活性下降,表明降香黄檀幼苗的耐旱能力有限。  相似文献   

14.
The increase in water use efficiency (the ratio of photosynthetic to transpiration rates) is likely to be the commonest positive effect of long-term elevation in CO2 concentration (CE). This may not necessarily lead to decrease in long-term water use owing to increased leaf area. However, some plant species seem to cope better with drought stress under CE, because increased production of photosynthates might enhance osmotic adjustment and decreased stomatal conductance and transpiration rate under CE enable plants to maintain a higher leaf water potential during drought. In addition, at the same stomatal conductance, internal CO2 concentration might be higher under CE which results in higher photosynthetic rate. Therefore plants under CE of the future atmosphere will probably survive eventual higher drought stress and some species may even be able to extend their biotope into less favourable sites. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
以温室盆栽番茄(Lycopersicon esculentum Mill.)为试验材料,研究了土壤水分对叶水势(LWP)、细胞液浓度(CSC)、气孔导度(Gs)、气孔限制值(Ls)和叶片光合特性的影响,以及引起光合下降的因子动态。结果表明,随着土壤水分胁迫程度的增加,净光合速率(Pn)、蒸腾速率(Tr)、LWP明显下降.Gs具有相同的趋势,而CSC显著升高。土壤水分胁迫和高水分处理的Pn与Tr日变化呈双峰曲线,但在适宜土壤水分下为单峰曲线。随着土壤含水量的增加,光合下降的非气孔限制出现的时间具有滞后现象。本文对非气孔限制出现的临界点动态作了进一步的探讨。  相似文献   

16.
Drought stress alters the chemical composition of plants, which can influence their tolerance to insect herbivory. To evaluate plant chemical responses to drought stress, broccoli, Brassica oleracea L. var. italica Plenck (Brassicaceae), was grown under well‐watered, drought, and water‐logged conditions. The glucosinolate (GS) levels and the performance of two aphid species, the specialist Brevicoryne brassicae (L.) and the generalist Myzus persicae (Sulzer) (both Hemiptera: Aphididae), in relation to water stress conditions were studied. High Performance Liquid Chromatography analysis showed that water stress changed the levels of GS in broccoli plants. Plants grown for 2 weeks under drought stress were significantly smaller and showed decreased levels of total GS when compared with GS contents of well‐watered plants, whereas water‐logged conditions led to a slight increase in the GS contents. A substantial decrease in indolyl GS was detected in water‐deficient plants, whereas aliphatic GS decreased slightly. Analysis of sugar levels in phloem sap of broccoli plants revealed that plants under water‐logged conditions contained the highest amounts of sugars followed by drought‐stressed and well‐watered plants. The two aphid species responded differently to water stress‐induced changes in their host plants. Significantly larger populations of M. persicae were recorded on plants with a limited water supply than on plants grown under well‐watered or water‐logged conditions. Brevicoryne brassicae was less affected by water stress, and similar population sizes were found on plants that were subject to different treatments. Analysis of covariance showed a significant effect of the plants’ water condition but no significant effect of GS content on the performance of M. persicae. However, the specialist B. brassicae remained unaffected by changes induced under water stress conditions.  相似文献   

17.
The effects of exogenous foliar glycine betaine (GB) and abscisic acid (ABA) on papaya responses to water stress were investigated under distinct water regimes. Papaya seedlings (Carica papaya L. cultivar “BH-65”) were pretreated with GB or ABA and subsequently subjected to consecutive periods of drought, rehydration, and a second period of drought conditions. Results indicated that water stress induced ABA, jasmonic acid (JA), and proline accumulation but did not modify malondialdehyde (MDA) concentration. In addition, water deprivation reduced photosynthetic rate, stomatal conductance, relative water content (RWC), leaf fresh weight, and increased leaf abscission. GB applied prior to drought imposition decreased the impact of water stress on ABA, JA, proline accumulation, leaf water status, growth, and photosynthetic performance. However, ABA-pretreated plants did not show alteration of most of these parameters under water stress conditions when compared with non-pretreated plants except a clear induction of JA accumulation. Taken together, the data suggest that GB may modulate ABA, JA, and proline accumulation through the control of stomatal movement and the high availability of compatible solutes, leading to improvement of leaf water status, growth, and photosynthetic machinery function. In contrast, exogenous ABA did not stimulate papaya physiological responses under drought, but interestingly ABA in combination with drought could induce progressive JA synthesis, unlike drought alone, which induces a transitory JA increase and may trigger endogenous ABA accumulation. The data also suggest that irrespective of the pretreatments, papaya did not suffer oxidative damage.  相似文献   

18.
The influence of Russian wheat aphid ( Diuraphis noxia Mordvilko) infestation on the response of barley ( Hordeum vulgare L. ev Hazen) plants to drought stress was investigated. Fourteen-day-old plants were infested with eight apterous adult aphids, which were removed 7 days later with systemic insecticide. Leaves previously infested with aphids had lower relative water content, reduced stomatal conductance, more negative water potential, lower levels of chlorophyll and higher levels of amino-N, proline and glycinebetaine than corresponding leaves from uninfested plants. When water was withheld for a period of 7 days after aphids were removed, the relative water content of previously infested plants dropped steadily from 0.89 to 0.60, while the relative water content of uninfested plants remained at about 0.94 for the first 4 days of the drought stress period followed by a steady drop to about 0.77 by the end of the drought stress period. Leaf water potentials dropped steadily during the drought stress period in both previously infested (-1.14 to -1.91 MPa) and unin-fested (-0.54 to -1.52 MPa) plants. Analysis of glycinebetaine and proline levels at the end of the drought stress period indicated that leaves of previously infested plants accumulated lower levels of these solutes than leaves from uninfested plants. Upon alleviation of drought stress, plants previously infested with aphids showed little increase in dry weight while younger leaves and tillers from uninfested plants showed large increases. It is concluded that Russian wheat aphids cause drought-stress symptoms in leaves of infested plants even in the presence of ample root moisture. The observations of low levels of glycinebetaine and proline present in leaves after water was withheld from roots and lack of leaf growth upon alleviation of drought stress in previously-infested plants, suggest that aphid infestation limits the capacity of barley plants to adjust successfully to drought stress.  相似文献   

19.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   

20.
以岩溶特有药用植物地枫皮为材料,研究土壤水分胁迫及复水条件下,其叶片光合参数、叶绿素荧光参数及光合色素含量的变化特性,进而探讨其对水分胁迫的生理生态适应性。结果表明:停止供水10 d,水分胁迫地枫皮叶片的P_n(净光合速率)、C_i(胞间CO_2浓度)、G_s(气孔导度)和L_s(气孔限制值)均下降,气孔限制是P_n降低的主要原因;停止供水15 d,水分胁迫地枫皮叶片的P_n日变化呈逐渐下降趋势,上午9:30以后全天的P_n值均接近零,非气孔限制成为P_n下降的主要因素;而对照地枫皮叶片的P_n日变化呈"双峰型",中午P_n下降的主要原因依然是气孔限制。水分胁迫下,地枫皮叶片叶绿素含量降低和Chl_(a/b)升高,减少了叶片对光能的捕获,减轻了光合机构遭受光氧化的破坏,而Car/Chl_(a+b)升高增强了光保护能力。水分胁迫下,地枫皮叶片的初始荧光(F_o)显著增大,最大荧光(F_m)、光系统Ⅱ(PSⅡ)潜在活性(F_v/F_o)和最大光化学效率(F_v/F_m)均显著降低,表明水分胁迫对地枫皮叶片的PSⅡ反应中心和电子传递造成了一定的破坏,从而使其PSⅡ的潜在活性和最大光化学效率降低。复水5 d后,地枫皮的上述生理生态参数均能恢复到对照水平,表明其复水后的生理修复能力很强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号