首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Regulation of hepatic tyrosine aminotransferase in genetically obese rats   总被引:1,自引:0,他引:1  
The activities of hepatic tyrosine aminotransferase, tryptophan oxygenase and serine dehydratase were increased in obese rats shortly after weaning. Immunotitration experiments showed that the increase in tyrosine aminotransferase activity resulted from an increase in enzyme protein in obese rats. No increase in hepatic tyrosine aminotransferase was observed in suckling pre-obese rats. The post-weaning increase in hepatic tyrosine aminotransferase of obese rats was only observed during the light phase of the diurnal cycle, but was prevented by pair-feeding and by starvation. Tryptophan increased hepatic tyrosine aminotransferase of lean rats to obese levels but had no effect in obese rats until tyrosine aminotransferase levels were reduced by starvation or adrenalectomy. Adrenalectomy abolished the increase in hepatic tyrosine aminotransferase activity in obese rats although serum corticosterone was normal in these animals. Hepatic and brain tyrosine concentrations were decreased in obese rats but normalized after adrenalectomy. The results suggest that the corticosteroid-dependent increase in food and tryptophan intake may be the primary cause of the increased hepatic amino acid catabolism of obese rats.  相似文献   

2.
Induction of rat liver tyrosine aminotransferase by l-tyrosine and tryptophan oxygenase by l-tryptophan was studied in groups of rats fed on diets containing 18 or 5% protein. The basal activity of hepatic tyrosine aminotransferase of rats receiving 5% protein gradually increased with the age of the animals but that of rats receiving 18% protein did not. l-Tyrosine induced hepatic tyrosine aminotransferase in rats receiving 18% protein when tested at ages from 4 to 20 weeks. When induction by l-tyrosine was carried out in rats receiving the 5% protein diet, significant induction of tyrosine aminotransferase occurred only in 4- or 6-week-old rats. Induction by l-tryptophan of tryptophan oxygenase in liver or the basal activity of this enzyme in liver did not differ between the groups fed on 5 and 18% protein. On changing the diet from 0 to 18% protein, the above-mentioned effects on the induction of hepatic tyrosine aminotransferase were reversed.  相似文献   

3.
In rats subjected to 400 revolutions in Noble-Collip drums, hepatic tryptophan pyrrolase activity increases and plasma tryptophan level decreases. After bilateral adrenalectomy, the alterations of plasma tryptophan are even more pronounced and liver tryptophan increases in contrast to tryptophan pyrrolase activity which remains unchanged after injury. The possible significance of the posttraumatic increase of tryptophan pyrrolase in intact animals for brain serotonin metabolism and hepatic gluconeogenesis is underlined. The activity of tyrosine aminotransferase in liver, brain, adrenal, kidney and muscle tissue of rats was determined with special reference to the possible effect of the before-mentioned stress procedure. Organ homogenates were centrifuged at 15000 x g and both supernatants and pellets were investigated for enzyme activity with the exception of the liver, where only the supernatant fraction was used. Tyrosine aminotransferase activity in the liver supernatant considerably exceeded the corresponding values in both supernatant and pellet of the remaining organs, in which a prevalence of the mitochondrial enzyme was obvious. In contrast to the clear-cut increase of the hepatic enzyme during stress, essentially no changes were noted in the brain, the adrenals, kidney or muscle under similar conditions...  相似文献   

4.
Normal human fetal liver contains little phenylalanine-pyruvate aminotransferase: between the 11th and 22nd week of gestation its activity (per g) is 8.8% of that in adult liver. In rat liver this enzyme begins to rise a few hours before birth. Precocious increases in the phenylalanine-pyruvate aminotransferase activity of fetal rat liver (but not kidney or brain) were evoked by premature delivery and also by the administration of thyroxine or glucagon in utero. These results, Discussed in relation to related observations on other enzymes, suggest that thyroxine secreted by the fetus, and also another factor relaesed at the beginning of labour, may be the natural stimuli for the developmental formation of phenylalanine-pyruvate aminotransferase.The regulation of hepatic phenylalanine-pyruvate aminotransferase and phenylalanine hydroxylase (L-phenylalanine, tetrahydropteridine:oxygen oxidoreductase (4-hydroxylating), EC 1.14.16.1) during fetal development is different: in both man and rat, phenylalanine hydroxylase begins to rise earlier and is unaffected by the treatments which enhanced the formation of phenylalanine-pyruvate aminotransferase. In suckling rats (but not in fetuses and adults), an injection of cortisol increased the levels of both enzymes. Hepatocarcinomas of the adult rat were devoid phenylalanine hydroxylase as well as phenylalanine-pyruvate aminotransferase. However, suppression in vivo by substrate analogues (α-methylphenylalanine and p-chlorophenylalanine) was unique for phenylalanine hydroxylase.  相似文献   

5.
Glucagon administered subcutaneously to rats for 10 days had no significant effect on liver phenylalanine hydroxylase activity, but induced liver dihydropteridine reductase more than twofold. In rats administered a phenylalanine load orally, glucagon treatment stimulated oxidation and depressed urinary phenylalanine excretion. These responses could not be related to an effect of glucagon on hepatic tyrosine-alpha-oxoglutarate aminotransferase activity. Even in rats with phenylalanine hydroxylase activity depressed to 50% of control values by p-chlorophenylalanine administration, glucagon treatment increased the phenylalanine-oxidation rate substantially. Although hepatic phenylalanine-pyruvate aminotransferase was increased tenfold in glucagon-treated rats, glucagon treatment did not increase urinary excretion of phenylalanine transamination products by rats given a phenylalanine load. Glucagon treatment did not affect phenylalanine uptake by the gut or liver, or the liver content of phenylalanine hydroxylase cofactor. It is suggested that dihydropteridine reductase is the rate-limiting enzyme in phenylalanine degradation in the rat, and that glucagon may regulate the rate of oxidative phenylalanine metabolism in vivo by promoting indirectly the maintenance of the phenylalanine hydroxylase cofactor in its active, reduced state.  相似文献   

6.
Abstract

In male rats, hepatic serine: pyruvate aminotransferase shows a diurnal rhythm of activity. The periodicity differs from those of other rate‐limiting enzymes in the amino acid catabolism by a biphasic pattern. Fasting did not prevent the diurnal increase in enzyme activity.  相似文献   

7.
Abstract— The activity of fatty acid synthetase was studied in the brain and liver of the developing rat. Synthetase activity in brain was considerably higher in foetal and suckling rats than in older animals However, except for a small transient rise in the perinatal period, activity in liver was low until weaning when a dramatic rise occurred. Activity in brain varied according to the quantity of dietary fat only in long-term experiments, whereas in liver nutritional influences clearly predominated in determining the rapid developmental changes of synthetase activity. Administration of hydrocortisone diminished hepatic activity but did not change brain synthetase. In the hypothyroid state activity in brain and liver was consistently decreased. However, in the hyperthyroid state hepatic activity increased but activity in brain did not change. The relatively high activity of fatty acid synthetase during brain development has been discussed in relation to the critical role of this enzyme system in brain metabolism. The effect of the hypothyroid state on the activity of brain synthetase suggests the possibility of hormonal control of this enzyme activity. The responses of hepatic synthetase to the hormonal influences delineate a specific step by which these compounds may exert their effect on fatty acid biosynthesis.  相似文献   

8.
1. Salicylate, in concentrations of 0.25mm and above, enhances the basal activity of tyrosine–2-oxoglutarate aminotransferase in homogenates of rat liver incubated in the absence of added pyridoxal 5′-phosphate (endogenous activity). The effect is decreased by increasing the concentration of the cofactor. 2. The intraperitoneal administration of sodium salicylate enhances the activity of rat liver tyrosine aminotransferase; the major effect during the first hour being on the enzyme in the absence of added pyridoxal phosphate. Actinomycin D prevents the induction of the enzyme by cortisol and tryptophan. Induction by pyridoxine or salicylate is 50% inhibited by actinomycin D. The effects of the injections of various combinations of cortisol, pyridoxine and salicylate were also studied in the absence or presence of actinomycin D. 3. It is suggested that salicylate induces rat liver tyrosine aminotransferase by displacing its protein-bound cofactor and that a cofactor-type induction of the hepatic enzyme occurs in pyridoxine-treated rats.  相似文献   

9.
Induction of cytosolic aspartate aminotransferase (cAspAT) was observed in rat liver on administration of a high-protein diet, or glucagon and during fasting. The enzyme activity in the liver of rats given 80% protein diet or glucagon injection during starvation increased to 2- to 2.4-fold that in the liver of rats maintained on 20% protein diet, with about 2-fold increases in the levels of hybridizable cAspAT mRNA, measured by blot analysis using the cloned rat cAspAT cDNA as a probe. No increase in the enzyme was detected in kidney, heart, brain, or skeletal muscle. The activity of mitochondrial aspartate aminotransferase (mAspAT) did not increase. Induction of cAspAT was observed when glucose metabolism tended toward gluconeogenesis. The physiological function of the induction of cAspAT is considered to be to increase the supply of oxaloacetate as a substrate for cytosolic phosphoenolpyruvate carboxykinase (PEPCK) [EC 4.1.1.32] for gluconeogenesis.  相似文献   

10.
Rat liver β-hydroxy-β-methylglutaryl coenzyme A reductase activity and the amplitude of the diurnal variation of this enzyme are progressively reduced to very low levels within 1 week after the onset of diabetes induced by streptozotocin. Daily insulin therapy to 7-day diabetic rats restores the activity and the amplitude of this diurnal variation in enzyme activity to near-normal levels within 4 days. Insulin also produces a rapid 2-hr stimulation of the reductase activity in diabetic rats to the level found in normal animals at that time of day regardless of the duration of diabetes. Hence, insulin is required for the diurnal rise of reductase activity in rat liver. Glucagon, dibutyryl cyclic AMP, and hydrocortisone, in contrast, markedly inhibit the diurnal rise of reductase activity in normal rats. Therefore, the relative concentrations of insulin, glucagon, and glucocorticoids are important in the regulation of the diurnal variation of hepatic reductase activity.  相似文献   

11.
D-3-Aminoisobutyrate-pyruvate aminotransferase (EC 2.6.1.40, D-BAIB aminotransferase) participates in the metabolism of thymine. Recently we purified this enzyme from rat liver. We have studied D-BAIB aminotransferase further to clarify its physiological function. Among our findings were the following. (1) The enzyme activity was widely distributed in the organs of guinea pigs and rats. The kidney, liver, and lung showed high specific activities. (2) Using the livers of six vertebrates, differences between species were studied. Activity was detected in all species, the human liver showing the lowest activity among them. (3) Developmental study using rat liver showed that the activity was low at birth, increased sharply thereafter for 10 days, and then subsequently declined to the adult level. (4) Intraperitoneal injection of BAIB and beta-alanine in rats was performed to determine whether they induce activity of this aminotransferase. Only BAIB increased the activity of the aminotransferase in the liver significantly. (5) Subcellular distribution study of this aminotransferase in rat liver revealed that it is a mitochondrial enzyme.  相似文献   

12.
beta-Alanine aminotransferase from rat liver was purified to electrophoretic homogeneity. The immunological and kinetic properties of this enzyme were similar to those of the enzyme from rat brain. However, the liver enzyme transaminates from beta-alanine to 2-oxoglutaric acid, while the brain enzyme transaminates from gamma-aminobutyric acid. beta-Alanine aminotransferase activity in regenerating rat liver was lower than that in control rat liver. Activity of this enzyme, as well as of other uracil-catabolizing enzymes (Weber, G., Queener, S.F. and Ferdinandus, A. (1970) in Advances in Enzyme Regulation (Weber, G., ed.), Vol. 9, pp. 63-95, Pergamon Press, Oxford), was low in newborn rat liver and increased about 5-fold, reaching the level observed in adult rat liver. beta-Alanine and prednisolone induced beta-alanine aminotransferase in rat liver.  相似文献   

13.
The biochemical and functional heterogeneity of hepatocytes in different zones of the liver acinus may be related to the concentrations of hormones within the liver acinus. We examined the effects of hypophysectomy, which causes marked changes in plasma hormone levels and in activities of hepatic enzymes that are normally heterogeneously distributed, on the degree of metabolic zonation within the liver acinus. In hypophysectomized rats the activity of alanine aminotransferase was increased, but its normal zonation (predominance in the periportal zone) was preserved. The activity in cultured periportal and perivenous hepatocytes was increased by dexamethasone, but not by glucagon. Periportal hepatocytes from hypophysectomized rats expressed higher rates of gluconeogenesis in culture than did perivenous hepatocytes, irrespective of the absence or presence of dexamethasone, glucagon or insulin. Similar differences in rates of ketogenesis and in the mitochondrial redox state in response to glucagon were observed between periportal and perivenous hepatocytes from hypophysectomized rats as between cell populations from normal rats. Although hypophysectomy causes marked changes in hepatic enzyme activities, it does not alter the degree of zonation of alanine aminotransferase, gluconeogenesis or the mitochondrial redox state within the liver acinus.  相似文献   

14.
Abstract

The adrenergic agonists and antagonists, norepinephrine, phenylephrine, iso‐proterenol, phentolamine, and propranolol, were administered to rats in different phases of the diurnal cycle, and their effects on tyrosine aminotransferase activity were studied. All substances tested, regardless whether being typically α‐ or ß ‐adrenergic or whether being agonists or antagonists, elevated tyrosine aminotransferase during the minimum of enzyme activity. The effects at the enzyme maximum, however, were generally more or less depressive. The extent of the depressions by norepinephrine and by propranolol highly depended on the duration of treatment. The hepatic concentration of cyclic AMP did not exhibit a significant rhythmicity. The results do not favour the idea of an adrenergic control of the diurnal rhythm in tyrosine aminotransferase activity.  相似文献   

15.
The ingestion of glucose ad libitum (for 19 h to 3 days) decreased the levels of enzymes concerned with amino acid metabolism in liver and intestine (but not in kidney and brain) and raised those of hepatic glucokinase, pyruvate kinase and NADP-malate dehydrogenase.Glucose feeding inhibited the substrate and cortisol induction of tryptophan oxygenase; it did not diminish the induction of tyrosine aminotransferase by glucagon (in adrenalectomized rats) or of renal ornithine aminotransferase by estrogen and it enhanced the response of NADP-malate dehydrogenase to thyroxine. In hepatomas, as opposed to normal liver, 24 h of glucose feeding increased the basal and the cortisol-induced levels of tyrosine aminotransferase.The results obtained with endocrinectomized and hormone-treated rats led to the following conclusions: (1) the effects of glucose ingestion on the quantitative pattern of hepatic enzymes is not mediated through altered secretion of pituitary, adrenal or pancreatic hormones but presumably by metabolites of glucose; (2) glucose, ingested in large amounts over 1–3 days, is not an inhibitor of enzyme inductions in general: its effect varies with the enzyme, the inducer and the tissue in which the enzyme is located.  相似文献   

16.
Dehydroepiandrosterone (DHEA) decreases the activity of hepatic tyrosine aminotransferase (TAT), a glucocorticoid-inducible enzyme, in the obese, hypercorticosteronemic Zucker rat. To investigate the mechanism of this antiglucocorticoid action, the effect of exogenous DHEA on hepatic glucocorticoid receptor (GC) number and affinity was quantitated. Food supplementation with DHEA (0.6% w/w) for 1 or 7 days had no effect on either receptor number or affinity in obese Zucker rats. After 28 days, however, DHEA treatment resulted in a nearly 40% decrease in cytosolic hepatic receptor content (Bmax; fmol/mg cytosolic protein) without any change in affinity (Kd) in both lean and obese rats. DHEA treatment for 28 days also resulted in an increased liver size and cytosolic protein content. When the hepatic GC receptor content was normalized based on the change in liver size and protein content, the apparent number of GC binding sites per liver was not affected by DHEA treatment. This observation suggests that DHEA's effect on GC receptor content may not be a specific action and that downregulation of the GC receptor is not the mechanism of DHEA action on GC induced TAT activity. This is supported by the effect of DHEA on obese rat TAT activity in the same experiment where the greatest inhibition occurred after only 1 day of treatment. From these experiments it is concluded that although long-term DHEA treatment may decrease the relative concentration of GC receptors in rat liver, this change is not the mechanism through which DHEA mediates its acute antiglucocorticoid action.  相似文献   

17.
The hepatic cysteine dioxygenase activity of rats was markedly decreased by the intraperitoneal administration of glucagon. The enzyme activity was also decreased by either dibutyryl cyclic AMP or theophylline. The prior administration of actinomycin D completely blocked the glucagon-mediated decrease of enzyme activity, while administrations of this inhibitor of protein synthesis after glucagon injection did not block the decrease of enzyme activity. A single administration of actinomycin D resulted in a slight increase of cysteine dioxygenase activity in the rat liver. On the other hand, the injection of cycloheximide resulted in a rapid decrease of the hepatic cysteine dioxygenase with a half-life of 2.5 h. The half-life of the enzyme in rat liver after glucagon administration was one hour. The administration of hydrocortisone or insulin had no effect on the glucagon-mediated decrease of cysteine dioxygenase of rat liver. The enzyme activity of alloxan diabetic rat liver was almost the same as that of the intact rat liver. The evidence obtained here suggests that enhancement of degradation or inactivation of cysteine dioxygenase is responsible for the glucagon-mediated decrease of the enzyme activity in rat liver.  相似文献   

18.
Spinal cord section brings about early and late changes in rat liver tyrosine-alpha-ketoglutarate aminotransferase activity. Early effects (4 h after surgery): spinal cord section at C7 level causes an unreactiveness of rat liver tyrosine-alpha-ketoglutarate aminotransferase both to endogenously and exogenously elevated plasma glucocorticoid levels. Induction of tyrosine–alpha-ketoglutarate aminotransferase by hydrocortisone administration is almost completely inhibited. This unreactiveness of the rat liver enzyme to hydrocortisone is not due to delayed resorption of hydrocortisone by the peritoneum as tested with [3H]hydrocortisone, to changes in the secretion of hypophyseal hormones or to changes in the levels of glucose in blood or liver. L3 level section of the spinal cord or sham operation results in a stress-like enzyme pattern (an increase at 4 h with return to normal level at 24 h). The stress elevation of tyrosine–alpha-ketoglutarate aminotransferase at 4 h after the operation is absent in C7 level sectioned rats. This effect is not due to a decreased plasma corticosterone level since it is 4.1-fold higher in C7 level sectioned rats and 2.7-fold higher in sham-operated controls (as measured 2.5 h after the operation). Late effects (24 h after the surgery): C7 level section of the spinal cord brings about a nine-fold increase in a tyrosine–alpha-ketoglutarate aminotransferase activity in animals with intact adrenals and three-fold increase in adrenalectomized rats at 24 h after the operation. This increase is abolished almost completely by cycloheximide, irrespective of the time of administration. Experiments with actinomycin D, injected at different times after C7 level section have shown that there exists a period of higher sensitivity of the amino-transferase toward the antibiotic (lasting about 3 h), followed by a period of lower sensitivity (lasting 16 h or longer). These results can be explained by assuming the existence of two tyrosine-alpha-ketoglutarate aminotransferase mRNAs with different lifetime. A direct participation of the CNS in the changes in enzymic activity observed after section of the spinal cord above the segments innervating the liver is suggested.  相似文献   

19.
Tyrosine aminotransferase multiple forms occurring in rat liver are not present in all mammalian species. Among animals examined only rat and mouse liver possesses multiple forms of tyrosine aminotransferase; in guinea-pig, rabbit, bovine and sheep liver the enzyme occurs in a single form. The presence of lysosomal converting factor (cathepsin T), responsible for arising of multiple forms of tyrosine aminotransferase in rat liver, has been checked in another species lacking enzyme subforms. Lysosomal extracts of guinea-pig liver interconverts tyrosine aminotransferase from rat liver; lysosomal extracts of rat liver does not generate multiple forms of the enzyme from guinea-pig liver. It has been concluded that in some animals hepatic tyrosine aminotransferase is resistant to the proteolytic cleavage by lysosomal cathepsin T.  相似文献   

20.
The activities of aspartate aminotransferase (EC 2.6.1.1) in the cytosol fractions of the liver and kidney of rats fed pyridoxine-deficient or control diet for 3 weeks were determined. In the absence of pyridoxal phosphate, the activities in the liver and kidney preparations of deficient rats were both abnormally low. The activity in the kidney fraction of deficient rats was restored to almost the control level by addition of pyridoxal phosphate, whereas that of the liver was only partially restored. The antigen activity, however, measured using anti-aspartate aminotransferase, was similar in liver fractions from deficient and control rats. These findings suggest the existence of a form of transaminase with little or no activity in the liver of deficient rats. The properties of the crude enzymes from deficient and control rats were indistinguishable by immunodiffusion, and the enzymes had the same subunit size and heat stability under the conditions tested. However, purified enzyme from deficient rat liver had a different specific activity and absorption spectrum from purified enzyme from normal liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号