首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
A mathematical model of the patello-femoral joint was introduced to investigate the impact of the vastus medialis (longus, obliquus) forces on the lateral contact force levels. In the model, the quadriceps were represented as five separate forces: vastus lateralis, vastus intermedius, rectus femoris, vastus medialis longus (VML), and obliquus (VMO). By varying the relative force generation ratios of the quadriceps heads, the patello-femoral contact forces were estimated. We sought to analytically determine the range of forces in the VMO and VML that cause a reduction or an increase of lateral contact forces, often the cause of patello-femoral pain. Our results indicated that increased contact forces are more dependent on combinations of muscle forces than solely VMO weakness. Moreover, our simulation data showed that the contact force levels are also highly dependent on the knee flexion angle. These findings suggest that training targeted to reduce contact forces through certain joint angles could actually result in a significant increase of the contact forces through other joint angles.  相似文献   

2.
Fiber architecture of the extensor musculature of the knee and ankle is examined in two African guenon species—the semiterrestrial Cercopithecus aethiops, and the arboreal C. ascanius. Using histologic and microscopic techniques to measure lengths of sarcomeres, the original lengths of muscle fasciculi and angles of pinnation in quadriceps femoris and triceps surae are reconstructed from direct measurements on cadavers. Calculations of reduced physiological cross-sectional area, mass/predicted effective tetanic tension, maximum excursion, and tendon length/fasciculus + tendon lengths are correlated to preferred locomotor modalities in the wild. For both species, greater morphological differences occur among the bellies of quadriceps femoris—rectus femoris, vastus intermedius, v. lateralis, and v. medialis—than among the bellies of triceps surae—gastrocnemius lateralis, g. medialis, plantaris, and soleus. With regard to quadriceps femoris, few differences occur between species. Interspecific differences in the triceps surae indicate (1) redirection of muscle force to accommodate arboreality in which the substrate is less than body width; (2) muscles more suited for velocity in the semiterrestrial vervets; and (3) muscles used more isotonically in vervets and more isometrically in red-tailed monkeys. The inherent flexibility of muscle may be preadaptive to a primary species shift in locomotor modality until the bony morphology is able to adapt through natural selection. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The aim of this study was to investigate the reliability of peak torque and surface electromyography (EMG) variable's root mean square (RMS) and mean frequency (MNF) during an endurance test consisting of repetitive maximum concentric knee extensions. Muscle fatigue has been quantified in several ways, and in isokinetic testing it is based on a set of repetitive contractions. To assess test-retest reliability, two sets of 100 dynamic maximum concentric knee extensions were performed using an isokinetic dynamometer. The two series were separated by 7-8 days. The subjects relaxed during the passive flexion phase. Twenty (10 men and 10 women) clinically healthy subjects volunteered.Peak torque and EMG from rectus femoris, vastus medialis, vastus lateralis and biceps femoris were recorded. RMS and MNF were calculated from the EMG signal. The reliability was calculated with intraclass correlation coefficient ICC (1.1) and standard error of measurements (SEM). The reliability of peak torque was good (ICC=0.93) and SEM showed low values. ICC was good for absolute RMS of rectus femoris (ICC>/=0.80), vastus medialis (ICC>/=0.88) and vastus lateralis (ICC>/=0.82) and MNF of rectus femoris (ICC>/=0.82) and vastus medialis (ICC>/=0.83). Peak torque, and MNF and RMS of rectus femoris and vastus medialis are reliable variables obtained from an isokinetic endurance test of the knee extensors.  相似文献   

4.
The purpose of this study was to investigate neuromuscular activation of the vastus intermedius (VI) muscle during fatiguing contraction. Seven healthy men performed sustained isometric knee extension exercise at 50% of maximal voluntary contraction until exhaustion. During the fatiguing task, surface electromyograms (EMGs) were recorded from four muscle components of the quadriceps femoris muscle group: VI; vastus lateralis (VL); vastus medialis (VM); and rectus femoris (RF) muscles. For the VI muscle, our recently developed technique was used. Root mean square (RMS) and median frequency (MF) of the surface EMG signal were calculated and these variables were then normalized by the value at the beginning of the task. Normalized RMS of the VI muscle resembled those of the other three muscles at all given times. At 95% of exhaustion time, normalized MF of the VI muscle was significantly higher than that of the VL muscle (p < 0.05). These results suggested that neuromuscular activation is not consistent between the VI and VL muscles at the exhaustion for isometric submaximal contraction and this could reflect the dissimilar intramuscular metabolism between these muscles.  相似文献   

5.

Background

The aim of this study was to investigate the association between walking ability and muscle atrophy in the trunk and lower limbs.

Methods

Subjects in this longitudinal study were 21 elderly women who resided in nursing homes. The thicknesses of the following trunk and lower-limb muscles were measured using B-mode ultrasound: rectus abdominis, external oblique, internal oblique, transversus abdominis, erector spinae, lumbar multifidus, psoas major, gluteus maximus, gluteus medius, gluteus minimus, rectus femoris, vastus lateralis, vastus intermedius, biceps femoris, gastrocnemius, soleus, and tibialis anterior. Maximum walking speed was used to represent walking ability. Maximum walking speed and muscle thickness were assessed before and after a 12-month period.

Results

Of the 17 measured muscles of the trunk and lower limbs, age-related muscle atrophy in elderly women was greatest in the erector spinae, rectus femoris, vastus lateralis, vastus intermedius, and tibialis anterior muscles. Correlation coefficient analyses showed that only the rate of thinning of the vastus lateralis was significantly associated with the rate of decline in maximum walking speed (r = 0.518, p < 0.05).

Conclusions

This longitudinal study suggests that reduced walking ability may be associated with muscle atrophy in the trunk and lower limbs, especially in the vastus lateralis muscle, among frail elderly women.  相似文献   

6.
Computer models of the musculoskeletal system frequently represent the force-length behavior of muscle with a lumped-parameter model. Lumped-parameter models use simple geometric shapes to characterize the arrangement of muscle fibers and tendon; this may inaccurately represent changes in fiber length and the resulting force-length behavior, especially for muscles with complex architecture. The purpose of this study was to determine the extent to which the complex features of the rectus femoris and vastus intermedius architectures affect the fiber changes in length ("fiber excursions"). We created three-dimensional finite-element models of the rectus femoris and vastus intermedius muscles based on magnetic resonance (MR) images, and compared the fiber excursions predicted by the finite-element models with fiber excursions predicted by lumped-parameter models of these muscles. The finite-element models predicted rectus femoris fiber excursions (over a 100 degrees range of knee flexion) that varied from 55% to 70% of the excursion of the muscle-tendon unit and vastus intermedius fiber excursions that varied from 55% to 98% of the excursion muscle-tendon unit. In contrast, the lumped-parameter model of the rectus femoris predicted fiber excursions that were 86% of the excursion of the muscle-tendon unit and vastus intermedius fiber excursions that were 97% of the excursion of the muscle-tendon unit. These results suggest that fiber excursions of many fibers are overestimated in lumped-parameter models of these muscles. These new representations of muscle architecture can improve the accuracy of computer simulations of movement and provide insight into muscle design.  相似文献   

7.
Interlimb and sex-based differences in gait mechanics and neuromuscular control are common after anterior cruciate ligament reconstruction (ACLR). Following ACLR, individuals typically exhibit elevated co-contraction of knee muscles, which may accelerate knee osteoarthritis (OA) onset. While directed (medial/lateral) co-contractions influence tibiofemoral loading in healthy people, it is unknown if directed co-contractions are present early after ACLR and if they differ across limbs and sexes. The purpose of this study was to compare directed co-contraction indices (CCIs) of knee muscles in both limbs between men and women after ACLR. Forty-five participants (27 men) completed overground walking at a self-selected speed 3 months after ACLR during which quadriceps, hamstrings, and gastrocnemii muscle activities were collected bilaterally using surface electromyography. CCIs of six muscle pairs were calculated during the weight acceptance interval. The CCIs of the vastus lateralis/biceps femoris muscle pair (lateral musculature) was greater in the involved limb (vs uninvolved; p = 0.02). Compared to men, women exhibited greater CCIs in the vastus medialis/lateral gastrocnemius and vastus lateralis/lateral gastrocnemius muscle pairs (p < 0.01 and p = 0.01, respectively). Limb- and sex-based differences in knee muscle co-contractions are detectable 3 months after ACLR and may be responsible for altered gait mechanics.  相似文献   

8.
In this study we aimed to determine the reliability of the surface electromyography (EMG) of leg muscles during vertical jumping between two test sessions, held 2 weeks apart. Fifteen females performed three maximal vertical jumps with countermovement. The displacement of the body centre of mass (BCM), duration of propulsion phase (time), range of motion (ROM) and angular velocity of the knee and surface EMG of four leg muscles (rectus femoris, vastus medialis. biceps femoris and gastrocnemius) were recorded during the jumps. All variables were analysed throughout the propulsion and mid-propulsion phases. Intraclass correlation coefficients (ICC) for the rectus femoris, vastus medialis, biceps femoris and gastrocnemius were calculated to be 0.88, 0.70, 0.24 and 0.01, respectively. BCM, ROM and time values all indicated ICC values greater than 0.90, and the mean knee angular velocity was slightly lower, at 0.75. ICCs between displacement of the BCM and integrated EMG (IEMG) of the muscles studied were less than 0.50. The angular velocity of the knee did not correlate well with muscle activity. Factors that may have affected reliability were variations in the position of electrode replacement, skin resistance, cross-talk between muscles and jump mechanics. The results of this study suggest that while kinematic variables are reproducible over successive vertical jumps, the degree of repeatability of an IEMG signal is dependent upon the muscle studied.  相似文献   

9.
In vivo motion of the rectus femoris muscle after tendon transfer surgery   总被引:7,自引:0,他引:7  
Rectus femoris transfer surgery is performed to convert the rectus femoris muscle from a knee extensor to a knee flexor. In this surgery, the distal tendon of the rectus femoris is detached from the patella and reattached to one of the knee flexor tendons. The outcomes of this procedure are variable, and it is not known if the surgery successfully converts the muscle to a knee flexor. We measured the motion of muscle tissue within the rectus femoris and vastus intermedius during knee extension in 10 unimpaired control subjects (10 limbs) and 6 subjects (10 limbs) after rectus femoris transfer using cine phase-contrast magnetic resonance imaging. Displacements of the vastus intermedius during knee extension were similar between control and tendon transfer subjects. In the control subjects, the rectus femoris muscle consistently moved in the direction of the knee extensors and displaced more than the vastus intermedius. The rectus femoris also moved in the direction of the knee extensors in the tendon transfer subjects; however, the transferred rectus femoris displaced less than the vastus intermedius. These results suggest that the rectus femoris is not converted to a knee flexor after its distal tendon is transferred to the posterior side of the knee, but its capacity for knee extension is diminished by the surgery.  相似文献   

10.
Muscle-specific atrophy of the quadriceps femoris with aging.   总被引:6,自引:0,他引:6  
We examined the size of the four muscles of the quadriceps femoris in young and old men and women to assess whether the vastus lateralis is an appropriate surrogate for the quadriceps femoris in human studies of aging skeletal muscle. Ten young (24 +/- 2 yr) and ten old (79 +/- 7 yr) sedentary individuals underwent magnetic resonance imaging of the quadriceps femoris after 60 min of supine rest. Volume (cm3) and average cross-sectional area (CSA, cm2) of the rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), and the total quadriceps femoris were decreased (P < 0.05) in older compared with younger women and men. However, percentage of the total quadriceps femoris taken up by each muscle was similar (P > 0.05) between young and old (RF: 10 +/- 0.3 vs. 11 +/- 0.4; VL: 33 +/- 1 vs. 33 +/- 1; VI: 31 +/- 1 vs. 31 +/- 0.4; VM: 26 +/- 1 vs. 25 +/- 1%). These results suggest that each of the four muscles of the quadriceps femoris atrophy similarly in aging men and women. Our data support the use of vastus lateralis tissue to represent the quadriceps femoris muscle in aging research.  相似文献   

11.
EMG analysis has indicated that the vastus lateralis and vastus medialis contribute less to the quadriceps moment during knee extension than the physiological cross-sectional areas (PCSA's) of the muscles indicate. Both PCSA- and EMG-based quadriceps force distributions were utilized while computationally simulating knee extension. For both distributions, a 10 degrees increase in the Q-angle and a 50% decrease in the force applied by the vastus medialis were simulated, and the influence of these changes on the resultant force and moment applied by the quadriceps muscles and the patella tendon was quantified. For both quadriceps force distributions, increasing the Q-angle increased the lateral force and the moment acting to rotate the distal patella laterally. Due to the relatively large forces initially attributed to the vastus medialis and vastus lateralis for the PCSA-based quadriceps force distribution, decreasing the vastus medialis force created a large force imbalance between these two muscles. For the PCSA-based quadriceps force distribution, decreasing the vastus medialis force increased the lateral rotation moment and the moment acting to tilt the patella laterally. For the EMG-based quadriceps force distribution, decreasing the vastus medialis force produced relatively little change in the tilt and rotation moments. For both quadriceps force distributions, increasing the Q-angle increased the maximum and mean cartilage pressure during flexion, but decreasing the vastus medialis force only increased the cartilage pressures for the PCSA-based quadriceps distribution. The choice of the initial quadriceps distribution can influence the outcome of patellofemoral simulation when manipulating quadriceps muscle forces.  相似文献   

12.
Saddle position affects mechanical variables during submaximal cycling, but little is known about its effect on mechanical performance during maximal cycling. Therefore, this study relates saddle position to experimentally obtained maximal power output and theoretically calculated moment generating capacity of hip, knee and ankle muscles during isokinetic cycling. Ten subjects performed maximal cycling efforts (5 s at 100 rpm) at different saddle positions varying ± 2 cm around the in literature suggested optimal saddle position (109% of inner leg length), during which crank torque and maximal power output were determined. In a subgroup of 5 subjects, lower limb kinematics were additionally recorded during submaximal cycling at the different saddle positions. A decrease in maximal power output was found for lower saddle positions. Recorded changes in knee kinematics resulted in a decrease in moment generating capacity of biceps femoris, rectus femoris and vastus intermedius at the knee. No differences in muscle moment generating capacity were found at hip and ankle. Based on these results we conclude that lower saddle positions are less optimal to generate maximal power output, as it mainly affects knee joint kinematics, compromising mechanical performance of major muscle groups acting at the knee.  相似文献   

13.
Objectives:Tensiomyography (TMG) derived contraction time (Tc) and amplitude (Dm) are related to muscle fibre composition and to muscle atrophy/tone, respectively. However, the link between mobility and TMG-derived skeletal muscle contractile properties in older persons is unknown. The aim of the study was to correlate lower limb skeletal muscle contractile properties with balance and mobility measures in senior female residents of retirement homes in Austria.Methods:Twenty-eight female participants (aged from 67-99 years) were included in measurements of contractile properties (TMG) of four skeletal muscles: vastus lateralis, vastus medialis, biceps femoris and gastrocnemius medialis. Their balance and mobility performance was measured using a timed up and go test (TUG).Results:Time needed to complete TUG is negatively correlated to biceps femoris (r= -0.490; p= 0.008), vastus lateralis (r= -0.414; p=0.028) and vastus medialis (r= -0.353; p=0.066) Dm and positively correlated to vastus lateralis Tc (r=0.456; p=0.015). Overall, vastus lateralis Tc and vastus medialis Dm explained 37% of TUG time variance.Conclusions:Our study demonstrates that TMG-derived quadriceps muscle contractile parameters are correlated with the balance and mobility function in female nursing home residents.  相似文献   

14.
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function.  相似文献   

15.
Fatigue resistance of knee extensor muscles is higher during voluntary isometric contractions at short compared with longer muscle lengths. In the present study we hypothesized that this would be due to lower energy consumption at short muscle lengths. Ten healthy male subjects performed isometric contractions with the knee extensor muscles at a 30, 60, and 90 degrees knee angle (full extension = 0 degrees ). At each angle, muscle oxygen consumption (m.VO2) of the rectus femoris, vastus lateralis, and vastus medialis muscle was obtained with near-infrared spectroscopy. m.VO2 was measured during maximal isometric contractions and during contractions at 10, 30, and 50% of maximal torque capacity. During all contractions, blood flow to the muscle was occluded with a pressure cuff (450 mmHg). m.VO2 significantly (P < 0.05) increased with torque and at all torque levels, and for each of the three muscles. m.VO2 was significantly lower at 30 degrees compared with 60 degrees and 90 degrees and m.VO2 was similar (P > 0.05) at 60 degrees and 90 degrees . Across all torque levels, average (+/- SD) m.VO2 at the 30 degrees angle for vastus medialis, rectus femoris, and vastus lateralis, respectively, was 70.0 +/- 10.4, 72.2 +/- 12.7, and 75.9 +/- 8.0% of the average m.VO2 obtained for each torque at 60 and 90 degrees . In conclusion, oxygen consumption of the knee extensors was significantly lower during isometric contractions at the 30 degrees than at the 60 degrees and 90 degrees knee angle, which probably contributes to the previously reported longer duration of sustained isometric contractions at relatively short muscle lengths.  相似文献   

16.
Dynamic knee valgus is a multi-planar motion that has been associated with anterior cruciate ligament injuries and patellofemoral pain syndrome. Clinical assessment of dynamic knee valgus is usually performed through visual appearance of medial knee displacement (MKD) during the overhead squat. The aim of this study is to identify the kinematic and neuromuscular parameters associated with MKD. Twenty-two females performed an overhead squat and were assigned to the control group (n = 14) or the MKD group (n = 8). Electromyography and kinematic data of the lower extremity were collected. We observed MKD to exhibit greater muscle activity in the following muscles: adductor magnus, biceps femoris, vastus lateralis and vastus medialis muscles during the eccentric phase of the overhead squat. No group differences were observed during the concentric phase. Regarding the kinematics, the MKD group showed higher knee internal rotation and, knee abduction and ankle abduction, compared to controls. The combined information from the muscle activity results and kinematics of squat helps to explain the occurrence of excessive medial knee displacement and, hence, providing relevant information for health professionals to address this injury risk factor.  相似文献   

17.
The first aim was to investigate the impact of different electromyography (EMG) parameters as a reference to normalize the EMG amplitude of the superficial quadriceps femoris muscles across different sets of a knee extension exercise. The second aim is to examine the reliability between days of the EMG parameters used as a reference. Eleven young males attended the laboratory on 4 different days and performed one repetition maximum test, maximumvoluntary isometric contractions, and a resistance training protocol until failure. Surface EMG was placed over the rectus femoris, vastus lateralis, and vastus medialis muscles. Seven EMG parameters were calculated from the tasks and used to normalize EMG amplitude measured during the resistance training protocol. A repeated-measures two-way ANOVA was used (normalized EMG amplitude × set) to compare normalized EMG across sets, while an intraclass correlation coefficient, coefficient of variation, and Bland-Altman plots were used to calculate the intra-day reliability of the EMG parameters. The present investigation showed that normalized EMG amplitude of the superficial muscles of the quadriceps measured during a knee extension exercise is influenced by the EMG parameter and depends on the muscle. While rectus femoris and vastus lateralis normalized EMG amplitude presented one parameter among seven showing similar value to the other parameters, VM showed two. Lastly, all EMG parameters for all muscles presented an overall excellent reliability and agreement between days.  相似文献   

18.
The purpose of this study was to verify the difference between carrying a load on the sacrum (LOS) and on the lumbar vertebrae (LOL) in oxygen uptake, muscle activities, heart rate, cadence, and subjective response. Nine males (26.7 +/- 3.1 years old), each carrying a 7.5 kg carrier frame and a 40 kg load, walked on a treadmill at a speed of 50 m/min. EMGs were recorded from the trapezius, rectus abdominis, erector spinae, vastus lateralis, rectus femoris, vastus medialis, biceps femoris long head, tibial anterior, soleus, medial head of gastrocnemius, and the lateral head of gastrocnemius. For each subject the integrated EMG (IEMG) was normalized by dividing the IEMG in the LOL and LOS by the IEMG in a no-load condition (NL) for each investigated muscle. The following was significantly higher in LOL than in LOS: oxygen uptake; IEMG of the tibial anterior, soleus, and medial head of gastrocnemius; cadence; and rated perceived exertion. However, IEMG of the erector spinae was significantly lower in LOL than in LOS. These results suggest that seita-fitting in LOS causes a decrease of leg muscle activities, which causes oxygen uptake to decrease beyond the increase of the erector spinae activity.  相似文献   

19.
Despite the wide use of surface electromyography (EMG) recorded during dynamic exercises, the reproducibility of EMG variables has not been fully established in a course of a dynamic leg exercise. The aim of this study was to investigate the reproducibility of eight lower limb muscles activity level during a pedaling exercise performed until exhaustion. Eight male were tested on two days held three days apart. Surface EMG was recorded from vastus lateralis, rectus femoris (RF), vastus medialis, semimembranosus, biceps femoris, gastrocnemius lateral, gastrocnemius medianus and tibialis anterior during incremental exercise test. The root mean square, an index of global EMG activity, was averaged every five crank revolutions (corresponding to about 3 s at 85 rpm) throughout the tests. Despite inter-subjects variations, we showed a high reproducibility of the activity level of lower limb muscles during a progressive pedaling exercise performed until exhaustion. However, RF muscle seemed to be the less reproducible of the eight muscles investigated during incremental pedaling exercise. These results suggest that each subject adopt a personal muscle activation strategy in a course of an incremental cycling exercise but fatigue phenomenon can induce some variations in the most fatigable muscles (RF).  相似文献   

20.
In many occupational settings (e.g. agriculture and construction) workers are asked to maintain static flexed postures of the low back for extended periods of time. Recent research indicates that the resulting strain in the viscoelastic, ligamentous tissues may have a deleterious effect on the stability of the spine and the normal reflex response of spinal tissues. The purpose of this study was to evaluate the previously described flexion-relaxation response in terms of the interactive effect of trunk flexion angle (30 degrees, 50 degrees, 70 degrees, 90 degrees ), knee flexion angle (0 degrees (straight knees), 20 degrees, 40 degrees ) and individual flexibiliteky (low, medium, and high). These conditions were tested under two levels of loading: no load (just supporting the weight of the torso) and trunk extension moment equal to 50% of the subject's posture-specific maximum voluntary trunk extension capacity. Surface electromyographic (EMG) data were collected from the multifidus, the longissimus, the iliocostalis, the vastus medialis, the rectus femoris, the vastus lateralis, the biceps femoris, and the gastrocnemius-soleus group from a sample of eight male participants as they performed isometric weight holding tasks in the postures defined by the combinations of trunk angle and knee angle. The results of this study showed that knee angle did have a significant effect on the lumbar extensor muscle activity but only consistently at the 90 degrees trunk angle. Participant flexibility showed a consistent trend of decreasing lumbar extensor muscle activity with decreased flexibility across all trunk angle values. Most interesting was the interactive response of flexibility and knee angle, wherein the flexibility of the participant influenced the trunk angles at which the knee flexion angle affected the flexion-relaxation response. Highly flexible subjects showed an effect of knee angle on the flexion-relaxation response only at the 90 degrees trunk angle; subjects in the medium flexibility category showed a similar response in both the 70 degrees and 90 degrees trunk angles; subject in the low flexibility group showed no knee angle effect on the flexion-relaxation response. Overall the results confirm previous results with regard to the contribution of the passive tissues to the overall trunk extension moment but also show that the tension in the bi-articular biceps femoris, which was influenced by knee flexion angle and flexibility, affects the ratio of active extensor moment contributions of the lumbar extensor musculature to passive extensor moment contributions from the muscular and ligamentous tissues. The results of this study provide empirical data describing this complicated, interactive response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号